: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

General Description

The MAX5154/MAX5155 low-power, serial, voltage-output, dual 12-bit digital-to-analog converters (DACs) consume only $500 \mu \mathrm{~A}$ from a single +5 V (MAX5154) or $+3 V($ MAX5155) supply. These devices feature Rail-toRail ${ }^{\circledR}$ output swing and are available in a space-saving 16-pin QSOP package. To maximize the dynamic range, the DAC output amplifiers are configured with an internal gain of $+2 \mathrm{~V} / \mathrm{V}$.
The 3 -wire serial interface is SPITM/QSPITM and Microwire ${ }^{\text {TM }}$ compatible. Each DAC has a doublebuffered input organized as an input register followed by a DAC register, which allows the input and DAC registers to be updated independently or simultaneously with a 16-bit serial word. Additional features include programmable shutdown $(2 \mu \mathrm{~A})$, hardware-shutdown lockout $(\overline{\mathrm{PDL}})$, a separate reference voltage input for each DAC that accepts AC and DC signals, and an active-low clear input $(\overline{\mathrm{CL}})$ that resets all registers and DACs to zero. These devices provide a programmable logic pin for added functionality, and a serial-data output pin for daisy chaining.

Industrial Process Control
Digital Offset and Gain
Adjustment
Motion Control

Applications
Remote Industrial Controls
MicroprocessorControlled Systems
Automatic Test
Equipment (ATE)

Features

- 12-Bit Dual DAC with Internal Gain of +2V/V
- Rail-to-Rail Output Swing
- $12 \mu \mathrm{~s}$ Settling Time
- Single-Supply Operation: +5V (MAX5154) +3V (MAX5155)
- Low Quiescent Current: 500 A (normal operation) $2 \mu \mathrm{~A}$ (shutdown mode)
- SPI/QSPI and Microwire Compatible
- Available in Space-Saving 16-Pin QSOP Package
- Power-On Reset Clears Registers and DACs to Zero
- Adjustable Output Offset

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5154ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	$\pm 1 / 2$
MAX5154BCPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5154ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX5154BCEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	± 1

Ordering Information continued at end of data sheet.
Pin Configuration appears at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.
SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

ABSOLUTE MAXIMUM RATINGS
$V_{D D}$ to AGND -0.3 V to +6 V
VDD to DGND -0.3 V to +6 V
AGND to DGND .. $\pm 0.3 \mathrm{~V}$
OSA, OSB to AGND.........................(AGND - 4V) to (VDD +0.3 V)
REF_, OUT_ to AGND.................................-0.3V to (VDD +0.3 V)
Digital Inputs (SCLK, DIN, $\overline{\mathrm{CS}}, \overline{\mathrm{CL}}, \overline{\mathrm{PDL}})$
to DGND.
. -0.3 V to +6 V)
Digital Outputs (DOUT, UPO)
to DGND
Maximum Current into Any Pin \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
\qquad $\pm 20 \mathrm{~mA}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX5154

