imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

General Description

The MAX5318 is a high-accuracy, 18-bit, serial SPI input, buffered voltage output digital-to-analog converter (DAC) in a 4.4mm x 7.8mm, 24-lead TSSOP package. The device features ± 2 LSB INL (max) accuracy and a ± 1 LSB DNL (max) accuracy over the full temperature range of -40°C to +105°C.

The DAC voltage output is buffered resulting in a fast settling time of 3μ s and a low offset and gain drift of $\pm 0.5 \text{ppm/}^{\circ}\text{C}$ of FSR (typ). The force-sense output (OUT) maintains accuracy while driving loads with long lead lengths. Additionally, a separate AVSS supply, allows the output amplifier to go to 0V (GND) while maintaining full linearity performance.

The MAX5318 includes user-programmable digital gain and offset correction to enable easy system calibration.

At power-up, the device resets its outputs to zero or midscale. The wide 2.7V to 5.5V supply voltage range and integrated low-drift, low-noise reference buffer amplifier make for ease of use.

The MAX5318 features a 50MHz 3-wire SPI interface. The MAX5318 is available in a 24-lead TSSOP package and operates over the -40°C to +105°C temperature range.

Test and Measurement

Automatic Test Equipment

Data-Acquisition Systems

Process Control and

Equipment

Adjustment

Servo Loops

Gain and Offset

Benefits and Features

- Ideal for ATE and High-Precision Instruments
 ♦ INL Accuracy Guaranteed with ±2 LSB (Max) Over Temperature
- Fast Settling Time (3µs) with 10kΩ || 100pF Load
- Safe Power-Up-Reset to Zero or Midscale DAC Output (Pin-Selectable)
 - ♦ Predetermined Output Device State in Power-Up and Reset in System Design
- Negative Supply (AVSS) Option Allows Full INL and DNL Performance to 0V
- ♦ SPI Interface Compatible with 1.8V to 5.5V Logic
- High Integration Reduces Development Time and PCB Area
 - \diamond Buffered Voltage Output Directly Drives 2k Ω Load Rail-to-Rail
 - Integrated Reference Buffer
 - No External Amplifiers Required
- Small 4.4mm x 7.8mm, 24-Pin TSSOP Package

<u>Ordering Information</u> and <u>Typical Operating Circuit</u> appear at end of data sheet.

Functional Diagram

For related parts and recommended products to use with this part, refer to <u>www.maximintegrated.com/MAX5318.related</u>.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Applications

Programmable Voltage

and Current Sources

Automatic Tuning and

Communication Systems

Calibration

Medical Imaging

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

ABSOLUTE MAXIMUM RATINGS

AGND to DGND	0.3V to +0.3V
AGND_F, AGND_S to AGND	0.3V to +0.3V
AGND_F, AGND_S to DGND	0.3V to +0.3V
AVDD to AGND	0.3V to +6V
AVDD to REF	0.3V to +6V
AVSS to AGND	2V to +0.3V
V _{DDIO} to DGND	0.3V to +6V
BYPASS to DGND	0.3V to the lower of
(V _{AVDD}	or V _{DDIO} + 0.3V) and +4.5V
OUT, REFO, RFB to AGND	-0.3V to the lower of
	(V _{AVDD} + 0.3V) and +6V

REF to AGND-0.3V to the lower of VAVDD and +6V SCLK, DIN, $\overline{\text{CS}}, \overline{\text{BUSY}}, \overline{\text{LDAC}}, \overline{\text{READY}},$

M/Z, TC/SB, RST, PD, DOUT to DGND...... -0.3V to the lower of $(V_{DDIO} + 0.3V)$ and +6V

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
TSSOP (derate 13.9mW/°C above +70°C)	1111.1mW
Operating Temperature Range	-40°C to +105°C
Maximum Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TSSOP

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

 $(V_{AVDD} = V_{DDIO} = 4.5V \text{ to } 5.5V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V, V_{REF} = 4.096V, TC/\overline{SB} = PD = \overline{LDAC} = M/\overline{Z} = DGND, \overline{RST} = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, T_A = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (GAIN = 0x3FFFF and OFFSET = 0x00000.)(Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE						
Resolution	N		18			Bits
Integral Nonlinearity (Note 3)	INII	DIN = 0x00000 to 0x3FFFF (binary mode), DIN = 0x20000 to 0x1FFFF (two's complement mode)	0	.05	. 0	
		DIN = 0x01900 to 0x3FFFF (binary mode), DIN = 0x21900 to 0x1FFFF (two's complement mode), V _{AVSS} = 0V	-2	10.0	+2	LUD
Differential Nonlinearity (Note 3)	DNL		-1	±0.275	+1	LSB
Zero Code Error	OF	$DIN = 0, T_A = +25^{\circ}C$	-48	±4	+48	ISB
		$DIN = 0, T_A = -40^{\circ}C \text{ to } +105^{\circ}C$		±14		LOD
Zero Code Error Drift (Note 4)		DIN = 0	-1.6	±0.10	+1.6	ppm/°C
Cain Error	GE	$T_A = +25^{\circ}C$	-16	±1	+16	
Gain Endi	GE	$T_{A} = -40^{\circ}C \text{ to } +105^{\circ}C$		±27		LOD
Gain Error Temperature Coefficient (Note 4)	TCGE		-2.5	±0.10	+2.5	ppm/°C of FSR
Output Voltage Range		No load	0		V _{AVDD} - 0.1	V

