: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

Abstract

General Description The MAX4927 meets the needs of high-speed differential switching, including that of Gigabit Ethernet (10/100/1000) Base-T switching as well as LVDS and LVPECL switching. The MAX4927 provides enhanced ESD protection up to $\pm 15 \mathrm{kV}$ and excellent high-frequency response, making the device especially useful for interfaces that must go to an outside connection.

The MAX4927 offers extremely low capacitance (CON), as well as low on-resistance (RON), for low-insertion loss and very wide bandwidth. In addition to the four pairs of DPDT switches, the MAX4927 provides LED switching for laptop computer/docking station use. The MAX4927 is pin-to-pin equivalent to the PI3L500-A and STMUX1000L. The MAX4927 can replace either device in those applications, improving ESD protection and eliminating external ESD components. The MAX4927 is available in a space-saving 56-pin TQFN package and operates over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Notebooks and Docking Stations
Servers and Routers with Ethernet Interfaces
Board-Level Redundancy Protection
SONET/SDH Signal Routing
T3/E3 Redundancy Protection
LVDS and LVPECL Switching
Pin Configuration

Features

- ESD Protection
$\pm 15 k V-I E C$ 61000-4-2 Air-Gap Discharge $\pm 8 k V-I E C$ 61000-4-2 Contact Discharge $\pm 15 \mathrm{kV}$-Human Body Model
- Single +3.0V to +3.6V Power-Supply Voltage
- Low 4Ω (typ), 6.5Ω (max) On-Resistance (Ron)
- Ultra-Low 8pF (typ) On-Capacitance (Con)
- -23dB Return Loss (100MHz)
- -3dB Bandwidth: 650MHz
- Optimized Pin Out for Easy Transformer and PHY Interface
- Built-In LED Switches for Switching Indicators to Docking Station
- Low 450 HA (max) Quiescent Current
- Bidirectional 8 to 16 Multiplexer/Demultiplexer
- Standard Pin Out, Matching the PI3L500-A and STMUX1000L
- Space-Saving Lead-Free Package $56-$ Pin, $5 \mathrm{~mm} \times 11 \mathrm{~mm}$, TQFN Package

Ordering Information

PART	PIN- PACKAGE	LED SWITCHES	PKG CODE
MAX4927ETN+	56 TQFN-EP*	3	T56511-1

+Denotes lead-free package.
Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
*EP = Exposed pad.

Typical Operating Circuit and Functional Diagrams appear at end of data sheet.

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

ABSOLUTE MAXIMUM RATINGS

V	V
All Other Pins	.-0.3V to (VDD + 0.3V)
Continuous Current (A_{-}to _B_)	$\ldots . . \pm 120 \mathrm{~mA}$
Continuous Current (LED_ to _LED_)	$\pm 40 \mathrm{~mA}$
Peak Current (A_ to _B_) (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	$\pm 240 \mathrm{~mA}$
Current into Any Other Pin...........	$\ldots . .20 \mathrm{~m}$

Continuous Power Dissipation (T_{A} $56-P i n ~ T Q F N ~\left(d e r a t e ~ 40.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$	C) 5278 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature.	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Current into Any Other Pin .$\pm 20 \mathrm{~mA}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

1000 Base-T $\pm 15 k V$ ESD Protection LAN Switch

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+3 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCH AC CHARACTERISTICS						
-3dB Bandwidth	BW	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega$, unbalanced		650		MHz
Off-Capacitance	COFF	$f=1 \mathrm{MHz}, \mathrm{C}_{-}, \mathrm{A}_{-}$		3.5		pF
On-Capacitance	Con	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{B}_{-}, \mathrm{A}_{-}$		6.5		pF
Turn-On Time	ton	$V_{A_{-}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, Figure 2			50	ns
Turn-Off Time	toff	$V_{A_{-}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, Figure 2			50	ns
Propagation Delay	tPLH, tPHL	$R_{S}=R_{L}=50 \Omega$, unbalanced, Figure 3		0.15		ns
Output Skew Between Ports	tSK(0)	Skew between any two ports, Figure 4		0.01		ns
SWITCH LOGIC						
Input-Voltage Low	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			0.8	V
Input-Voltage High	V_{IH}	$V_{D D}=3.6 \mathrm{~V}$	2.0			V
Input-Logic Hysteresis	$\mathrm{V}_{\text {HYST }}$	$V_{D D}=3.3 \mathrm{~V}$		100		mV
Input Leakage Current	ISEL	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=0 \mathrm{~V}$ or V_{DD}	-1		+1	$\mu \mathrm{A}$
Operating-Supply Voltage Range	VDD		3.0		3.6	V
Quiescent Supply Current	IDD	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=0 \mathrm{~V}$ or V_{DD}		280	450	$\mu \mathrm{A}$

Note 1: Specifications at $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ are guaranteed by design.
Note 2: Guaranteed by design.