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{R E F A}=V_{R E F B}=2.048 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, T_{A}=T_{M I N}\right.$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (OS_tied to AGND for a gain of $+2 \mathrm{~V} / \mathrm{V}$).)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
STATIC PERFORMANCE							
Resolution				12			Bits
Integral Nonlinearity	INL	(Note 1)	MAX5154A			$\pm 1 / 2$	LSB
			MAX5154B			± 1	
Differential Nonlinearity	DNL	Guaranteed monotonic				± 1	LSB
Offset Error	Vos	Code = 6				± 6	mV
Offset Tempco	TCV ${ }_{\text {os }}$	Normalized to 2.048 V		4			ppm/ ${ }^{\circ} \mathrm{C}$
Gain Error					-0.2	± 3	LSB
Gain-Error Tempco		Normalized to 2.048 V			4		ppm $/{ }^{\circ} \mathrm{C}$
VDD Power-Supply Rejection Ratio	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			20	260	$\mu \mathrm{V} / \mathrm{V}$
REFERENCE INPUT							
Reference Input Range	REF			0		D-1.4	V
Reference Input Resistance	RREF	Minimum with code 1554 hex		14	20		$\mathrm{k} \Omega$
MULTIPLYING-MODE PERFORMANCE							
Reference 3dB Bandwidth		Input code = 1FFE hex, $\mathrm{V}_{\text {REF }}^{-}=0.67 \mathrm{Vp}-\mathrm{p}$ at $2.5 \mathrm{~V}_{\mathrm{DC}}$			300		kHz
Reference Feedthrough		$\begin{aligned} & \text { Input code }=0000 \mathrm{hex}, \\ & \mathrm{~V}_{\text {REF }}^{-} \end{aligned}=\left(\mathrm{V}_{\mathrm{DD}}-1.4 \mathrm{Vp}-\mathrm{p}\right) \text { at } 1 \mathrm{kHz} .$			-82		dB
Signal-to-Noise plus Distortion Ratio	SINAD	$\begin{aligned} & \text { Input code }=1 \text { FFE hex, } \\ & V_{\text {REF_ }}=1 \mathrm{Vp}-\mathrm{p} \text { at } 1.25 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}=25 \mathrm{kHz} \end{aligned}$			75		dB
DIGITAL INPUTS							
Input High Voltage	V_{IH}	$\overline{\mathrm{CL}}, \overline{\mathrm{PDL}}, \overline{\mathrm{CS}}$, DIN, SCLK		3			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\overline{\mathrm{CL}}, \overline{\mathrm{PDL}}, \overline{\mathrm{CS}}$, DIN, SCLK				0.8	V
Input Hysteresis	VHYS	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V D			200		mV
Input Leakage Current	IIN				0.001	± 1	$\mu \mathrm{A}$
Input Capacitance	CIN				8		pF

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX5154 (continued)

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{\text {REFA }}=V_{R E F B}=2.048 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (OS_tied to AGND for a gain of $+2 \mathrm{~V} / \mathrm{V}$).)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
DIGITAL OUTPUTS (DOUT, UPO)					
Output High Voltage	V OH	ISOURCE $=2 \mathrm{~mA}$	VDD -0.5		V
Output Low Voltage	VOL	$\mathrm{ISINK}=2 \mathrm{~mA}$	0.13	0.40	V
DYNAMIC PERFORMANCE					
Voltage Output Slew Rate	SR		0.75		V/ $/ \mathrm{s}$
Output Settling Time		To 1/2LSB of full-scale, VSTEP $=4 \mathrm{~V}$	15		$\mu \mathrm{s}$
Output Voltage Swing		Rail-to-rail (Note 2)	0 to V_{DD}		V
OSA or OSB Input Resistance	Ros_		$24 \quad 34$		k Ω
Time Required to Exit Shutdown			25		$\mu \mathrm{s}$
Digital Feedthrough		$\overline{\mathrm{CS}}=\mathrm{V}_{\text {DD }}, \mathrm{f}$ DIN $=100 \mathrm{kHz}, \mathrm{V}_{\text {SCLK }}=5 \mathrm{Vp}-\mathrm{p}$	5		nV -s
Digital Crosstalk			5		nV -s
POWER SUPPLIES					

Positive Supply Voltage	VDD		4.5	5.5	V
Power-Supply Current	IDD	(Note 3)	0.5	0.65	mA
Power-Supply Current in Shutdown	IDD(SHDN)	(Note 3)	2	10	$\mu \mathrm{~A}$
Reference Current in Shutdown			0	± 1	$\mu \mathrm{~A}$

TIMING CHARACTERISTICS

Note 1: Accuracy is specified from code 6 to code 4095.
Note 2: Accuracy is better than 1LSB for Vout_ greater than 6 mV and less than $\mathrm{V}_{\mathrm{DD}}-50 \mathrm{mV}$. Guaranteed by PSRR test at the end points.
Note 3: Digital inputs are set to either VDD or DGND, code $=0000$ hex, $\mathrm{R}_{\mathrm{L}}=\infty$.
Note 4: SCLK minimum clock period includes the rise and fall times.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX5155

