: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High－／Full－Speed USB 2．0 Switches

Abstract

General Description The MAX4906／MAX4906F／MAX4907／MAX4907F analog switches combine the low on－capacitance（CON）and low on－resistance（RON）necessary for high－perfor－ mance switching applications．These devices are designed for USB 2.0 high－speed applications at 480 Mbps ．These switches will also handle all the requirements for USB low－and full－speed signaling． The MAX4906／MAX4906F feature two single－pole／dou－ ble－throw（SPDT）switches，and the MAX4907／ MAX4907F feature two single－pole／single－throw switches （SPST）．The MAX4907／MAX4907F have a low 7Ω（max） on－resistance and 7pF（max）on－capacitance．These devices are fully specified to operate from a single +3.0 V to +3.6 V power supply and are protected against $a+5.5 \mathrm{~V}$ short to COM1 and COM2．This feature makes them fully compliant with the USB 2.0 specification of +5.5 V fault protection．These devices feature a low threshold voltage and a $+1.4 \mathrm{~V} \mathrm{~V}_{\mathrm{IH}}$ ，permitting them to be used with low－voltage logic．The MAX4906／ MAX4906F／MAX4907／MAX4907F operate at $300 \mu A$ （max）quiescent current and feature a shutdown input to reduce the quiescent current to less than $2 \mu \mathrm{~A}$（max）． The MAX4906／MAX4906F／MAX4907／MAX4907F are avail－ able in space－saving， $2 \mathrm{~mm} \times 2 \mathrm{~mm} \mu \mathrm{DFN}$ packages and operate over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range．

Cell Phones
PDAs
Digital Still Cameras
GPS
Notebook Computers
Relay Replacements

Applications
USB Switching
Ethernet Switching
Video Switching
Bus Switches
T3／E3 Switches for Redundancy Protection

＿Typical Operating Characteristics

－Fully Specified for a Single＋3．0V to＋3．6V Power－Supply Voltage
－Low 4Ω（typ）， 7Ω（max）On－Resistance（Ron）
－MAX4907／MAX4907F Ultra－Low 4pF（typ），
7pF（max）On－Capacitance（Con）
－－3dB Bandwidth：1GHz（typ）
－Low Bit－to－Bit Skew \leq 100ps
－Shutdown Input Reduces Power Consumption to $2 \mu \mathrm{~A}$（max）
－3．3V，1．8V，and 1．4V Logic Compatible
－COM＿Analog Inputs Fault Protected Against Shorts to USB Supply Rail Up to +5.5 V
－Space－Saving Packages
8－Pin and $10-\mathrm{Pin}, 2 \mathrm{~mm} \times 2 \mathrm{~mm} \mu \mathrm{DFN}$ Packages

Ordering Information

PART	PIN－PACKAGE	PKG CODE
MAX4906ELB	10μ DFN	L1022－1
MAX4906FELB	$10 \mu \mathrm{DFN}$	L1022－1
MAX4907ELA	$8 \mu \mathrm{DFN}$	L822－1
MAX4907FELA	$8 \mu \mathrm{DFN}$	L822－1

Note：All devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range．

Selector Guide appears at end of data sheet．

Pin Configurations

High-/Full-Speed USB 2.0 Switches

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
8-Pin μ DFN (derate $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	400mW
10-Pin μ DFN (derate $5.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)...... .423 .7 mW	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature R	+ $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Note 1: Signals on IN, SHDN or SHDN/EN exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+3 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}},$ V_{NC} _	SHDN or SHDN/EN $=0($ Note 3)		0		V+	V
Fault-Protection Trip Threshold	VFP			3.6		4.0	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{ICOM}_{-}=-40 \mathrm{~mA}, \\ & O V \leq \mathrm{V}_{\text {COM }} \leq \mathrm{V}+, \\ & \text { SHDN or SHDN/EN }=0 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4	7	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			8	
On-Resistance During Shutdown	RONSH	$\begin{aligned} & \mathrm{ICOM}_{-}=-40 \mathrm{~mA}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\text {COM_ }} \leq 1.5 \mathrm{~V}, \\ & \text { SHDN }=\mathrm{V}_{+} \\ & (\text {MAX } 4907 / \mathrm{MAX} 4907 \mathrm{~F}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4	10	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			13	
On-Resistance Match Between Channels	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V} \\ & \mathrm{I}_{+} \mathrm{COM}_{-}=-40 \mathrm{~mA}, \\ & \mathrm{VCOM}_{-}=1.5 \mathrm{~V} \text { (Note 4) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.7	1.2	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.5	
On-Resistance Flatness	RFLAT (ON)	$\begin{aligned} & \mathrm{V}+=3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=-40 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {com }}=1.5 \mathrm{~V}, 3.0 \mathrm{~V}(\text { Note } 5) \end{aligned}$		1.0			Ω
Off-Leakage Current	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}^{-}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$		-1		+1	$\mu \mathrm{A}$
On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \hline \mathrm{V}_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, or floating } \\ & \hline \end{aligned}$		-1		+1	$\mu \mathrm{A}$
SWITCH AC PERFORMANCE							
On-Channel -3dB Bandwidth	BW	$R_{L}=R_{S}=50 \Omega$, signal $=$	OdBm, Figure 1		1000		MHz
Off-Isolation	VISO	$\begin{aligned} & f=10 \mathrm{MHz} ; \mathrm{VNO}_{\mathrm{NO}_{-}}, \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{VP}_{\mathrm{P}-\mathrm{P} ;} \\ & \mathrm{RL}_{\mathrm{L}}=\mathrm{RS}=50 \Omega \text {, Figure } 1 \end{aligned}$			-60		dB
		$\begin{aligned} & f=250 \mathrm{MHz} ; \mathrm{V}_{\text {NO_}}, \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V}_{\mathrm{P-P}} ; \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{RS}_{\mathrm{S}}=50 \Omega \text {, Figure } 1 \end{aligned}$		-32			
		$\begin{aligned} & \mathrm{f}=500 \mathrm{MHz} ; \mathrm{V}_{\mathrm{NO}_{-}}, \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P} ;} \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{RS}_{\mathrm{S}}=50 \Omega, \text { Figure } 1 \end{aligned}$		-26			