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{DDIO} = 4.5V \text{ to } 5.5V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V, V_{REF} = 4.096V, TC/\overline{SB} = PD = \overline{LDAC} = M/\overline{Z} = DGND, \overline{RST} = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, T_A = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (GAIN = 0x3FFFF and OFFSET = 0x00000.)(Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	МАХ	UNITS
			$M/\overline{Z} = DGND$		75		μV
		RST = pulse low	$M/\overline{Z} = V_{DDIO}$		2.048		V
		$\overline{\text{RST}}$ = pulse low,	$M/\overline{Z} = DGND$		10		mV
Reset Voltage Output		$V_{AVSS} = 0V$	$M/\overline{Z} = V_{DDIO}$		2.048		V
neset voltage Output	VOUT-RESET		$M/\overline{Z} = DGND$		-68		mV
			$M/\overline{Z} = V_{DDIO}$		2.036		V
		$\overline{RST} = DGND,$	$M/\overline{Z} = DGND$		10		mV
		$V_{AVSS} = 0V$ $M/\overline{Z} = V_{DDIO}$			2.036		V
DC Output Impedance (Normal Mode)	R _{OUT}	Closed-loop connect to OUT)	ion (RFB connected		4		mΩ
Output Resistance (Power-Down Mode)		PD = V _{DDIO}			2		kΩ
Output Current		Source/sink within 10 rails	0mV of the supply		±4		
	OUT	Source/sink within 80 rails	±25				
Load Capacitance to GND	CL					200	рF
Load Resistance to GND	RL	For specified perforn	nance	2			kΩ
	ISC	OUT shorted to AGN		±60			
Short-Circuit Current		REFO shorted to AG		±65		mA	
	00	BYPASS shorted to AGND or AVDD			±48		I
Short-Circuit Duration	T _{SC}	Short to AGND or AV	DD		Indefinite		S
DC Dawer Supply Dejection		V _{OUT} at full scale, V ₄	VDD = 4.5V to 5.5V	-2.5	±0.20	+2.5	
DC Power-Supply Rejection	DC PSRR	$V_{AVSS} = -1.5V$ to -0.5	5V	-2.5	±0.012	+2.5	LSB/V
STATIC PERFORMANCE—VOLT	AGE REFER	ENCE INPUT SECTIO	N				
Reference High Input Range	V _{REF}			2.4		V _{AVDD} - 0.1	V
Reference Input Capacitance	C _{REF}				10		рF
Reference Input Resistance	R _{REF}				10		MΩ
Reference Input Current	I _B				±0.15		μA
STATIC PERFORMANCE—VOLT	AGE REFER	ENCE OUTPUT SECT	ION				
Reference High Output Range				2.4		V _{AVDD} - 0.1	V
Reference High Output Load Regulation					500		ppm/ mA
Reference Output Capacitor		$R_{ESR} < 5\Omega$			0.1		nF

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{DDIO} = 4.5V \text{ to } 5.5V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V, V_{REF} = 4.096V, TC/\overline{SB} = PD = \overline{LDAC} = M/\overline{Z} = DGND, \overline{RST} = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, T_A = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (GAIN = 0x3FFFF and OFFSET = 0x00000.)(Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS		
STATIC PERFORMANCE-VBYPASS OUT SECTION								
Output Voltage	VBYPASS		2.3	2.4	2.5	V		
Load Capacitance to GND	CL	Required for stability, $R_{ESR} = 0.1\Omega$ (typ)	1		8	μF		
POWER-SUPPLY REQUIREMEN	тѕ							
Positive Analog Power-Supply Range	V _{AVDD}		4.5		5.5	V		
Digital Interface Power-Supply Range	V _{DDIO}		1.8		V _{AVDD}	V		
Negative Analog Power-Supply Range	V _{AVSS}		-1.5	-1.25	0	V		
Positive Analog Power-Supply Current	I _{AVDD}	No load, external reference, output at zero scale		5.2	6.5	mA		
Negative Analog Power-Supply Current	I _{AVSS}	No load, external reference, output at zero scale	-1.5	-1.0		mA		
Interface Power-Supply Current	IVDDIO	Digital inputs at V _{DDIO} or DGND		0.2	5.0	μA		
Positive Analog Power-Supply Power-Down Current		$PD = V_{DDIO}$, power-down mode		20	50	μA		
Negative Analog Power-Supply Power-Down Current		PD = V _{DDIO} , power-down mode	-5	-3		μA		
DYNAMIC PERFORMANCE								
Voltage Output Slew Rate	SR	From 10% to 90% full scale, positive and negative transitions		4.9		V/µs		
Voltage Output Settling Time	ts	From falling edge of LDAC to within 0.003% FS, $R_L = 10k\Omega$, DIN = 04000h (6.25% FS) to 3C000h (93.75% FS)		3		μs		
Busy Time	t _{BUSY}	(Note 5)		1.9		μs		
DAC Glitch Impulse		Major code transition (1FFFFh to 20000h), $R_L = 10k\Omega$, $C_L = 50pF$		4		nVs		
Digital Feed Through		$CSB = V_{DDIO}, f_{SCLK} = 1kHz, all digital inputs from 0V to V_{DDIO}$		1		nVs		
Output Voltage-Noise Spectral Density		At f = 1kHz to 10kHz, without reference, code = 20000h		26		nV/√Hz		
Output Voltage Noise		At $f = 0.1Hz$ to 10Hz, without reference, code = 2000h		1.55		μV _{P-P}		
Wake-Up Time		From power-down mode		75		μs		
Power-Up Time		From power-off		2		ms		

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

ELECTRICAL CHARACTERISTICS

 $(V_{AVDD} = V_{DDIO} = 2.7V \text{ to } 3.3V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V, V_{REF} = 2.5V, TC/SB = PD = \overline{LDAC} = M/Z = DGND, RST = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, GAIN = 0x3FFFF, OFFSET = 0x00000, T_A = -40°C to +105°C, unless otherwise noted. Typical values are at T_A = +25°C.) (GAIN = 0x3FFFF and OFFSET = 0x00000.)(Note 2)$

