: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Overvoltage-Protection Controllers with Internal FET

Abstract

General Description The MAX4943-MAX4946/MAX4949 family of overvolt-age-protection devices feature a low $80 \mathrm{~m} \Omega$ (typ) RON internal FET and protect low-voltage systems against voltage faults up to +28 V . These devices also drive an optional external pFET to protect down to -28 V when connected to a load with reverse current protection. When the input voltage exceeds the overvoltage threshold, the internal FET is turned off to prevent damage to the protected components. All switches feature a minimum 1.2A current-limit protection. During a short-circuit occurrence, the MAX4944B and MAX4945B place the switch in a latchoff state where the switch turns off and remains off. For the autoretry devices, the switch turns off and continuously checks after a 15 ms (typ) retry time. The overvoltage thresholds (OVLO) are preset to 7.4 V , $6.35 \mathrm{~V}, 5.8 \mathrm{~V}, 4.56 \mathrm{~V}$, or 8.9 V . The undervoltage-lockout (UVLO) thresholds are preset to 2.45 V and 4.15 V . When the input voltage drops below the undervoltagelockout (UVLO) threshold, the devices enter a lowcurrent standby mode. (See the Ordering Information/ Selector Guide for more details on UVLO/OVLO). All devices are offered in a small, 8-pin μ DFN ($2 \mathrm{~mm} \times$ 2 mm) package and are specified for operation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

	Applications
Cell Phones	PDAs and Palmtop Devices
Digital Still Cameras	MP3 Players

Ordering Information/Selector Guide

PART	PIN-PACKAGE	TOP MARK	PKG CODE	UVLO (V)	OVLO (V)	OVERCURRENT MODE
MAX4943ELA+T*	$8 \mu \mathrm{DFN}$	ABA	L822-1	4.15	7.40	Retry
MAX4944ELA+T	$8 \mu \mathrm{DFN}$	ABB	L822-1	4.15	6.35	Retry
MAX4944BELA+T*	$8 \mu \mathrm{DFN}$	ABC	L822-1	4.15	6.35	Latchoff
MAX4944LELA+T	$8 \mu \mathrm{DFN}$	ABD	L822-1	2.45	6.35	Retry
MAX4945ELA+T**	$8 \mu \mathrm{DFN}$	ABE	L822-1	4.15	5.80	Retry
MAX4945AELA+T**	$8 \mu \mathrm{DFN}$	ADW	L822-1	4.15	5.80	Retry
MAX4945BELA+T*	$8 \mu \mathrm{DFN}$	ABF	L822-1	4.15	5.80	Latchoff
MAX4945LELA+T	$8 \mu \mathrm{DFN}$	ABG	L822-1	2.45	5.80	Retry
MAX4946ELA+T	$8 \mu \mathrm{DFN}$	ABH	L822-1	2.45	4.56	Retry
MAX4949ELA+T	$8 \mu \mathrm{DFN}$	ADT	L822-1	2.45	8.90	Latchoff

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead-free/RoHS-compliant package.
T = Tape-and-reel package.
*Future product-contact factory for availability.
** The OVLO is 6.10 V (max) for the MAX4945ELA+T and .6.0V (max) for the MAX4945AELA+T.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Overvoltage-Protection Controllers with Internal FET

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}\right.$ (MAX4943/MAX4944_/MAX4945_/MAX4949), $\mathrm{V}_{\mathrm{IN}}=+3 \mathrm{~V}(\mathrm{MAX4946}), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	VIN			2.2		28.0	V
Input Supply Current	IIN	VIN $=3 \mathrm{~V}$ (MAX4946)			50	150	$\mu \mathrm{A}$
		$\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}$, all remaining parts			50	150	
UVLO Supply Current	IUVLO	$\mathrm{V}_{\text {IN }}=2.2 \mathrm{~V}$				30	$\mu \mathrm{A}$
IN Undervoltage Lockout	VuvLo	(VIN falling)	MAX4943/MAX4944/ MAX4944B/MAX4945/ MAX4945A/ MAX4945B	3.90	4.15	4.40	V
			MAX4944L/MAX4945L/ MAX4946/MAX4949	2.30	2.45	2.60	
IN Undervoltage-Lockout Hysteresis					1		\%
Overvoltage Trip Level	VovLo	(VIN rising)	MAX4943	7.00	7.4	7.80	V
			MAX4944_	6.00	6.35	6.70	
			MAX4945/MAX4945B/L	5.50	5.80	6.10	
			MAX4945A	5.50	5.80	6.00	
			MAX4946	4.30	4.56	4.82	
			MAX4949	8.20	8.90	9.60	
IN Overvoltage Hysteresis					1		\%
Switch On-Resistance	Ron	VIN $=3 \mathrm{~V}$ (MAX4946), IOUT = 1A			80	200	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, all remaining parts, IOUT $=1 \mathrm{~A}$			80	200	
Overcurrent Protection Threshold	ILIM	MAX4943-MAX4946	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.2	1.7	4.0	A
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1.2	1.7	4.0	
		MAX4949	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2.0	3.5	5.0	
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	2.0	3.0	5.0	
GP Clamp Voltage	IGPD	$\left(V_{I N}-V_{G P}\right), V_{I N}=28 \mathrm{~V}$		13	16	19	V
GP Pulldown Resistor	RGPD				50		k Ω