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\text {REFA }}=\mathrm{V}_{\text {REFB }}=1.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (OS_pins tied to AGND for a gain of $+2 \mathrm{~V} / \mathrm{V}$).)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
STATIC PERFORMANCE							
Resolution				12			Bits
Integral Nonlinearity	INL	(Note 5)	MAX5155A			± 1	LSB
			MAX5155B			± 2	
Differential Nonlinearity	DNL	Guaranteed monotonic				± 1	LSB
Offset Error	$\mathrm{V}_{\text {OS }}$	Code $=10$				± 6	mV
Offset Tempco	TCV ${ }_{\text {os }}$	Normalized to 1.25 V			6.5		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain Error					-0.2	± 4	LSB
Gain-Error Tempco		Normalized to 1.25 V			6.5		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$V_{D D}$ Power-Supply Rejection Ratio	PSRR	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$			40	320	$\mu \mathrm{V} / \mathrm{V}$

REFERENCE INPUT (VREF)

| Reference Input Range | REF | | 0 | VDD -1.4 | V |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: |
| Reference Input Resistance | RREF | Minimum with code 1554 hex | 14 | 20 | $\mathrm{k} \Omega$ |
| MUL | | | | | |

MULTIPLYING-MODE PERFORMANCE	
Reference 3dB Bandwidth	
Reference Feedthrough	
Signal-to-Noise plus Distortion Ratio	SINAD
DIGITAL INPUTS	

DIGITAL INPUTS

Input High Voltage	VIH	$\overline{\text { CL, }}$ PDL, $\overline{\mathrm{CS}}, \mathrm{DIN}, \mathrm{SCLK}$	2.2	V
Input Low Voltage	VIL	$\overline{\mathrm{CL}}, \overline{\mathrm{PDL}}, \overline{\mathrm{CS}}, \mathrm{DIN}, \mathrm{SCLK}$	0.8	V
Input Hysteresis	VHYS		200	mV
Input Leakage Current	IIN	V IN $=0 \mathrm{~V}$ to V_{DD}	0 ± 1	$\mu \mathrm{A}$
Input Capacitance	CIN		8	pF

DIGITAL OUTPUTS (DOUT, UPO)

Output High Voltage	VOH	ISOURCE $=2 \mathrm{~mA}$	VDD - 0.5		V
Output Low Voltage	VOL	ISINK $=2 \mathrm{~mA}$	0.13	0.4	V
DYNAMIC PERFORMANCE					
Voltage Output Slew Rate	SR		0.75		V/ $/ \mathrm{s}$
Output Settling Time		To 1/2LSB of full-scale, $\mathrm{V}_{\text {STEP }}=2.5 \mathrm{~V}$	15		$\mu \mathrm{s}$
Output Voltage Swing		Rail-to-rail (Note 6)	0 to V_{DD}		V
OSA or OSB Input Resistance	Ros		$24 \quad 34$		$\mathrm{k} \Omega$
Time Required for Valid Operation after Shutdown			25		$\mu \mathrm{s}$
Digital Feedthrough		$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{f}_{\mathrm{DIN}}=100 \mathrm{kHz}, \mathrm{V}_{\text {SCLK }}=3 \mathrm{Vp}-\mathrm{p}$	5		nV -s
Digital Crosstalk			5		nV -s

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

ELECTRICAL CHARACTERISTICS—MAX5155 (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\text {REFA }}=\mathrm{V}_{\mathrm{REFB}}=1.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (OS_pins tied to AGND for a gain of $+2 \mathrm{~V} / \mathrm{V}$).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Positive Supply Voltage	VDD		2.7		3.6	V
Power-Supply Current	IDD	(Note 7)		0.45	0.6	mA
Power-Supply Current in Shutdown	IDD (SHDN)	(Note 7)		1	8	$\mu \mathrm{A}$
Reference Current in Shutdown				0	± 1	$\mu \mathrm{A}$
TIMING CHARACTERISTICS						
SCLK Clock Period	tcP	(Note 4)	100			ns
SCLK Pulse Width High	tch		40			ns
SCLK Pulse Width Low	tcL		40			ns
$\overline{\mathrm{CS}}$ Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold Time	tcser		0			ns
SDI Setup Time	tDs		50			ns
SDI Hold Time	tDH		0			ns
SCLK Rise to DOUT Valid Propagation Delay	tDO1	CLOAd $=200 \mathrm{pF}$			120	ns
SCLK Fall to DOUT Valid Propagation Delay	tDO2	CLOAD $=200 \mathrm{pF}$			120	ns
SCLK Rise to $\overline{C S}$ Fall Delay	tcso		10			ns
$\overline{\mathrm{CS}}$ Rise to SCLK Rise Hold	tcs1		40			ns
$\overline{\mathrm{CS}}$ Pulse Width High	tcsw		100			ns