High-/Full-Speed USB 2.0 Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+3 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2$)$

High-/Full-Speed USB 2.0 Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+3 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Total Harmonic Distortion Plus Noise	THD + N	$\begin{aligned} & \mathrm{V}_{\text {COM_ }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{RL}_{\mathrm{L}}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$		0.03		\%
Charge Injection	Q	$V_{G E N}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF},$ Figure 6		5		pC
SWITCH LOGIC						
Logic-Input-Voltage Low	$\mathrm{V}_{\text {IL }}$				0.4	V
Logic-Input-Voltage High	V_{IH}		1.1			V
Input-Logic Hysteresis	VHYST			100		mV
Input Leakage Current	IIN	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or $\mathrm{V}+$	-1		+1	$\mu \mathrm{A}$
Operating Supply-Voltage Range	V+		3.0		3.6	V
Quiescent Supply Current	I+	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V} \text { IN }=0 \text { or } \mathrm{V}+\text {, SHDN or } \\ & \text { SHDN } / E N=0 \end{aligned}$		120	300	$\mu \mathrm{A}$
Quiescent Supply Current During Shutdown	I+	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}+\text {, SHDN or } \\ & \text { SHDN/EN }=\mathrm{V}_{+} \end{aligned}$			2	$\mu \mathrm{A}$

Note 2: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and not production tested.
Note 3: The switch will turn off for voltages above (VFP); therefore, protecting downstream circuits in case of a fault condition (MAX4906F/MAX4907F).
Note 4: $\triangle \mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}=\left|\mathrm{RON}_{\mathrm{ON}}(\mathrm{CH} 1)-\mathrm{RON}(\mathrm{CH} 2)\right|$
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.
Note 6: Between any two switches.
Note 7: Switch off-capacitance, switch on-capacitance, output skew between switches, and output skew same-switch limits are not production tested; design guaranteed by bench characterization.

Typical Operating Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

High-/Full-Speed USB 2.0 Switches

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-/Full-Speed USB 2.0 Switches

MAX4906/MAX4606F/MAX4907/MAX4907F Typical Operating Characteristics (continued) ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-/Full-Speed USB 2.0 Switches

Pin Description

PIN		NAME	FUNCTION
MAX4906/ MAX4906F	$\begin{aligned} & \text { MAX4907I } \\ & \text { MAX4907F } \end{aligned}$		
1	8	IN	Digital Control Input. IN controls switch 1 and switch 2.
2	-	SHDN/EN	Shutdown and Enable Input. Drive SHDN/EN high to consume minimum current and to put the device in high-impedance mode. Drive the SHDN/ $\overline{\mathrm{EN}}$ low for normal operation.
3	2	GND	Ground
4	3	COM1	Analog Switch 1-Common Terminal
5	4	COM2	Analog Switch 2-Common Terminal
6	5	NO2	Analog Switch 2-Normally Open Terminal
7	6	NO1	Analog Switch 1-Normally Open Terminal
8	-	NC2	Analog Switch 2-Normally Closed Terminal
9	-	NC1	Analog Switch 1-Normally Closed Terminal
10	7	V+	Positive-Supply Voltage Input. Connect V+ to a 3.0 V to 3.6 V supply voltage. Bypass $\mathrm{V}+$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
-	1	SHDN	Shutdown Input. Drive SHDN high to put the device into shutdown mode. For normal operation, drive SHDN low.