Overvoltage-Protection Controllers with Internal FET

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=+5 V\left(M A X 4943 / M A X 4944 _/ M A X 4945 _/ M A X 4949\right), V_{I N}=+3 V(M A X 4946), T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | :---: | :---: | :---: | UNITS

Note 1: All specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Specifications are over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and are guaranteed by design.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Overvoltage-Protection Controllers with Internal FET

Typical Operating Characteristics (continued)
($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OVERCURRENT DURATION TIME (DURING AUTORETRY)

Overvoltage-Protection Controllers with Internal FET

Pin Description

PIN	NAME	FUNCTION
1,2	IN	Voltage Input. IN powers the charge pump required to turn on the internal switch. When the correct adapter is plugged in, a 15ms (typ) debouncer prevents false turn-on of the internal switch. Bypass IN to GND with a 1μ F ceramic capacitor as close as possible to the device to enable $\pm 15 \mathrm{kV}$ (HBM) ESD protection on IN.
3	GP	pFET Gate-Drive Output. GP pulls the external pFET gate down when the input is above ground.
4	$\overline{\text { ACOK }}$	Active-Low Open-Drain Adapter-Voltage Indicator Output. $\overline{\text { ACOK is driven low after the adapter }}$ voltage is stable between VUVLO and VovLO for 30ms (typ). Connect a pullup resistor from $\overline{\text { ACOK }}$ to the logic I/O voltage of the host system.
5	GND	Ground
$6,7,8$	OUT	Output Voltage. Output of internal switch. Short all pins together for proper operation.

Figure 1. Functional Diagram

Detailed Description

The MAX4943-MAX4946/MAX4949 overvoltage-protection devices feature a low Ron internal FET and protect low-voltage systems against voltage faults up to +28 V . If the input voltage exceeds the overvoltage threshold, the internal MOSFET is turned off to prevent damage to the protected components. These devices also drive an
optional external pFET to protect down to -28 V . If the adapter voltage drops below ground, the pFET turns off to prevent damage to the protected components due to negative voltage exposure. The internal charge pump's 15 ms (typ) debounce time prevents false turn-on of the internal switch during startup. An open-drain, active-low logic output is available to signal that a successful power-up has occurred.

Overvoltage-Protection Controllers with Internal FET

Figure 2. Timing Diagram

Device Operation

The MAX4943-MAX4946/MAX4949 have an internal oscillator and charge pump that control the turn-on of the internal switch. The internal oscillator controls the timers that enable the turn-on of the charge pump and controls the state of the open-drain $\overline{A C O K}$ output. If VIN < VUVLO or if VIN >VOVLO, the internal oscillator remains off, thus disabling the charge pump. If VUVLO $<$ VIN $<$ VOVLO, the internal charge pump is enabled. The charge-pump startup, after a 15 ms (typ) internal delay, turns on the internal switch (see Figure 2). $\overline{\mathrm{ACOK}}$ is held high during startup until the $\overline{\mathrm{ACOK}} 30 \mathrm{~ms}$ (typ) blanking period expires. At this point, the device is in its on state.
At any time, if $\mathrm{VIN}_{\mathrm{N}}$ drops below VUVLO or rises above VovLO, $\overline{A C O K}$ is pulled high and the charge pump is disabled.

Internal Switch
The MAX4943-MAX4946/MAX4949 incorporate an internal nFET with a $80 \mathrm{~m} \Omega$ (typ) Ron. The switch is internally driven by a charge pump that generates a 5 V
voltage above the input voltage. The internal switch is equipped with 1.2A (min) current-limit protection that turns off the switch within 10us (typ) during an overcurrent fault condition.

Autoretry

The MAX4943-MAX4946 have an overcurrent autoretry function that turns on the switch again after a 15 ms (typ) retry time (see Figure 3). If the faulty load condition is still present after the blanking time, the switch turns off again and the cycle is repeated. The fast turn-off time and 15 ms retry time result in a very low duty cycle to keep power consumption low. If the faulty load condition is not present, the switch remains on.

Latch

The MAX4944B/MAX4945B/MAX4949 do not have the autoretry function, and the switch latches off after an overcurrent fault. The switch remains off until the overcurrent fault has been removed. The switch turns back on when the adapter voltage goes below VUVLO and then returns to the valid operating range.

