imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

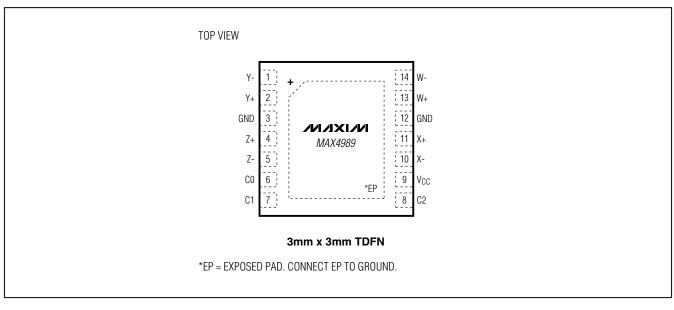
The MAX4989 is a bidirectional 2-of-4 USB 2.0 crosspoint switch. The MAX4989 features the low on-capacitance and low on-resistance necessary to switch USB 2.0 low-/full-/Hi-Speed signals at data rates up to 480Mbps. This device allows any 2-of-4 USB pairs to be connected together and is configured through a simple 3-input control logic interface.

The MAX4989 operates from a single +2.7V to +5.5V supply and features an internal charge pump to permit full rail-to-rail swing. This device also features a high-impedance shutdown mode to reduce supply current to 100nA (typ).

The MAX4989 is available in a 14-pin, 3mm x 3mm TDFN package and operates over the extended -40°C to +85°C temperature range.

Applications

Notebook Computers Cell Phones


- Single +2.7V to +5.5V Supply Voltage
- Low 1µA (typ) Supply Current
- -3dB Bandwidth: 1GHz (typ)
- Low 5Ω (typ) RON
- High-Impedance Shutdown Mode
- Logic Inputs Control Signal Routing
- +1.8V CMOS-Logic Compatible
- Ultra-Small 14-Pin, 3mm x 3mm, TDFN Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4989ETD+	-40°C to +85°C	14 TDFN-EP* (3mm x 3mm)	T1433-2

+Denotes a lead-free/RoHS-compliant package. *EP = Exposed pad.

Pin Configuration

M/XI/M

___ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

V _{CC}	0.3V to +6.0V
C	0.3V to +6.0V
W_, X_, Y_, Z0	$0.3V \text{ to } (V_{CC} + 0.3V)$
Continuous Current C	±30mA
Continuous Current W_, X_, Y_, Z	±120mA
Peak Current W_, X_, Y_, Z_	
(pulsed at 1ms, 10% duty cycle)	±240mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
14-Pin TDFN (derate 24.4mW/°C above +	

Junction-to-Case Thermal Resistance (Θ_{JC}) (14-Pin TDFN	
Junction-to-Ambient Thermal Resistance (Θ_{JA}	A) (Note 1)
14-Pin TDFN	41°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.3V, T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS	
Operating Power-Supply Range	VCC			2.7		5.5	V	
Supply Current		Switch enabled	$V_{CC} = +3.3V$		1	3.5	μA	
	Icc	Switch enabled	$V_{CC} = +5.5V$		3	6.5	μΑ	
Shutdown Supply Current	ISHDN	C1 = C2 = C3 = GND or	V _{CC}		0.1	0.5	μA	
Analog Signal Range	V _{W_} , V _{X_} , V _{Y_} ,V _{Z_}			0		Vcc	V	
On-Resistance	R _{ON}	$V_{IN} = +3.0V, I_{OUT} = 10m$	nA (Note 3)		5	9	Ω	
On-Resistance Match Between Channels	ΔR _{ON}	$V_{CC} = +3.3V, V_{IN} = +1.5V,$ $I_{OUT} = 10mA$ (Note 3)			0.5		Ω	
On-Resistance Flatness	R _{FLAT}	$V_{CC} = +3.3V$, $V_{IN} = 0V$ to V_{CC} , $I_{OUT} = 10mA$ (Notes 3, 4, 5)			0.4		Ω	
Off-Leakage Current	I _{IN(OFF)}	$V_{CC} = +5.5V$, $V_{IN} = 0V$ or V_{CC} , $V_{OUT} = V_{CC}$ or 0V or unconnected (Note 3)		-1		+1	μA	
On-Leakage Current	I _{IN(ON)}	$V_{CC} = +5.5V, V_{IN} = 0V \text{ or } V_{CC}, V_{OUT} =$ unconnected (Note 3)		-1		+1	μA	
AC PERFORMANCE (Note 4)								
On-Channel -3dB Bandwidth	BW	$R_L = R_S = 50\Omega$, $V_{IN} = 0dBm$, Figure 1			1		GHz	
Insertion Loss	S ₁₂	$R_L = R_S = 50\Omega$, f = 10MHz			0.5		dB	
Off-Isolation (Note 3) Figure 1	Vice	f = 10MHz, V_{IN} = 0dBm, R_L = R_S = 50 Ω			-43		dB	
	V _{ISO}	f = 250MHz, V_{IN} = 0dBm, R_L = R_S = 50 Ω			-15		uВ	
Crosstalk	V _{CT}	$f = 50MHz$, $V_{IN} = 0dBm$, $R_L = R_S = 50\Omega$, between adjacent pairs (Note 3), Figure 1			-50		dB	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.7V \text{ to } +5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V, T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC (Note 4)						
Turn-On Time	ton	V_{IN} = +1.5V, R_L = 300 Ω , C_L = 35pF, V_{C} = 0V to V_{CC} , Figure 2		15	100	μs
		V_{IN} = +1.5V, R_L = 300 Ω , C_L = 35pF, V_C = 0V to V _{CC} , Figure 2		2	6	μs
Propagation Delay	t _{PLH} , t _{PHL}	$R_L = R_S = 50\Omega$, Figure 3		120		ps
Output Skew Between Switches	tsk(O)	$R_L = R_S = 50\Omega$, Figure 3		50		ps
Output Skew Same Switch	^t SK(P)	$R_L = R_S = 50\Omega$, Figure 3		50		ps
Off-Capacitance		$f = 1MHz$, $V_{BIAS} = 0V$, $V_{IN} = 0.5V_{P-P}$		13.5		
	COFF	f at -3dB = 240MHz, V_{BIAS} = 0V, V_{IN} = 0.5V _{P-P}		4		pF
		$f = 1MHz$, $V_{BIAS} = 0V$, $V_{IN} = 0.5V_{P-P}$				
On-Capacitance	C _{ON}	f at -3dB = 240MHz, V_{BIAS} = 0V, V_{IN} = 0.5V _{P-P}	6			pF
LOGIC INPUTS						
Input Logic High	VIH		1.7			V
Input Logic Low	VIL				0.5	V
Input Logic Hysteresis	VHYST			75		mV
Input Leakage Current I_{IN} $V_{CC} = +5.5V, V_{C} = 6$		$V_{CC} = +5.5V$, $V_{C} = GND$ or V_{CC}	-1		+1	μA