PARAMETER	SYMBOL	CONI	DITIONS	MIN	ТҮР	MAX	UNITS
STATIC PERFORMANCE	·						
Resolution	N			18			Bits
		DIN = 0x00000 to 0x3FFFF (binary mode), DIN = 0x20000 to 0x1FFFF (two's complement mode)					
Integral Nonlinearity (Note 3)		DIN = 0x01900 to 0x mode), DIN = 0x219 complement mode),	3FFFF (binary 00 to 0x1FFFF (two's V _{AVSS} = 0V	-2.0	±0.75	72.0	LOD
Differential Nonlinearity (Note 3)	DNL			-1.0	±0.3	+1.0	LSB
7 0 1 5	05	DIN = 0, $T_A = +25^{\circ}C$	<u>}</u>	-50	±6	+50	1.05
Zero Code Error	UE	$DIN = 0, T_A = -40^{\circ}C$	to +105°C		±25		LSB
Zero Code Error Drift (Note 4)		DIN = 0		-2.7	±1.4	+2.7	ppm/°C
	0.5	$T_A = +25^{\circ}C$		-16	±1.5	+16	1.05
Gain Error	GE	$T_A = -40^{\circ}C \text{ to } +105^{\circ}$	С		±35		LSB
Gain Error Temperature Coefficient (Note 4)	TCGE			-3.2		+3.2	ppm/°C of FSR
Output Voltage Range		No load		0		V _{AVDD} - 0.1	V
			$M/\overline{Z} = DGND$		75		μV
		RST = pulse low	$M/\overline{Z} = V_{DDIO}$		1.25		V
		$\overline{\text{RST}}$ = pulse low, V _{AVSS} = 0V	$M/\overline{Z} = DGND$		10		mV
Beset Voltage Output			$M/\overline{Z} = V_{DDIO}$		1.25		V
	VOUT-RESET		$M/\overline{Z} = DGND$		-40		mV
		RST = DGND	$M/\overline{Z} = V_{DDIO}$		1.25		V
		$\overline{\text{RST}} = \text{DGND},$	$M/\overline{Z} = DGND$		10		mV
		$V_{AVSS} = 0V$	$M/\overline{Z} = V_{DDIO}$		1.24		V
DC Output Impedance	R _{OUT}	Closed-loop connec to OUT	tion, RFB connected		4		mΩ
Output Ourrent	1	Source/sink within 10	0mV of the supply rails		±4		
	IOUT	Source/sink within 80	OmV of the supply rails		±25		MA
Load Capacitance to GND	CL					200	рF
Load Resistance to GND	RL	For specified perform	nance	2			kΩ
		OUT shorted to AGN	ID or AVDD		±60		
Short-Circuit Current	I _{SC}	REFO shorted to AG	ND or AVDD		±65		mA
		BYPASS shorted to AGND or AVDD			±48		
Short-Circuit Duration	t _{SC}	Short to AGND or A	/DD		Indefinite		S

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{DDIO} = 2.7V \text{ to } 3.3V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V, V_{REF} = 2.5V, TC/SB = PD = \overline{LDAC} = M/Z = DGND, RST = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, GAIN = 0x3FFFF, OFFSET = 0x00000, T_A = -40°C \text{ to } +105°C, unless otherwise noted. Typical values are at T_A = +25°C.) (GAIN = 0x3FFFF and OFFSET = 0x00000.)(Note 2)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
DO Davian Guarda Daia atian	DODODD	V _{OUT} at full scale, V _{AVDD} = 2.7V to 3.3V	-2.5	±0.4	+2.5	
DC Power-Supply Rejection	DCPSRR	$V_{AVSS} = -1.5V$ to $-0.5V$	-2.5	±0.04	+2.5	LSB/V
STATIC PERFORMANCE-VOLT	AGE REFER	ENCE INPUT SECTION				
Reference High Input Range	V _{REF}		2.4		V _{AVDD} - 0.1	V
Reference Input Capacitance	C _{REF}			10		рF
Reference Input Resistance	R _{REF}			10		MΩ
Reference Input Current	IB			±0.15		μA
STATIC PERFORMANCE-VOLT	AGE REFER	ENCE OUTPUT SECTION			-	
Reference High Output Range			2.4		V _{AVDD} - 0.1	V
Reference High Output Load Regulation				500		ppm/mA
Reference Output Capacitor		$R_{ESR} < 5\Omega$		0.1		nF
STATIC PERFORMANCE-VBYP	ASS OUT SE	CTION				
Output Voltage	V _{BYPASS}		2.3	2.4	2.5	V
Load Capacitance to GND	CL	Required for stability, $R_{ESR} = 0.1\Omega$ (typ)	1		8	μF
POWER-SUPPLY REQUIREMEN	тѕ					
Positive Analog Power-Supply Range	V _{AVDD}		2.7		3.3	V
Interface Power-Supply Range	V _{DDIO}		1.8		5.5	V
Negative Analog Power-Supply Range	V _{AVSS}		-1.5	-1.25	0	V
Positive Analog Power-Supply Current	I _{AVDD}	No load, external reference, output at zero scale		5.0	6.5	mA
Negative Analog Power-Supply Current	I _{AVSS}	No load, external reference, output at zero scale	-1.5	-0.8		mA
Interface Power-Supply Current	I _{VDDIO}	Digital inputs at V _{DDIO} or DGND		0.2	5.0	μA
Positive Analog Power-Supply Power-Down Current		$PD = V_{DDIO}$, power-down mode		20	50	μA
Negative Analog Power-Supply Power-Down Current		PD = V _{DDIO} , power-down mode	-5	-2		μA
DYNAMIC PERFORMANCE	1	· · · · · · · · · · · · · · · · · · ·				
Voltage Output Slew Rate	SR	From 10% to 90% full scale, positive and negative transitions		4.9		V/µs
Voltage Output Settling Time	t _S	From falling edge of LDAC to within 0.003% FS, $R_L = 10k\Omega$, DIN = 04000h (6.25% FS) to 3C000h (93.75% FS)		3		μs