Figure 1. Single-Ended Bandwidth, Crosstalk, and Off-Isolation

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

Figure 2. Turn-On and Turn-Off Times

Figure 3. Propagation Delay Times

Figure 4. Output Skew

1000 Base-T, $\mathbf{4 1 5 k V}$ ESD Protection LAN Switch

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

SINGLE-ENDED INSERTION LOSS
vs. FREQUENCY

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,6,9,13,16, \\ 21,24,28,33, \\ 39,44,49,53, \\ 55 \end{gathered}$	GND	Ground
2	A0	Switch 0. Common terminal 0.
3	A1	Switch 1. Common terminal 1.
$\begin{gathered} 4,10,18,27, \\ 38,50,56 \end{gathered}$	$V_{D D}$	Positive-Supply Voltage Input. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor (see the Power-Supply Bypassing section).
5	N.C.	No Connection. Not internally connected.
7	A2	Switch 2. Common terminal 2.
8	A3	Switch 3. Common terminal 3.
11	A4	Switch 4. Common terminal 4.
12	A5	Switch 5. Common terminal 5.
14	A6	Switch 6. Common terminal 6.
15	A7	Switch 7. Common terminal 7.
17	SEL	Select Input. SEL selects switch connection. See the truth table (Table 1).
19	LED0	LEDO Input
20	LED1	LED1 Input
22	OLED1	OLED1 Output. Drive SEL low (SEL = 0) to connect LED0 to OLED1.
23	1LED1	1LED1 Output. Drive SEL low (SEL = 0) to connect LED1 to 1LED1.
25	OLED2	OLED2 Output. Drive SEL high (SEL = 1) to connect LED0 to OLED2.
26	1LED2	1LED2 Output. Drive SEL high (SEL = 1) to connect LED1 to 1LED2.
29	7B2	Switch 7. Normally open terminal 7.
30	6B2	Switch 6. Normally open terminal 6.
31	7B1	Switch 7. Normally closed terminal 7.
32	6B1	Switch 6. Normally closed terminal 6.
34	5B2	Switch 5. Normally open terminal 5.
35	4B2	Switch 4. Normally open terminal 4.
36	5B1	Switch 5. Normally closed terminal 5.
37	4B1	Switch 4. Normally closed terminal 4.
40	3B2	Switch 3. Normally open terminal 3.
41	2B2	Switch 2. Normally open terminal 2.
42	3B1	Switch 3. Normally closed terminal 3.
43	2B1	Switch 2. Normally closed terminal 2.
45	1B2	Switch 1. Normally open terminal 1.
46	0B2	Switch 0. Normally open terminal 0.
47	1 B 1	Switch 1. Normally closed terminal 1.
48	0B1	Switch 0. Normally closed terminal 0.

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

Pin Description (continued)

PIN	NAME	
51	2LED2	2LED2 Output. Drive SEL high (SEL = 1) to connect LED2 to 2LED2.
52	2LED1	2LED1 Output. Drive SEL low (SEL = 0) to connect LED2 to 2LED1.
54	LED2	LED2 Input
EP	EP	Exposed Paddle. Connect EP to GND or leave EP unconnected.

Detailed Description

The MAX4927 is a high-speed analog switch targeted for 1000 Base-T applications. In a typical application, the MAX4927 switches the signals from two separate interface transformers and connects the signals to a single 1000 Base-T Ethernet PHY (see the Typical Operating Circuit). This configuration simplifies dockingstation design by avoiding signal reflections associated with unterminated transmission lines in a T configuration. The MAX4927 is protected against $\pm 15 \mathrm{kV}$ electrostatic discharge (ESD) events. The MAX4927 also includes LED switches that allow the LED output signals to be routed to a docking station along with the Ethernet signals. See the Functional Diagrams.
With its low resistance and capacitance, as well as high ESD protection, the MAX4927 can be used to switch most low-voltage differential signals, such as LVDS, SERDES, and LVPECL, as long as the signals do not exceed maximum ratings of the device.
The MAX4927 switch provides an extremely low capacitance and on-resistance to meet Ethernet insertion and return-loss specifications. The MAX4927 features three built-in LED switches.
The MAX4927 incorporates a unique architecture design utilizing only n-channel switches within the main Ethernet switch, reducing I/O capacitance and channel resistance. An internal two-stage charge pump with a nominal 7.5 V output provides the high voltage needed to drive the gates of the n-channel switches while maintaining a consistently low Ron throughout the input signal range. An internal bandgap reference set to 1.23 V and an internal oscillator running at 2.5 MHz provide proper charge-pump operation. Unlike other charge-pump circuits, the MAX4927 includes internal flyback capacitors, reducing design time, board space, and cost.

Digital Control Inputs

The MAX4927 provides a single digital control input, SEL. SEL controls the high-frequency switches as well as the LED switches as shown in Table 1.