Note 2: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

Note 3: IN and OUT refer to input and output terminals (W_, X_, Y_, Z_) of any switch configuration.

Note 4: Not production tested. Guaranteed by design.

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over specified analog signal ranges.

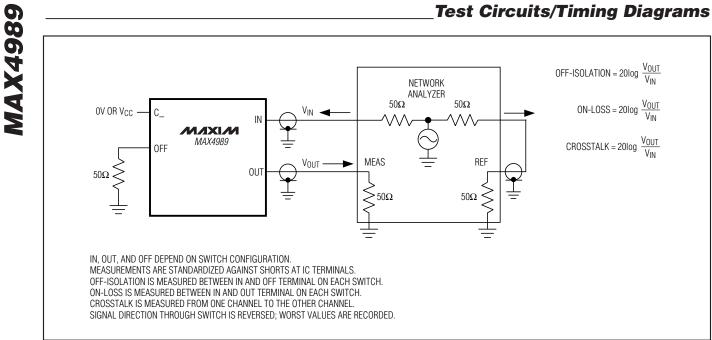


Figure 1. On-Loss, Off-Isolation, and Crosstalk

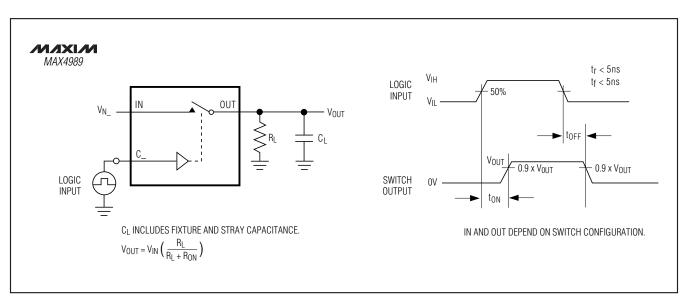
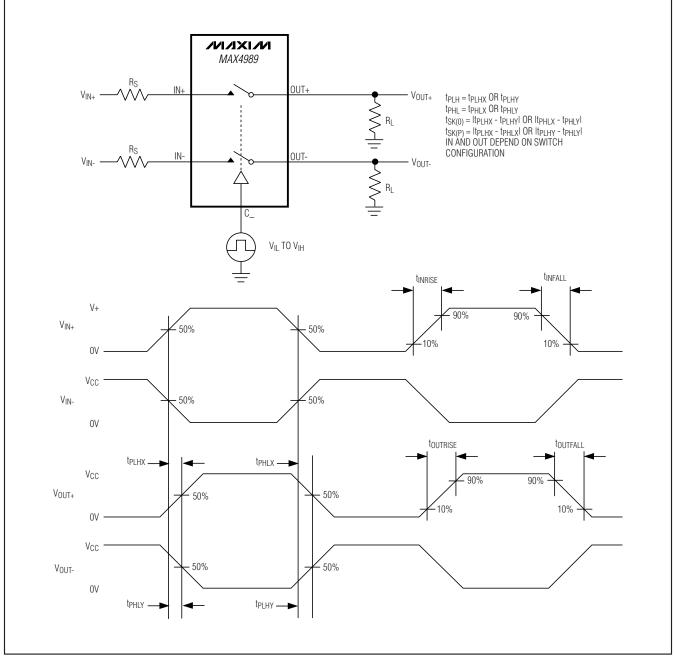