Note 5: Accuracy is specified from code 10 to code 4095.
Note 6: Accuracy is better than 1LSB for Vout greater than 6 mV and less than $\mathrm{V}_{\mathrm{DD}}-80 \mathrm{mV}$. Guaranteed by PSRR test at the end points.
Note 7: Digital inputs are set to either VDD or DGND, code $=0000$ hex, $R_{L}=\infty$.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Typical Operating Characteristics
$\left(V_{D D}=+5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}\right.$, OS_pins tied to AGND, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DYNAMIC RESPONSE FALL TIME

6 \qquad

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, OS_pins tied to AGND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$V_{\text {REF }}=1.25 \mathrm{~V}$

TOTAL HARM ONIC DISTORTION PLUS NOISE vs. FREQUENCY

SHUTDOWN CURRENT

DYNAMIC RESPONSE FALL TIME

$V_{\text {REF }}=1.25 \mathrm{~V}$

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Typical Operating Characteristics (continued)
($V_{D D}=+5 \mathrm{~V}(\mathrm{MAX5154}), \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}(\mathrm{MAX5155}), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, OS_pins tied to AGND, unless otherwise noted.)
MAX5154/MAX5155

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Pin Description

PIN	NAME	FUNCTION
1	AGND	Analog Ground
2	OUTA	DAC A Output Voltage
3	OSA	DAC A Offset Adjustment
4	REFA	Reference for DAC A
5	$\overline{\text { CL }}$	Active-Low Clear Input. Resets all reg- isters to zero. DAC outputs go to 0V.
6	$\overline{\text { CS }}$	Chip-Select Input
7	DIN	Serial-Data Input
8	SCLK	Serial Clock Input
9	DGND	Digital Ground
10	DOUT	Serial-Data Output
11	UPO	User-Programmable Output
12	$\overline{\text { PDL }}$	Power-Down Lockout. The device can- not be powered down when PDL is low.
13	REFB	Reference for DAC B
14	OSB	DAC B Offset Adjustment
15	OUTB	DAC B Output Voltage
16	VDD	Positive Power Supply

Detailed Description

The MAX5154/MAX5155 dual, 12-bit, voltage-output DACs are easily configured with a 3 -wire serial interface. These devices include a 16-bit data-in/data-out shift register, and each DAC has a double-buffered input composed of an input register and a DAC register (see Functional Diagram). In addition, trimmed internal resistors produce an internal gain of $+2 \mathrm{~V} / \mathrm{V}$ that maximizes output voltage swing. The amplifier's offset-adjust pin allows for a DC shift in the DAC's output.
Both DACs use an inverted R-2R ladder network that produces a weighted voltage proportional to the input voltage value. Each DAC has its own reference input to facilitate independent full-scale values. Figure 1 depicts a simplified circuit diagram of one of the two DACs.

Reference Inputs The reference inputs accept both $A C$ and $D C$ values with a voltage range extending from 0 V to ($\mathrm{V} D \mathrm{D}-1.4 \mathrm{~V}$). Determine the output voltage using the following equation (OS_= AGND):

Figure 1. Simplified DAC Circuit Diagram

$$
\text { VOUT }=\left(V_{\text {REF }} \times N B / 4096\right) \times 2
$$

where $N B$ is the numeric value of the DAC's binary input code (0 to 4095) and VREF is the reference voltage.
The reference input impedance ranges from $14 \mathrm{k} \Omega$ (1554 hex) to several giga ohms (with an input code of 0000 hex). The reference input capacitance is code dependent and typically ranges from 15 pF with an input code of all zeros to 50 pF with a full-scale input code.

Output Amplifier

The output amplifiers on the MAX5154/MAX5155 have internal resistors that provide for a gain of $+2 \mathrm{~V} / \mathrm{V}$ when OS_ is connected to AGND. These resistors are trimmed to minimize gain error. The output amplifiers have a typical slew rate of $0.75 \mathrm{~V} / \mu \mathrm{s}$ and settle to $1 / 2$ LSB within $15 \mu \mathrm{~s}$, with a load of $10 \mathrm{k} \Omega$ in parallel with 100 pF . Loads less than $2 \mathrm{k} \Omega$ degrade performance.
The OS_pin can be used to produce an adjustable offset voltage at the output. For instance, to achieve a 1 V offset, apply -1V to the OS_ pin to produce an output range from 1 V to ($1 \mathrm{~V}+\mathrm{V}_{\text {REF }} \times 2$). Note that the DAC's output range is still limited by the maximum output voltage specification.