Table 1. Truth Table

SEL	CONNECTION
0	A_ $^{\text {to _B1, LED_ to _LED1 }}$
1	A_ to _B2, LED_ to _LED2 2

Analog Signal Levels The on-resistance of the MAX4927 is very low and stable as the analog input signals are swept from ground to VDD (see the Typical Operating Characteristics). The switches are bidirectional, allowing A_{-}and _B_ to be configured as either inputs or outputs.

士15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. All the high-frequency switch inputs (A_, _B_), LED switch inputs (LED_, _LED_), and SEL have high ESD protection against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD of $\pm 15 \mathrm{kV}$ without damage. After an ESD event, the MAX4927 keeps working without latchup or damage.
ESD protection can be tested in various ways. All signal and control inputs of the MAX4927 are characterized for protection to the following limits:

- $\pm 15 \mathrm{kV}$ using the Human Body Model
- $\pm 8 \mathrm{kV}$ using the Contact Discharge Method specified in IEC 61000-4-2
- $\pm 15 \mathrm{kV}$ using the Air-Gap Discharge Method specified in IEC 61000-4-2

ESD Test Conditions
ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

Human Body Model
Figure 5a shows the Human Body Model. Figure 5b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through $1.5 \mathrm{k} \Omega$ resistor.

IEC 61000-4-2
The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX4927 helps equipment design to meet IEC 61000-4-2 without the need for additional ESD-protected components.
The major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 5c shows the IEC 61000-4-2 model, and Figure 5d shows the current waveform for IEC 61000-42 ESD Contact Discharge test.

Machine Model
The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance.
The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly.
The Air-Gap Discharge Method involves approaching the device with a charged probe. The Contact Discharge Method connects the probe to the device before the probe is energized.

Applications Information

Typical Operating Circuit
The Typical Operating Circuit shows the MAX4927 in a 1000 Base-T docking station application.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings. Stresses beyond the listed ratings may cause permanent damage to the device.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply VDD before applying analog signals, especially if the analog signal is not current limited.

Power-Supply Bypassing
Bypass at least one VDD input to ground with a $0.1 \mu \mathrm{~F}$ or larger ceramic capacitor as close to the device as possible. Use the smallest physical size possible for optimal performance (0603 body size is recommended).
It is also recommended to bypass more than one $V_{D D}$ input. A good strategy is to bypass one VDD input with a $0.1 \mu \mathrm{~F}$ capacitor, and at least a second $V_{D D}$ input with a 10nF capacitor (use 0603 or smaller physical size ceramic capacitor).

Layout
High-speed switches require proper layout and design procedures for optimum performance. Keep design-con-trolled-impedance PCB traces as short as possible. Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.

Chip Information
PROCESS: BiCMOS

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

Figure 5a. Human Body ESD Test Model

Figure 5b. Human Body Current Waveform

Figure 5c. IEC 61000-4-2 ESD Test Model

Figure 5d. IEC 61000-4-2 ESD Generator Current Waveform

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch
__Typical Operating Circuit

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

> (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

1000 Base-T, $\pm 15 k V$ ESD Protection LAN Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

CDMMDN DIMENSIDNS						
REF.	MIN.	NDM.	MAX.	NDTE		
A	0.70	0.75	0.80			
A1	0	-	0.05			
A3	0.20 REF.					
b	0.20	0.25	0.30			
D	4.90	5.00	5.10			
E	10.90	11.00	11.10			
e	0.50 BSC.					
K	0.25	-	-			
L	0.30	0.40	0.50			
N	56					
ND	8					
NE						

	EXPOSED PAD VARIATIDNS					
	D2			E2		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
T56511-1	2.30	2.40	2.50	8.30	8.40	8.50

NOTES:

1. DIMENSIONING \& TQLERANCING CDNFORM TD ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TUTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CZNVENTION SHALL CDNFIRM TO JESD 95-1 SPP-012. DETAILS DF TERMINAL \#1 IDENTIFIER ARE IPTIGNAL, BUT MUST BE LICCATED WITHIN THE ZUNE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MILD IR MARKED FEATURE.
5. DIMENSIIN b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER DF TERMINALS IN EACH D AND E SIDE RESPECTIVELY.
7. CEPLANARITY APPLIES TI THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. CIPLANARITY SHALL NDT EXCEED 0.08 mm .
8. WARPAGE SHALL NDT EXCEED 0.10 mm .
9. MARKING IS FDR PACKAGE ORIENTATIUN PURPDSE GNLY.
10. LEAD CENTERLINES TO BE AT DEFINED BY DIMESION e ± 0.05.

18PALLAS

PACKAGE ZUTLINE
56 L THIN QFN, $5 \times 11 \times 0.8 \mathrm{~mm}$
-DRAWNG NOT TO SCALE-

APPROVAL	DOCUMENT CONTROL NO. $21-0187$	A	$\mathrm{R} / \mathrm{2}$