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{DDIO} = 2.7V \text{ to } 3.3V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V, V_{REF} = 2.5V, TC/SB = PD = \overline{LDAC} = M/Z = DGND, RST = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, GAIN = 0x3FFFF, OFFSET = 0x00000, T_A = -40°C \text{ to } +105°C, unless otherwise noted. Typical values are at T_A = +25°C.) (GAIN = 0x3FFFF and OFFSET = 0x00000.)(Note 2)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Busy Time	t _{BUSY}	(Note 5)		1.9		μs
DAC Glitch Impulse		Major code transition (1FFFFh to 20000h), R _L = 10k Ω , C _L = 50pF		2.5		nVs
Digital Feedthrough		CSB = V_{DDIO} , f_{SCLK} = 1kHz, all digital inputs from 0V to V_{DDIO}		1		nVs
Output Voltage-Noise Spectral Density		At f = 1kHz to 10kHz, without reference, code = 20000h		26		nV/√Hz
Output Voltage Noise		At f = 0.1Hz to 10Hz, without reference, code = 20000h		1.55		μV _{P-P}
Wake-Up Time		From power-down mode		75		μs
Power-Up Time		From power-off		2		ms

DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS

 $(V_{AVDD} = 5V, V_{DDIO} = 2.7V \text{ to } 5.5V, V_{AVSS} = -1.25V, V_{REF} = 4.096V, R_L = 10k\Omega, TC/SB = M/Z = DGND, C_{REFO} = 100pF, C_{BYPASS} = 1\muF, T_A = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)(GAIN = 0x3FFFF and OFFSET = 0x00000.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (SCLK, DIN, \overline{CS}						
Input High Voltage	V _{IH}		0.7 x V _{DDIO}			V
Input Low Voltage	V _{IL}				0.3 x V _{DDIO}	V
Input Hysteresis (Note 4)	VIHYST		200	300		mV
Input Leakage Current	I _{IN}			±0.1	±1	μA
Input Capacitance	C _{IN}			10		рF
DIGITAL OUTPUT CHARACTERI	STICS (DOU [.]	T, READY, BUSY)				
Output Low Voltage	V _{OL}	I _{SOURCE} = 5.0mA			0.25	V
Output High Voltage	V _{OH}	$I_{SINK} = 5.0$ mA, except for \overline{BUSY}	V _{DDIO} - 0.25			V
Output Three-State Leakage	I _{OZ}	DOUT only		±0.1	±1	μA
Output Three-State Capacitance	C _{OZ}	DOUT only		15		рF
Output Short-Circuit Current	IOSS	$V_{DDIO} = 5.25V$		±150		mA

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = 5V, V_{DDIO} = 2.7V \text{ to } 5.5V, V_{AVSS} = -1.25V, V_{REF} = 4.096V, R_L = 10k\Omega, TC/SB = M/Z = DGND, C_{REFO} = 100pF, C_{BYPASS} = 1\muF, T_A = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)(GAIN = 0x3FFFF and OFFSET = 0x00000.)$ (Note 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
TIMING CHARACTERISTICS							
		Stand-alone, v	vrite mode			50	
Serial Clock Frequency	^f SCLK	Stand-alone, received a	ead mode and daisy- and write modes (Note 5)			12.5	MHz
		Stand-alone, v	vrite mode	20			
SCLK Period	t _{CP}	Stand-alone, read mode and daisy- chained read and write modes		80			ns
SCLK Pulse Width High	tсн	40% duty cycl	е	8			ns
SCLK Pulse Width Low	t _{CL}	40% duty cycl	е	8			ns
			Stand-alone, write mode	8			
CS Fall to SCLK Fall Setup Time	tcsso	First SCLK falling edge	Stand-alone, read mode and daisy-chained read and write modes	38			ns
CS Fall to SCLK Fall Hold Time	t _{CSH0}	Inactive falling edge	edge preceding first falling	0			ns
SCLK Fall to \overline{CS} Rise Hold Time	t _{CSH1}	24th falling ed	ge	2			ns
DIN to SCLK Fall Setup Time	t _{DS}			5			ns
DIN to SCLK Fall Hold Time	t _{DH}			4.5			ns
SCLK Rise to DOUT Settle Time	t _{DOT}	$C_L = 20 pF$ (No	ote 6)			32	ns
SCLK Rise to DOUT Hold Time	t _{DOH}	$C_L = 0 pF$ (Not	e 6)	2			ns
SCLK Fall to DOUT Disable Time	t _{DOZ}	24th active ed	ge deassertion	2		30	ns
CS Fall to DOUT Enable	t _{DOE}	Asynchronous	assertion	2		30	ns
\overline{CS} Rise to DOLIT Disable	toopor	Stand-alone, a	borted sequence			35	ns
	CSDOZ	Daisy-chained	, aborted sequence			70	115
SCLK Fall to READY Fall	tCRF	24th falling-ed	ge assertion, $C_L = 20pF$			30	ns
SCLK Fall to READY Hold	t _{CRH}	24th falling-ed	ge assertion, $C_L = 0pF$	2			ns
SCLK Fall to BUSY Fall	t _{CBF}	BUSY assertio	n		5		ns
CS Rise to READY Rise	t _{CSR}	$C_L = 20 pF$				35	ns
CS Rise to SCLK Fall	t _{CSA}	24th falling ed	ge, aborted sequence	20			ns
CS Pulse Width High	t _{CSPW}	Stand alone		20			ns
SCLK Fall to \overline{CS} Fall	t _{CSF}	24th falling ed	ge	100			ns
LDAC Pulse Width	t _{LDPW}			20			ns
LDAC Fall to SCLK Fall Hold	t _{LDH}	Last active fall	ing edge	20			ns
RST Pulse Width	t _{RSTPW}			20			ns