Power-Down Mode
The MAX5154/MAX5155 feature a software-programmable shutdown mode that reduces the typical supply current to $2 \mu \mathrm{~A}$. The two DACs can be shutdown independently, or simultaneously using the appropriate programming command. Enter shutdown mode by writing the appropriate input-control word (Table 1). In shutdown mode, the reference inputs and amplifier outputs become high impedance, and the serial interface remains active. Data in the input registers is

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Table 1. Serial-Interface Programming Commands

16-BIT SERIAL WORD					FUNCTION
A0	C1	C0	D11......................DO (MSB)	S0	
0	0	1	12-bit DAC data	0	Load input register A; DAC registers are unchanged.
1	0	1	12-bit DAC data	0	Load input register B; DAC registers are unchanged.
0	1	0	12-bit DAC data	0	Load input register A; all DAC registers are updated.
1	1	0	12-bit DAC data	0	Load input register B; all DAC registers are updated.
0	1	1	12-bit DAC data	0	Load all DAC registers from the shift register (start up both DACs with new data.).
1	0	0	xxxxxxxxxxxx	0	Update both DAC registers from their respective input registers (start up both DACs with data previously stored in the input registers).
1	1	1	xxxxxxxxxxxx	0	Shut down both DACs (provided $\overline{\text { PDL }}=1$).
0	0	0	$001 \mathrm{x} x \mathrm{xxxxxxx}$	0	Update DAC register A from input register A (start up DAC A with data previously stored in input register A).
0	0	0	$101 \mathrm{x} x \mathrm{xxxxxxx}$	0	Update DAC register B from input register B (start up DAC B with data previously stored in input register B).
0	0	0	$110 \mathrm{x} x \mathrm{xxxxxxx}$	0	Shut down DAC A (provided $\overline{\mathrm{PDL}}=1$).
0	0	0	111 x xxxxxxxx	0	Shut down DAC B (provided $\overline{\mathrm{PDL}}=1$).
0	0	0	$010 \mathrm{x} x \mathrm{xxxxxxx}$	0	UPO goes low (default).
0	0	0	011 x xxxxxxxx	0	UPO goes high.
0	0	0	1001 xxxxxxxx	0	Mode 1, DOUT clocked out on SCLK's rising edge.
0	0	0	1000 xxxxxxxx	0	Mode 0, DOUT clocked out on SCLK's falling edge (default).
0	0	0	$000 \mathrm{x} x \mathrm{xxxxxxx}$	0	No operation (NOP).

$x=$ Don't care
Note: D11, D10, D9, and D8 become control bits when AO, C1, and C0 = 0 . S0 is a sub bit, always zero.

Figure 2. Connections for Microwire
saved, allowing the MAX5154/MAX5155 to recall the output state prior to entering shutdown when returning to normal mode. Exit shutdown by recalling the previous condition or by updating the DAC with new information. When returning to normal operation (exiting shutdown), wait 20μ s for output stabilization.

Serial Interface

The MAX5154/MAX5155 3-wire serial interface is compatible with both Microwire (Figure 2) and SPI/QSPI (Figure 3) serial-interface standards. The 16-bit serial input word consists of an address bit, two control bits, 12 bits of data (MSB to LSB), and one sub bit as shown in Figure 4. The address and control bits determine the MAX5154/ MAX5155's response, as outlined in Table 1.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Figure 3. Connections for SPI/QSPI

The MAX5154/MAX5155's digital inputs are double buffered, which allows any of the following: loading the input register(s) without updating the DAC register(s), updating the DAC register(s) from the input register(s), or updating the input and DAC registers concurrently. The address and control bits allow the DACs to act independently.
Send the 16-bit data as one 16-bit word (QSPI) or two 8-bit packets (SPI, Microwire), with $\overline{\mathrm{CS}}$ low during this period. The address and control bits determine which register will be updated, and the state of the registers when exiting shutdown. The 3-bit address/control determines the following:

- registers to be updated
- clock edge on which data is to be clocked out via the serial-data output (DOUT)
- state of the user-programmable logic output
- configuration of the device after shutdown.