Figure 2. Switching Time

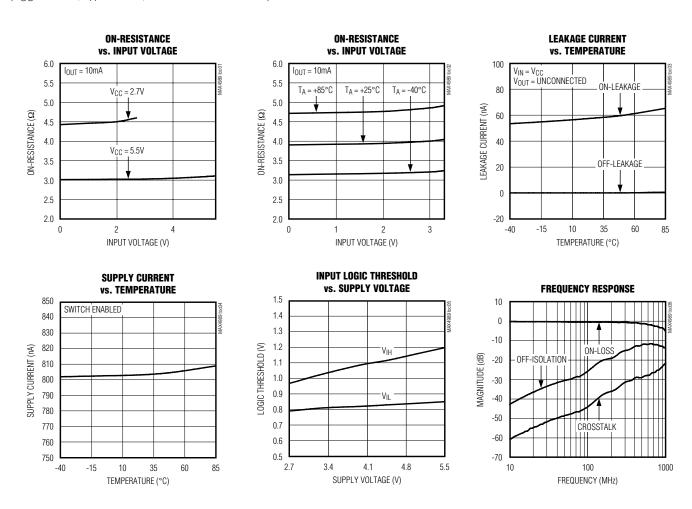

_Test Circuits/Timing Diagrams (continued)

Figure 3. Output Signal Skew, Rise/Fall Time, Propagation Delay

MAX4989

(V_{CC} = +3.3V, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics

Pin Descriptions

PIN	NAME	FUNCTION
1	Y-	Inverting Input/Output of Terminal Y
2	Y+	Noninverting Input/Output of Terminal Y
3	GND	Ground
4	Z+	Noninverting Input/Output of Terminal Z
5	Z-	Inverting Input/Output of Terminal Z
6	C0	Control Input 0
7	C1	Control Input 1
8	C2	Control Input 2
9	Vcc	Positive Supply Voltage Input. Bypass V_{CC} to GND with a 0.1µF ceramic capacitor as close as possible to the device.
10	Х-	Inverting Input/Output of Terminal X
11	X+	Noninverting Input/Output of Terminal X
12	GND	Ground
13	W+	Noninverting Input/Output of Terminal W
14	W-	Inverting Input/Output of Terminal W
	EP	Exposed Pad. EP can be connected to GND or left unconnected. EP is not intended as an electrical connection point.

Detailed Description

The MAX4989 is a USB 2.0 bidirectional crosspoint switch that allows the user to connect any 2 of 4 USB pairs. The device operates from a single +2.7V to +5.5V supply and features an internal charge pump to permit the full rail-to-rail swing necessary for USB low-/full-/Hi-Speed applications with data rates up to 480Mbps.

Control Logic Inputs

The MAX4989 provides three control logic inputs, C0, C1, and C2, to control the switch connections as shown in the *Functional Diagram/Truth Table*. Driving the control logic inputs rail-to-rail minimizes power consumption.

Shutdown Mode

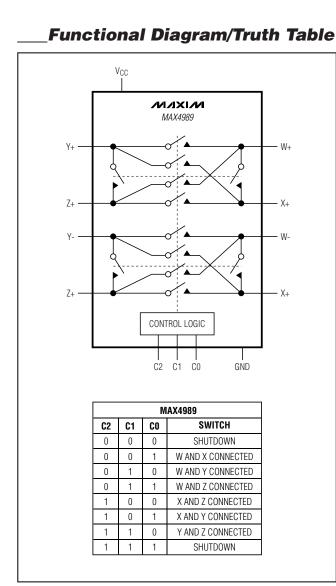
The MAX4989 features a shutdown mode that reduces the supply current to less than 0.5µA and places all switch terminals in high impedance. Drive all control inputs high or all control inputs low to place the device in shutdown mode (see *Functional Diagram/Truth Table*.)

USB Switching

The low on-resistance and low on-capacitance of the MAX4989 make it ideal for high-performance Hi-Speed USB 2.0 switching applications. The MAX4989 is ideal for routing USB data lines and for applications that require switching between multiple USB hosts or devices (Figure 4).

Layout

Hi-Speed USB requires careful PCB layout with controlled-impedance matched traces of equal lengths. Ensure that bypass capacitors are as close as possible to the device. Use large ground planes where possible.


Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Always apply V_{CC} before applying signals, especially if the signal is not current limited.

Chip Information

PROCESS: BICMOS

MAX4989

Applications Information

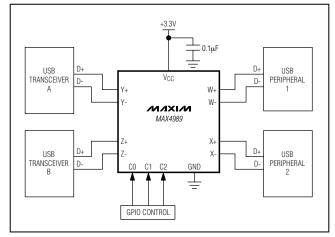


Figure 4. Typical Application Circuit

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
14 TDFN	T1433-2	<u>21-0137</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

8

MAXIM is a registered trademark of Maxim Integrated Products, Inc.