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS

 $(V_{AVDD} = 5V, V_{DDIO} = 1.8V \text{ to } 2.7V, V_{AVSS} = -1.25V, V_{REF} = 4.096V, R_L = 10k\Omega, TC/SB = M/Z = DGND, C_{REFO} = 100pF, C_{BYPASS} = 1\muF, T_A = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)(GAIN = 0x3FFFF and OFFSET = 0x00000.)$ (Note 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
DIGITAL INPUTS (SCLK, DIN, CS	, LDAC, M/Z	, RST)					
Input High Voltage	V			0.8 x			V
	VIH			V _{DDIO}			v
Input Low Voltage	Vii					0.2 x	V
						V _{DDIO}	
Input Hysteresis (Note 4)	VIHYST			200	300		mV
Input Leakage Current	I _{IN}	Input = 0V at	V _{DDIO}		±0.1	±1	μΑ
Input Capacitance	C _{IN}				10		рF
DIGITAL OUTPUTS CHARACTER	RISTICS (DO	UT, READY, B	USY)	T			
Output Low Voltage	V _{OL}	I _{SOURCE} = 1.	0mA			0.2	V
Output High Voltage	V _{OH}	$I_{SINK} = 1.0 mA$	A, except for $\overline{\text{BUSY}}$	V _{DDIO} - 0.2			V
Output Three-State Leakage	I _{OZ}	DOUT only			±0.1	±1	μA
Output Three-State Capacitance	C _{OZ}	DOUT only			15		рF
Output Short-Circuit Current	I _{OSS}	$V_{DDIO} = 2.7V$			±150		mA
TIMING CHARACTERISTICS							
		Stand-alone write mode				50	
Serial Clock Frequency	f _{SCLK}	Stand-alone r chained read	ead mode and daisy- and write modes (Note 6)			8	MHz
		Stand-alone v	vrite mode	20			
SCLK Period	t _{CP}	Stand-alone r chained read	ead mode and daisy- and write modes	125			ns
SCLK Pulse-Width High	tсн	40% duty cyc	le	9			ns
SCLK Pulse-Width Low	t _{CL}	40% duty cyc	le	9			ns
			Stand-alone write mode	12			
CS Fall to SCLK Fall Setup Time	tesso	First SCLK	Stand-alone read mode				ns
		failing edge	and daisy-chained read and write modes	/2			
CS Fall to SCLK Fall Hold Time	t _{CSH0}	Inactive falling falling	g edge preceding first	0			ns
SCLK Fall to \overline{CS} Rise Hold Time	tCSH1	24th falling ed	dge	4			ns
DIN to SCLK Fall Setup Time	t _{DS}			8			ns
DIN to SCLK Fall Hold Time	t _{DH}			8			ns
SCLK Rise to DOUT Settle Time	t _{DOT}	C _L = 20pF (N	ote 7)			40	ns
SCLK Rise to DOUT Hold Time	t _{DOH}	$C_{L} = 0 pF (No)$	te 7)	2			ns

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = 5V, V_{DDIO} = 1.8V \text{ to } 2.7V, V_{AVSS} = -1.25V, V_{REF} = 4.096V, R_L = 10k\Omega, TC/SB = M/Z = DGND, C_{REFO} = 100 \text{pF}, C_{BYPASS} = 1\mu\text{F}, T_A = -40^{\circ}\text{C} \text{ to } +105^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at T_A = +25^{\circ}\text{C}.)(GAIN = 0x3\text{FFF} and OFFSET = 0x00000.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Fall to DOUT Disable Time	tdoz	24th active edge deassertion	2		40	ns
CS Fall to DOUT Enable	tDOE	Asynchronous assertion	2		50	ns
	+	Stand-alone, aborted sequence			70	20
US Rise to DOUT Disable	^L CSDOZ	Daisy-chained, aborted sequence			130	115
SCLK Fall to READY Fall	tCRF	24th falling edge assertion, $C_L = 20 pF$			60	ns
SCLK Fall to READY Hold	t _{CRH}	24th falling edge assertion, $C_L = 0pF$	2			ns
SCLK Fall to BUSY Fall	t _{CBF}	BUSY assertion		5		ns
CS Rise to READY Rise	t _{CSR}	$C_L = 20 pF$			60	ns
CS Rise to SCLK Fall	t _{CSA}	24th falling edge, aborted sequence	20			ns
CS Pulse Width High	tCSPW	Stand alone	20			ns
SCLK Fall to \overline{CS} Fall	t _{CSF}	24th falling edge	100			ns
LDAC Pulse Width	t _{LDPW}		20			ns
LDAC Fall to SCLK Fall Hold	tLDH	Last active falling edge	20			ns
RST Pulse Width	t _{RSTPW}		20			ns

Note 2: All devices are 100% tested at $T_A = +25^{\circ}$ C and $T_A = +105^{\circ}$ C. Limits at $T_A = -40^{\circ}$ C are guaranteed by design.

Note 3: Linearity is tested from V_{REF} to AGND.

Note 4: Guaranteed by design.

Note 5: The total analog throughput time from DIN to V_{OUT} is the sum of t_S and t_{BUSY} (4.9µs, typ).

Note 6: Daisy-chain speed is relaxed to accommodate ($t_{CRF} + t_{CSS0}$).

Note 7: DOUT speed limits overall SPI speed.