The general timing diagram of Figure 5 illustrates how data is acquired. Driving $\overline{\mathrm{CS}}$ low enables the device to receive data. Otherwise, the interface control circuitry is disabled. With $\overline{\mathrm{CS}}$ low, data at DIN is clocked into the register on the rising edge of SCLK. As $\overline{\mathrm{CS}}$ goes high, data is latched into the input and/or DAC registers depending on the address and control bits. The maximum clock frequency guaranteed for proper operation is 10 MHz . Figure 6 depicts a more detailed timing diagram of the serial interface.

Figure 4. Serial-Data Format

Figure 5. Serial-Interface Timing Diagram

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

MAX5154/MAX5155

Figure 6. Detailed Serial-Interface Timing Diagram

Figure 7. Daisy Chaining MAX5154/MAX5155s

Figure 8. Multiple MAX5154/MAX5155s Sharing a Common DIN Line

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Serial-Data Output

The serial-data output, DOUT, is the internal shift register's output. DOUT allows for daisy chaining of devices and data readback. The MAX5154/MAX5155 can be programmed to shift data out of DOUT on SCLK's falling edge (Mode 0) or on the rising edge (Mode 1). Mode 0 provides a lag of 16 clock cycles, which maintains compatibility with SPI/QSPI and Microwire interfaces. In Mode 1, the output data lags 15.5 clock cycles. On power-up, the device defaults to Mode 0.

User-Programmable Logic Output (UPO)

UPO allows an external device to be controlled through the serial interface (Table 1), thereby reducing the number of microcontroller I/O pins required. On powerup, UPO is low.

Power-Down Lockout Input ($\overline{P D L}$) The power-down lockout pin ($\overline{\mathrm{PDL}}$) disables software shutdown when low. When in shutdown, transitioning $\overline{\text { PDL }}$ from high to low wakes up the part with the output set to the state prior to shutdown. PDL can also be used to asynchronously wake up the device.

Daisy Chaining Devices

Any number of MAX5154/MAX5155s can be daisy chained by connecting the DOUT pin of one device to the DIN pin of the following device in the chain (Figure 7).
Since the MAX5154/MAX5155's DOUT pin has an internal active pull-up, the DOUT sink/source capability determines the time required to discharge/charge a capacitive load. Refer to the digital output V_{OH} and V_{OL} specifications in the Electrical Characteristics.
Figure 8 shows an alternate method of connecting several MAX5154/MAX5155s. In this configuration, the data bus is common to all devices; data is not shifted through a daisy chain. More I/O lines are required in this configuration because a dedicated chip-select input $(\overline{\mathrm{CS}})$ is required for each IC.

Applications Information

Unipolar Output Figure 9 shows the MAX5154/MAX5155 configured for unipolar, rail-to-rail operation with a gain of $+2 \mathrm{~V} / \mathrm{V}$. The MAX5154 can produce a 0 V to 4.096 V output with 2.048 V reference (Figure 9), while the MAX5155 can produce a range of 0 V to 2.5 V with a 1.25 V reference. Table 2 lists the unipolar output codes. An offset to the output can be achieved by connecting a voltage to OS_, as shown in Figure 10. By applying VOS $=-1 \mathrm{~V}$, the output values will range between 1V and (1V + $V_{\text {REF }} \times 2$).

Figure 9. Unipolar Output Circuit (Rail-to-Rail)

Figure 10. Setting OS_for Output Offset
Table 2. Unipolar Code Table (Gain = +2)

DAC CONTENTS	ANALOG OUTPUT
MSB LSB	
111111111111 (0)	$+V_{\text {REF }}\left(\frac{4095}{4096}\right) \times 2$
100000000001 (0)	$+\mathrm{V}_{\text {REF }}\left(\frac{2049}{4096}\right) \times 2$
100000000000 (0)	$+\mathrm{V}_{\text {REF }}\left(\frac{2048}{4096}\right) \times 2=\mathrm{V}_{\text {REF }}$
011111111111 (0)	$+\mathrm{V}_{\text {REF }}\left(\frac{2047}{4096}\right) \times 2$
000000000001 (0)	$+\mathrm{V}_{\text {REF }}\left(\frac{1}{4096}\right) \times 2$
000000000000 (0)	OV