Test Circuits/Timing Diagrams

OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
*FOR CROSSTALK THIS PIN IS NO2.
MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
NC2 AND COM2 ARE OPEN.
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_OR NC_ TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 1. On-Loss, Off-Isolation, and Crosstalk

High-/Full-Speed USB 2.0 Switches

Figure 2. Channel Off/On-Capacitance

Figure 3. Switching Time

High-/Full-Speed USB 2.0 Switches

MAX4906/MAX4606F/MAX4907/MAX4907F

Figure 4. Output Signal Skew, Rise/Fall Time, Propagation Delay

High-/Full-Speed USB 2.0 Switches

Figure 5. MAX4906F/MAX4907F Fault-Protection Response/Recovery Time

Figure 6. Charge Injection

Detailed Description

The MAX4906/MAX4906F/MAX4907/MAX4907F analog switches are targeted for USB 2.0 high-speed (480Mbps) switching applications. These devices still meet USB low- and full-speed requirements and are suitable for 10/100 Ethernet switching. The MAX4906/ MAX4906F feature two SPDT switches, while the MAX4907/MAX4907F feature two SPST switches. The MAX4907/MAX4907F switch configurations have a low 7Ω (max) on-resistance and 7 pF (max) on-capacitance.

The MAX4906/MAX4906F/MAX4907/MAX4907F are fully specified to operate from a single +3.0 V to +3.6 V supply and are available with +5.5 V fault protection (MAX4906F/ MAX4907F). When operating from $\mathrm{a}+3.0 \mathrm{~V}$ to +3.6 V supply, the low threshold of these devices permits them to be used with logic levels as low as 1.4V.The MAX4906/MAX4906F/MAX4907/MAX4907F are based on a charge-pump-assisted n-channel architecture and thus operate at $300 \mu \mathrm{~A}$ (max) quiescent current. These devices all feature a shutdown input to reduce the quiescent current to less than $2 \mu \mathrm{~A}$ (max).

High-/Full-Speed USB 2.0 Switches

Functional Diagram/Truth Table

Digital Control Input

The MAX4906/MAX4906F/MAX4907/MAX4907F provide a single-digit control logic input, IN. IN controls the position of the switches as shown in the Functional Diagram/Truth Table. Driving IN rail-to-rail minimizes power consumption. With a +3.0 V to +3.6 V supply voltage range, these devices are +1.4 V logic compatible.

Analog Signal Levels

The on-resistance of the MAX4906/MAX4906F/ MAX4907/MAX4907F is very low and stable as the analog input signals are swept from ground to $V+$ (see the Typical Operating Characteristics). These switches are bidirectional, allowing NO_{-}, NC_, and COM_ to be configured as either inputs or outputs.

Overvoltage Fault Protection

The MAX4906F and MAX4907F feature +5.5 V fault protection to COM1 and COM2. Fault protection prevents these switches from being damaged due to shorts to the USB bus voltage rail.

Shutdown Mode

The MAX4906/MAX4906F feature a shutdown mode that reduces the quiescent current supply to less than $2 \mu \mathrm{~A}$. Drive SHDN/EN high to place the devices in highimpedance mode. When SHDN/EN is driven low, the devices are normal in operation.
The MAX4907/MAX4907F feature a SHDN input that reduces the quiescent current supply to less than $2 \mu \mathrm{~A}$. Drive SHDN high to place the devices in low current mode. The devices can be used in low current mode, but with a reduced analog voltage range of $0<V_{\text {ANALOG }}<$ 1.5 V and reduced performance. When SHDN is driven low, the MAX4907/MAX4907F are in normal operation.

Applications Information

USB Switching
The MAX4906/MAX4906F/MAX4907/MAX4907F analog switches are fully compliant with the USB 2.0 specification. The low on-resistance and low on-capacitance of these switches make them ideal for high-performance switching applications. The MAX4906/MAX4906F are

High-/Full-Speed USB 2.0 Switches

Figure 7. MAX4906/MAX4906F USB Data Routing

Figure 8. MAX4906/MAX4906F Switching Between Multiple USB Hosts
ideal for routing USB data lines (see Figure 7) and for applications that require switching between multiple USB hosts (see Figure 8). The MAX4907/MAX4907F can be used in applications that require different data types to share the same pins (see Figure 9); however, the shared device must be capable of going into the tristate mode. The MAX4906F/MAX4907F also feature +5.5 V fault protection to guard systems against shorts to the USB bus voltage. The fault-protected versions are recommended for all USB applications.

Figure 9. MAX4907/MAX4907F USB/SPI/GPIO Switch
Ethernet Switching
The wide bandwidth of the MAX4906/MAX4906F/ MAX4907/MAX4907F meets the needs of 10/100 Ethernet switching. These devices switch the signals from two interface transformers and connect the signals to a single 10/100 Base-T Ethernet PHY, simplifying docking station design and reducing manufacturing costs.

Power-Supply Sequencing Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep design-controlled-impedance PC board traces as short as possible. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

High-/Full-Speed USB 2.0 Switches

PART	CONFIGURATION	FAULT PROTECTION	TOP MARK
MAX4906ELB	Dual SPDT	NO	AAB
MAX4906FELB	Dual SPDT	YES	AAA
MAX4907ELA	Dual SPST	NO	AAE
MAX4907FELA	Dual SPST	YES	AAD

Chip Information
PROCESS: BiCMOS

Revision History

Pages changed at Rev 2: 1, 2, 3, 7, 11, 14

High-/Full-Speed USB 2.0 Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