Figure 1. Serial Interface Timing Diagram, Stand-Alone Operation

Typical Operating Characteristics

Maxim Integrated

Typical Operating Characteristics (continued)

COUNT (NO.

 $(V_{AVDD} = V_{DDIO} = 5V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V; V_{REF} = 4.096V, TC/\overline{SB} = PD = M/\overline{Z} = DGND, RST = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, T_A = +25^{\circ}C, unless otherwise noted.)$

. OF UNITS) +25°C 120 +105°C 100 COUNT (NO. 80 60 40 20 0 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 LSB

(LSB)

Z

Typical Operating Characteristics (continued)

Maxim Integrated

Typical Operating Characteristics (continued)

Maxim Integrated

Typical Operating Characteristics (continued)

COUNT (UNITS)

Typical Operating Characteristics (continued)

SUPPLY CURRENT **POWER-DOWN SUPPLY CURRENT** vs. SUPPLY VOLTAGE vs. SUPPLY VOLTAGE 6.0 40 $V_{PD} = 5V$ 5.9 35 5.8 . Тд = +105°С . TA = +105°C 5.7 30 AVDD (µA) AVDD (mA) 5.6 5.5 25 5.4 20 5.3 $T_A = +25^{\circ}C$ 5.2 $T_A = +25^{\circ}C$ 15 $T_A = -40^{\circ}C$ T_A = 40°C 5.1 5.0 10 4.75 5.50 4.50 4.50 5.00 5.25 4.75 5.00 5.25 5.50 VAVDD (V) VAVDD (V)

Typical Operating Characteristics (continued)

 $(V_{AVDD} = V_{DDIO} = 5V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V; V_{REF} = 4.096V, TC/\overline{SB} = PD = M/\overline{Z} = DGND, \\ \overline{RST} = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(V_{AVDD} = V_{DDIO} = 5V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V; V_{REF} = 4.096V, TC/\overline{SB} = PD = M/\overline{Z} = DGND, \\ \overline{RST} = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(V_{AVDD} = V_{DDIO} = 5V, V_{AVSS} = -1.25V, V_{AGND} = V_{DGND} = V_{AGND_F} = V_{AGND_S} = 0V; V_{REF} = 4.096V, TC/\overline{SB} = PD = M/\overline{Z} = DGND, \\ \overline{RST} = V_{DDIO}, C_{REFO} = 100pF, C_L = 100pF, R_L = 10k\Omega, C_{BYPASS} = 1\muF, T_A = +25^{\circ}C, unless otherwise noted.)$

SLOW POWER-UP RESPONSE

4ms/div

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	
1	RST	Active-Low Reset Input. Drive $\overline{\text{RST}}$ low to DGND to put the device into a reset state. A reset state sets all SPI input registers to their default power-on reset states as defined by the state of inputs M/Z and TC/SB. Set $\overline{\text{RST}}$ high to VDDIO, the DAC output remains at the state defined by M/Z until $\overline{\text{LDAC}}$ is taken low.	
2	READY	SPI Active-Low Ready Output. $\overline{\text{READY}}$ asserts low when the device successfully completes processing an SPI data frame. $\overline{\text{READY}}$ asserts high at the next rising edge of $\overline{\text{CS}}$. In daisy-chain applications, the $\overline{\text{READY}}$ output typically drives the $\overline{\text{CS}}$ input of the next device in the chain or a GPIO of a microcontroller.	
3	M/Z	Reset Select Input. M/\overline{Z} selects the default state of the analog output (OUT) after power-on or a hardware or software reset. Connect M/\overline{Z} to V_{DDIO} to set the default output voltage to midscale or to DGND to set the default output voltage to zero scale.	
4	BUSY	Digital Input/Open-Drain Output. Connect a $2k\Omega$ pullup resistor from $\overline{\text{BUSY}}$ to V_{DDIO} . $\overline{\text{BUSY}}$ goes low during the internal calculations of the DAC register data. During this time, the user can continue writing new data to the DIN, OFFSET, and GAIN registers, but no further updates to the DAC register and DAC output can take place. If LDAC is asserted low while $\overline{\text{BUSY}}$ is low, this event is stored. $\overline{\text{BUSY}}$ is bidirectional, and can be asserted low externally to delay LDAC action. $\overline{\text{BUSY}}$ also goes low during power-on reset, when $\overline{\text{RST}}$ is low, or when software reset is activated.	