Note: () are for the sub bit.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Table 3. Bipolar Code Table

DAC CONTENTS	
MSB	ANALOG OUTPUT
$111111111111(0)$	$+V_{\text {REF }}\left(\frac{2047}{2048}\right)$
$100000000001(0)$	$+V_{\text {REF }}\left(\frac{1}{2048}\right)$
$100000000000(0)$	0 V
$011111111111(0)$	$-V_{\text {REF }}\left(\frac{1}{2048}\right)$
$000000000001(0)$	$-V_{\text {REF }}\left(\frac{2047}{2048}\right)$
$000000000000(0)$	$-V_{\text {REF }}\left(\frac{2048}{2048}\right)=-V_{\text {REF }}$

Note: () are for the sub bit.

Figure 11. Bipolar Output Circuit

Bipolar Output

The MAX5154/MAX5155 can be configured for a bipolar output, as shown in Figure 11. The output voltage is given by the equation (OS_= AGND):

$$
\text { VoUT }=\operatorname{VREF}[((2 \times N B) / 4096)-1]
$$

where NB represents the numeric value of the DAC's binary input code. Table 3 shows digital codes and the corresponding output voltage for Figure 11's circuit.

Using an AC Reference

 In applications where the reference has an AC signal component, the MAX5154/MAX5155 have multiplying capabilities within the reference input voltage range specifications. Figure 12 shows a technique for apply-

Figure 12. AC Reference Input Circuit

Figure 13. Digital Calibration
ing a sinusoidal input to REF, where the AC signal is offset before being applied to the reference input.

Harmonic Distortion and Noise

The total harmonic distortion plus noise (THD $+N$) is typically less than -78 dB at full scale with a $1 \mathrm{Vp}-\mathrm{p}$ input swing at 5 kHz . The typical -3 dB frequency is 300 kHz for both devices, as shown in the Typical Operating Characteristics.

Digital Calibration and Threshold Selection

Figure 13 shows the MAX5154/MAX5155 in a digital calibration application. With a bright light value applied to the photodiode (on), the DAC is digitally ramped until

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

Figure 14. Digital Control of Gain and Offset
it trips the comparator. The microprocessor ($\mu \mathrm{P}$) stores this "high" calibration value. Repeat the process with a dim light (off) to obtain the dark current calibration. The $\mu \mathrm{P}$ then programs the DAC to set an output voltage at the midpoint of the two calibrated values. Applications include tachometers, motion sensing, automatic readers, and liquid clarity analysis.

Digital Control of Gain and Offset

The two DACs can be used to control the offset and gain for curve-fitting nonlinear functions, such as transducer linearization or analog compression/expansion applications. The input signal is used as the reference for the gain-adjust DAC, whose output is summed with the output from the offset-adjust DAC. The relative weight of each DAC output is adjusted by R1, R2, R3, and R4 (Figure 14).

Power-Supply Considerations
On power-up, the input and DAC registers clear (set to zero code). For rated performance, VREF_ should be at least 1.4 V below VDD. Bypass the power supply with a $4.7 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Minimize lead lengths to reduce lead inductance.

Grounding and Layout Considerations Digital and AC transient signals on AGND can create noise at the output. Connect AGND to the highest quality ground available. Use proper grounding techniques, such as a multilayer board with a low-inductance ground plane. Carefully lay out the traces between channels to reduce AC cross-coupling and crosstalk. Wire-wrapped boards and sockets are not recommended. If noise becomes an issue, shielding may be required.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Serial Interface

TRANSISTOR COUNT: 3053
SUBSTRATE CONNECTED TO AGND
_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5154AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	$\pm 1 / 2$
MAX5154BEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5154AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX5154BEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	± 1
MAX5154BMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP*	± 1
MAX5155ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5155BCPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 2
MAX5155ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	± 1
MAX5155BCEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	± 2
MAX5155AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5155BEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	± 2
MAX5155AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	± 1
MAX5155BEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	± 2
MAX5155BMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP*	± 2

*Contact factory for availability.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^0]
[^0]: © 1997 Maxim Integrated Products
 Printed USA
 MAXINI is a registered trademark of Maxim Integrated Products.