Overvoltage-Protection Controllers with Internal FET

Abstract

GP GATE Drive When the input voltage goes above ground, GP pulls low and turns on the pFET. An internal clamp protects the pFET by ensuring that the GP to IN voltage does not exceed 19 V (max) when the input (IN) rises to +28 V .

Undervoltage Lockout (UVLO) The MAX4944L/MAX4945L/MAX4946/MAX4949 have a 2.45 V (typ) undervoltage-lockout threshold (VUVLO), while the remaining devices have a 4.15 V (typ) VuVLO threshold. When VIN is less than VUVLO, $\overline{\mathrm{ACOK}}$ is high impedance.

Overvoltage-Lockout Thresholds (OVLO) The MAX4943 has a 7.4V (typ) overvoltage threshold (VoVLO), the MAX4944_ has a 6.35V (typ) VovLo threshold, the MAX4945_ has a 5.80 V (typ) VovLo threshold, the MAX4946 has a 4.56 V (typ) VoVLO threshold, and the MAX4949 has a 8.90V (typ) VoVLO threshold. When VIN is greater than OVLO, $\overline{\mathrm{ACOK}}$ is high impedance.
$\overline{\text { ACOK }}$
$\overline{\mathrm{ACOK}}$ is an active-low, open-drain output that asserts low when VUVLO < VIN < VovLo for the 30ms (typ) period. Connect a pullup resistor from $\overline{\mathrm{ACOK}}$ to the logic I/O voltage of the host system. During a short-circuit fault, $\overline{\text { ACOK }}$ may deassert due to VIN not being in the valid operating voltage range.

Thermal-Shutdown Protection

The MAX4943-MAX4946/MAX4949 feature thermal-shutdown circuitry. The internal switch turns off when the junction temperature exceeds $+175^{\circ} \mathrm{C}$ (typ) and immediately goes into a fault mode. The device exits thermal shutdown after the junction temperature cools by $40^{\circ} \mathrm{C}$ (typ).

Applications Information

IN Bypass Capacitor

For most applications, bypass IN to GND with a $1 \mu \mathrm{~F}$ ceramic capacitor as close as possible to the device to enable $\pm 15 \mathrm{kV}$ (HBM) ESD protection on the pin. If $\pm 15 \mathrm{kV}$ is not required, there is no capacitor required at IN. If the power source has significant inductance due to long lead length, take care to prevent overshoots due to the LC tank circuit and provide protection if necessary to prevent exceeding the +30 V absolute maximum rating on IN .

Reverse Polarity Protection The optional external pFET can provide reverse polarity protection down to -28 V (for a 30 V pFET), if the protect-

Figure 3. Autoretry Timing Diagram

Figure 4. Human Body ESD Test Model

Figure 5. Human Body Current Waveform

Overvoltage-Protection Controllers with Internal FET

ed device does not allow current to flow into OUT. The pFET is turned off when the voltage between GP and IN is less than the pFET gate threshold voltage.

ESD Test Conditions

ESD performance depends on a number of conditions. The MAX4943-MAX4946/MAX4949 are specified for $\pm 15 \mathrm{kV}$ (HBM) typical ESD resistance on IN when IN is bypassed to ground with a $1 \mu \mathrm{~F}$ ceramic capacitor.

Human Body Model

Figure 4 shows the Human Body Model and Figure 5 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

IEC 61000-4-2
The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The MAX4943MAX4946/MAX4949 are specified for $\pm 15 \mathrm{kV}$ Air-Gap Discharge and $\pm 8 \mathrm{kV}$ Contact Discharge IEC 61000-4-2 on the IN pin when IN is bypassed to ground with a $1 \mu \mathrm{~F}$ ceramic capacitor.
The major difference between tests done using the Human Body Model and IEC 61000-4-2 is a higher peak current in IEC 61000-4-2, due to lower series resistance.

Figure 6. IEC 61000-4-2 ESD Test Model
Hence, the ESD withstand voltage measured to IEC 61000-4-2 generally is lower than that measured using the Human Body Model. Figure 6 shows the IEC 61000-4-2 model. The Contact Discharge method connects the probe to the device before the probe is charged. The Air-Gap Discharge test involves approaching the device with a charged probe.

Chip Information
PROCESS: BiCMOS

Typical Operating Circuit

Overvoltage-Protection Controllers with Internal FET

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
$8 \mu \mathrm{DFN}$	L822-1	$\underline{\mathbf{2 1 - 0 1 6 4}}$

Overvoltage-Protection Controllers with Internal FET

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$7 / 07$	-	$1,2,3$
3	$6 / 08$	Added MAX4945A to the Ordering Information/Selector Guide and Electrical Characterstics tables	1,2