PIN	NAME	FUNCTION	
5	LDAC	Active-Low Load DAC Logic Input. If LDAC is taken low while BUSY is inactive (high), the contents of the input registers are transferred to the DAC register and the DAC output is updated. If LDAC is taken low while BUSY is asserted low, the LDAC event is stored and the DAC register update is delayed until BUSY deasserts. Any event on LDAC during power-on reset or when RST is low is ignored.	
6	DOUT	SPI Bus Serial Data Output. See the Serial Interface section for details.	
7	DIN	SPI Bus Serial Data Input. See the Serial Interface section for details.	
8	SCLK	SPI Bus Serial Clock Input. See the Serial Interface section for details.	
9	CS	SPI Bus Active-Low Chip-Select Input. See the Serial Interface section for details.	
10	TC/SB	DIN Format Select Input. Connect TC/SB to DGND to set the data input format to straight binary or to V_{DDIO} to set it to two's complement.	
11	PD	Active-High Power-Down Input. Connect PD to DGND for normal operation. Connect PD to V_{DDIO} to place the device in power-down. In power-down, OUT (analog voltage output) is connected to AGND through a 2k Ω resistor, but the contents of the input registers and the DAC latch do not change. The SPI interface remains active in power-down.	
12	AVSS	Negative Analog Power-Supply Input. Connect to AGND or a negative supply voltage. When connected to the negative supply voltage, bypass AVSS with a 0.1µF capacitor to AGND.	
13	AGND	Analog Ground. Connect to the analog ground plane.	
14	AVDD1	Positive Analog Power-Supply Input. Bypass each AVDD_ locally with a 0.1µF and 10µF capacitor to AGND (analog ground plane). Connect AVDD1 and AVDD2 together.	
15	OUT	Buffered Analog Voltage Output. Connect OUT to RFB externally to close the output buffer feedback loop. The buffered output is capable of directly driving a 10k Ω load. The state of M/Z sets the power-on reset state of OUT (zero or midscale). In power-down, OUT is connected to AGND through a 2k Ω pulldown resistor.	
16	RFB	Feedback Resistor Input. RFB is connected through the internal feedback resistor to the inverting input of the analog output buffer. Externally connect RFB to OUT to close the output buffer feedback loop.	
17	REFO	Voltage Reference Buffered Output. Bypass with a 100pF capacitor to AGND.	
18	REF	High-Impedance 10M Ω Voltage Reference Input	
19	AGND_S	DAC Analog Ground Sense	
20	AGND_F	DAC Analog Ground Force. Connect to the analog ground plane.	
21	AVDD2	Positive Analog Power-Supply Input. AVDD2 supplies power to the internal digital linear regulator. Bypass AVDD2 locally to AGND with 0.1µF and 10µF capacitors. Connect AVDD2 and AVDD1 together.	
22	BYPASS	Internal Bypass Connection. Connect BYPASS to DGND with 0.01µF and 1µF capacitors.	
23	DGND	Digital Ground	
24	V _{DDIO}	Digital Interface Power-Supply Input. Connect to a 1.8V to 5.5V logic-level supply. Bypass V _{DDIO} with a 0.1µF capacitor to DGND. The supply voltage at V _{DDIO} sets the logic-level for the digital interface.	

Pin Description (continued)

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

Detailed Description

The MAX5318 is a high-accuracy, 18-bit, serial SPI input, buffered voltage output digital-to-analog converter (DAC) in a 4.4mm x 7.8mm, 24-lead TSSOP package. The device features ± 2 LSB INL (max) accuracy and a ± 1 LSB DNL (max) accuracy over the full temperature range of -40°C to +105°C.

The DAC voltage output is buffered resulting in a fast settling time of 3µs and a low offset and gain drift of ±0.5ppm/°C of FSR (typ). The force-sense output (OUT) maintains accuracy while driving loads with long lead lengths. Additionally, a separate AVSS supply allows the output amplifier to go to 0V (GND) while maintaining full linearity performance.

The MAX5318 includes user-programmable digital gain and offset correction capability to enable easy system calibration.

At power-up, the device resets its outputs to zero or midscale, providing additional safety for applications, which drive valves or other transducers that need to be off on power-up. This is selected by the state of the M/Z input on power-up.

The wide 2.7V to 5.5V supply voltage range and integrated low-drift, low-noise reference buffer amplifier makes for ease of use. Since the reference buffer input has a high input resistance, an external buffer is not required. The device accepts an external reference between 2.4V and V_{AVDD} - 0.1V for maximum flexibility and rail-to-rail operation.

The MAX5318 features a 50MHz, 3-wire SPI, QSPI, MICROWIRE, and DSP-compatible serial interface. The separate digital interface supply voltage input (V_{DDIO}) is compatible with a wide range of digital logic levels from 1.8V to 5.5V, eliminating the need for separate voltage translators.

DAC Reference Buffer

The external reference input has a high input (REF) impedance of 10M Ω II10pF and accepts an input voltage from +2.4V to V_{AVDD} - 0.1V. Connect an external reference supply between REF and AGND. Bypass the reference buffer output REFO to AGND with a 100pF capacitor. Connect the anode of an external Schottky diode to REF and the cathode to AVDD1 to prevent internal ESD diode conduction in the event that the reference voltage comes up before AVDD at power up. Follow the recommendations described in the *Power-Supply Sequencing* section.

Visit **www.maximintegrated.com/products/references** for a list of available external voltage-reference devices.

Output Amplifier (OUT)

The MAX5318 includes an internal buffer for the DAC output. The internal buffer provides improved load regulation for the DAC output. The output buffer slews at 5V/µs and drives up to $2k\Omega$ in parallel with 200pF. The buffer has a rail-to-rail output capable of swinging to within 100mV of AVDD_ and AVSS.

The positive analog supply voltage (AVDD_) determines the maximum output voltage of the device as AVDD_ powers the output buffer.

The output is diode clamped to ground, preventing negative voltage excursions beyond approximately -0.6V.

Negative Supply Voltage (AVSS)

The negative supply voltage (AVSS) determines the minimum output voltage. If AVSS is connected to ground, the output voltage can be set to as low as 100mV without degrading linearity. For operation down to 0V, connect AVSS to a negative supply voltage between -0.1V and -1.5V. The MAX1735 is recommended for generating -1.25V from a -5V supply.

Force/Sense

The MAX5318 uses force/sense techniques to ensure that the load is regulated to the desired output voltage despite line drops due to long lead lengths. Since AGND_F and AGND_S have code dependent ground currents, a ground impedance less than $13m\Omega$ ensures that the INL will not degrade by more than 0.1 LSB. Form a star ground connection (Figure 2a) near the device with AGND_F, AGND_S, and AGND tied together. Always refer remote DAC loads to this system ground for best performance. Figure 2b shows how to configure the device and an external op amp for proper force/sense operation. The amplifier provides as much drive as needed to force the sensed voltage (measured between RFB and AGND_S) to equal the desired voltage.

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

18-Bit Ideal Transfer Function

The MAX5318 features 18-bit gain and 18-bit offset adjustment as shown in Figure 3.

The incoming DIN code is multiplied and offset compensated by the generic equation shown in Equation 1. The resulting value is then applied to the DAC.

Equation 1) Generic gain and offset adjustment

$$DAC = DIN \times GAIN + OFFSET$$

The GAIN code is always an 18-bit straight binary word. The OFFSET code is always two's complement. It is therefore simply added to the output of the multiplier.

To guarantee that a gain of exactly 1 is possible, the actual gain coefficient applied to DIN is as defined in Equation 2.

Equation 2) Calculation of gain

$$G = \frac{(GAIN) + 1}{2^{18}}$$

When DIN is straight binary, the ideal transfer function is given by:

Equation 3) Straight binary ideal transfer function

$$V_{OUT} = G \times V_{DIN} + V_{OFFSET}$$

When DIN is two's complement, the ideal transfer function is given by:

Equation 4) Two's complement ideal transfer function

$$V_{OUT} = \frac{V_{REF}}{2} + G \times V_{DIN} + V_{OFFSET}$$

 V_{DIN} and V_{OFFSET} are the voltages to which the DIN and OFFSET codes are converted and V_{OUT} is the voltage at the DAC output buffer. See the <u>Conversion Formulas for</u> <u>DIN, GAIN, and OFFSET</u> section for equations needed to convert the DIN and OFFSET codes into V_{DIN} and V_{OFFSET} .

Figure 2a. Star Ground Connection

Figure 2b. Force/Sense Connection

Figure 3. Gain and Offset Adjustment

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

The data DIN can be either straight binary or two's complement. In straight binary, zero code results in a zeroscale output. In two's complement, zero code results in a midscale output.

To better understand how GAIN and OFFSET affect the output voltage, see Figure 4 and Figure 5. Consider the generation of a ramp. For now assume OFFSET is set to 0x00000. In straight binary mode, with GAIN set to 0x3FFFF (G = 1), DIN starts from 0x00000 and increases to 0x3FFFF. The output voltage will start at 0V and increase to (V_{REF} - 1 LSB). If GAIN is reduced, the ramp will still start at 0V but the maximum level reached is reduced.

With DIN set to two's complement mode, to generate the same ramp, DIN would start at 0x20000 and increase until it wraps around to 0x00000. At this point the DAC output would be midscale. DIN then increases to 0x1FFFF where the output would be full-scale -1 LSB. As

GAIN is reduced, the start of the ramp becomes larger and the end of the ramp becomes smaller. The ramp is therefore centered at midscale.

In both cases, a nonzero value for OFFSET results in the output moving up or down.

Should the output of the gain and offset adjust block overflow full-scale or underflow zero-scale, the data is clipped so the DAC output will be clipped rather than overflow or underflow.

The effect of gain and offset adjustment is shown in $\underline{Figure 4}$ for straight binary mode and $\underline{Figure 5}$ for two's complement mode.

If any of the DIN, GAIN, or OFFSET registers is changed, the device takes 1.9 μ s (t_{BUSY}) to compute the new values to present to the DAC. While the device is computing the new DAC value, the BUSY output is set low. See the section on the BUSY output and LDAC input for details.

Figure 4. Gain and Offset Adjustment in Straight Binary Mode

Figure 5. Gain and Offset Adjustment in Two's Complement Mode

18-Bit, High-Accuracy Voltage Output DAC with Digital Gain, Offset Control, and SPI Interface

Conversion Formulas for DIN, GAIN, and OFFSET

Tables 1a and 1b show how to convert the DIN code to V_{DIN} in straight binary and two's complement modes.

Table 2 shows how to convert the GAIN code to the gain factor G, which is multiplied with V_{DIN} . Table 3 shows how to convert the OFFSET code to V_{OFFSET} , which is summed with the product G•V_{DIN}.

Input, Gain, and Offset Ranges

The ranges of DIN, GAIN, and OFFSET are summarized in <u>Table 4</u> to <u>Table 6</u>. Also shown are the range values for the 18-bit MAX5318 with a 4.096V reference. Note that V_{REF} is the reference voltage applied to REF and 1 LSB is equal to $V_{REF}/2^{18}$.

Table 1a. Converting DIN to V_{DIN} (Straight Binary Mode)

DIN	EQUATION FOR V _{DIN}	RANGE
0x00000 to 0x3FFFF	$V_{\text{DIN}} = V_{\text{REF}} \times \frac{\text{DIN}}{2^{18}}$	0V to (V _{REF} - 1 LSB)

Table 1b. Converting DIN to V_{DIN} (Two's Complement Mode)

DIN	EQUATION FOR VDIN AND VOFFSET	RANGE
0x20000 to 0x3FFFF	$V_{DIN} = V_{REF} \times \left(\frac{DIN - 0x20000}{2^{18}}\right) - \frac{V_{REF}}{2}$	V _{REF} /2 to -1 LSB
0x00000 to 0x1FFFF	$V_{\text{DIN}} = V_{\text{REF}} \times \frac{\text{CODE}}{2^{18}}$	0V to (V _{REF} /2 - 1 LSB)

Table 2. Converting GAIN to G

GAIN	EQUATION	RANGE
0x00000 to 0x3FFFF	$G = \frac{GAIN + 1}{2^{18}}$	1/2 ¹⁸ to 1

Table 3. Converting OFFSET to VOFFSET

OFFSET	EQUATION	RANGE
0x20000 to 0x3FFFF	$V_{OFFSET} = V_{REF} \times \left(\frac{OFFSET - 0x20000}{2^{18}}\right) - \frac{V_{REF}}{2}$	-VREF/2 to -1 LSB
0x00000 to 0x1FFFF	$V_{OFFSET} = V_{REF} \times \frac{OFFSET}{2^{18}}$	0V to (VREF/2 - 1 LSB)