## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

# M1ハXIス +5 V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers 


#### Abstract

General Description The MAX534 serial-input, voltage-output, 8 -bit quad dig-ital-to-analog converter (DAC) operates from a single +4.5 V to +5.5 V supply. Internal precision buffers swing rail to rail, and the reference input range includes both ground and the positive rail. The MAX534 features a $2.5 \mu \mathrm{~A}$ shutdown mode. The serial interface is double buffered: a 12-bit input shift register is followed by four 8-bit buffer registers and four 8 -bit DAC registers. The 12 -bit serial word consists of eight data bits and four control bits (for DAC selection and special programming commands). Both the input and DAC registers can be updated independently or simultaneously with a single software command. Two additional asynchronous control pins, LDAC and CLR, provide simultaneous updating or clearing of the input and DAC registers. The interface is compatible with SP ${ }^{\text {TM }}$, QSP $\left.\right|^{\text {TM }}$ (CPOL $=$ CPHA $=0$ or CPOL $=$ CPHA $=1$ ), and Microwire ${ }^{\text {TM }} . ~ A$ buffered data output allows daisy chaining of serial devices. In addition to 16-pin DIP and CERDIP packages, the MAX534 is available in a 16 -pin QSOP that occupies the same area as an 8-pin SO. For operation guaranteed to 2.7 V , see the MAX533 data sheet.


## Applications

Digital Gain and Offset Adjustments
Programmable Attenuators
Programmable Current Sources
Portable Instruments
Pin Configuration


| +4.5 V to +5.5 V Single-Supply Operation |
| :--- |
| Ultra-Low Supply Current: |
| 0.8mA while Operating |
| 2.5 AA in Shutdown Mode |
| Ultra-Small 16-Pin QSOP Package |

- Ground to Vdd Reference Input Range
- Output Buffer Amplifiers Swing Rail to Rail
- 10MHz Serial Interface Compatible with SPI, QSPI (CPOL = CPHA $=0$ or CPOL = CPHA = 1), and Microwire
- Double-Buffered Registers for Synchronous Updating
- Serial Data Output for Daisy Chaining
- Power-On Reset Clears Serial Interface and Sets All Registers to Zero
- Software Shutdown
- Software-Programmable Logic Output ( $\mu \mathrm{C}$ I/O Extender)
- Asynchronous Hardware Clear Resets All Internal Registers to Zero
$\qquad$

| PART | TEMP. RANGE | PIN-PACKAGE | INL <br> (LSB) |
| :--- | :--- | :--- | :---: |
| MAX534ACPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1$ |
| MAX534BCPE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 2$ |
| MAX534ACEE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 QSOP | $\pm 1$ |
| MAX534BCEE | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16 QSOP | $\pm 2$ |
| MAX534BC/D | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | Dice ${ }^{*}$ | $\pm 2$ |
| MAX534AEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 1$ |
| MAX534BEPE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 Plastic DIP | $\pm 2$ |
| MAX534AEEE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 QSOP | $\pm 1$ |
| MAX534BEEE | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16 QSOP | $\pm 2$ |
| MAX534AMJE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 CERDIP** | $\pm 1$ |
| MAX534BMJE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16 CERDIP** | $\pm 2$ |

${ }^{*}$ Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$
**Contact factory for availability and processing to MIL-STD-883.

Functional Diagram appears at end of data sheet.

SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.

## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

## ABSOLUTE MAXIMUM RATINGS

| VDD to DG | V, +6V |
| :---: | :---: |
| VDD to AGND. | -0.3V, +6V |
| Digital Input Voltage to DGND | .. $0.3 \mathrm{~V},+6 \mathrm{~V}$ |
| Digital Output Voltage to DGND | -0.3V, (VDD $+0.3 \mathrm{~V})$ |
| AGND to DGND | $\pm 0.3 \mathrm{~V}$ |
| REF | -0.3V, (VDD +0.3 V ) |
| OUT | .3V, VDD |
| Maximum Current into Any | . 50 mA |



Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
$\left(V_{D D}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STATIC ACCURACY |  |  |  |  |  |  |
| Resolution |  |  |  |  | 8 | Bits |
| Integral Nonlinearity (Note 1) | INL | MAX534A |  |  | $\pm 1$ | LSB |
|  |  | MAX534B |  |  | $\pm 2$ |  |
| Differential Nonlinearity (Note 1) | DNL | Guaranteed monotonic (all codes) |  |  | $\pm 1.0$ | LSB |
| Zero-Code Error | ZCE | Code = 00 hex |  |  | $\pm 20$ | mV |
| Zero-Code-Error Supply Rejection |  | Code $=00$ hex, V DD $=4.5 \mathrm{~V}$ to 5.5 V |  |  | 1 | LSB |
| Zero-Code Temperature Coefficient |  | Code $=00$ hex | $\pm 10$ |  |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Full-Scale Error |  | Code = FF hex |  |  | $\pm 30$ | mV |
| Full-Scale Error Supply Rejection |  | Code $=\mathrm{FF}$ hex, V DD $=4.5 \mathrm{~V}$ to 5.5 V |  |  | 1 | LSB |
| Full-Scale Temperature Coefficient |  | Code $=$ FF hex | $\pm 10$ |  |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| REFERENCE INPUTS |  |  |  |  |  |  |
| Input Voltage Range |  |  | 0 |  | VDD | V |
| Input Resistance |  |  | 322 | 460 | 598 | $\mathrm{k} \Omega$ |
| Input Capacitance |  |  |  | 10 |  | pF |
| Channel-to-Channel Isolation |  | (Note 2) |  | -60 |  | dB |
| AC Feedthrough |  | (Note 3) |  | -60 |  | dB |
| DAC OUTPUTS |  |  |  |  |  |  |
| Output Voltage Range |  | $\mathrm{R}_{\mathrm{L}}=$ open | 0 |  | VREF | V |
| Load Regulation |  | Code $=\mathrm{FF}$ hex, measured with $\mathrm{IL}_{\mathrm{L}}=0 \mathrm{~mA}$ to 1.6 mA |  |  | 0.156 | LSB/mA |

## +5 V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

| PARAMETER | SYMBOL | CONDITIONS | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIGITAL INPUTS |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | $0.7 \mathrm{~V}_{\mathrm{DD}}$ |  | V |
| Input Low Voltage | VIL |  |  | $0.3 \mathrm{~V}_{\text {D }}$ | V |
| Input Current | IIN | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}$ |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| Input Capacitance | CIn | (Note 4) |  | 10 | pF |
| DIGITAL OUTPUTS |  |  |  |  |  |
| Output High Voltage | VOH | ISOURCE $=0.2 \mathrm{~mA}$ | VDD - 0.5 |  | V |
| Output Low Voltage | VOL | $\mathrm{ISINK}=1.6 \mathrm{~mA}$ |  | 0.4 | V |
| DYNAMIC PERFORMANCE |  |  |  |  |  |
| Voltage-Output Slew Rate |  | CODE = FF hex | 0.6 |  | V/ $/ \mathrm{s}$ |
| Output Settling Time |  | To $1 / 2 \mathrm{LSB}$, from code 00 to code FF hex (Note 5) | 8 |  | $\mu \mathrm{s}$ |
| Digital Feedthrough and Crosstalk |  | VREF $=0 \mathrm{~V}$, code 00 to code FF hex (Note 6) | 5 |  | nV-s |
| Digital-to-Analog Glitch Impulse |  | Code 80 hex to code 7F hex | 50 |  | nV -s |
| Signal-to-Noise Plus Distortion Ratio | SINAD | $\mathrm{V}_{\text {REF }}=4 \mathrm{Vp}-\mathrm{p}$ at 1kHz, code $=\mathrm{FF}$ hex | 80 |  | dB |
|  |  | $\mathrm{V}_{\text {REF }}=4 \mathrm{Vp}-\mathrm{p}$ at 10 kHz | 70 |  |  |
| Multiplying Bandwidth |  | $\mathrm{V}_{\text {REF }}=0.5 \mathrm{Vp}-\mathrm{p}, 3 \mathrm{~dB}$ bandwidth | 380 |  | kHz |
| Wideband Amplifier Noise |  |  | 60 |  | $\mu \mathrm{V}$ RMS |
| POWER SUPPLIES |  |  |  |  |  |
| Power-Supply Voltage | VDD |  | 4.5 | 5.5 | V |
| Supply Current | IDD | MAX534C/E | 0.8 | 1.3 | mA |
|  |  | MAX534M | 0.8 | 1.5 |  |
| Shutdown Current |  |  | 2.5 | 10 | $\mu \mathrm{A}$ |

## TIMING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{DOUT}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{D D}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VDD Rise to $\overline{\mathrm{CS}}$ Fall Setup Time (Note 4) | tvdcs | MAX534C/E |  |  | 50 | $\mu \mathrm{s}$ |
|  |  | MAX534M |  |  | 60 |  |
| LDAC Pulse Width Low | tLDAC | MAX534C/E | 40 | 20 |  | ns |
|  |  | MAX534M | 50 | 25 |  |  |
| $\overline{\mathrm{CS}}$ Rise to $\overline{\mathrm{LDAC}}$ Fall Setup Time (Note 7) | tcle | MAX534C/E | 40 |  |  | ns |
|  |  | MAX534M | 50 |  |  |  |
| $\overline{\text { CLR Pulse Width Low }}$ | tcLw | MAX534C/E | 40 | 20 |  | ns |
|  |  | MAX534M | 50 | 25 |  |  |
| $\overline{\mathrm{CS}}$ Pulse Width High | tcsw | MAX534C/E | 90 |  |  | ns |
|  |  | MAX534M | 100 |  |  |  |

## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

## TIMING CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=4.096 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{C}_{\text {DOUT }}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SERIAL-INTERFACE TIMING |  |  |  |  |  |
| SCLK Clock Frequency (Note 8) | fCLK | MAX534C/E |  | 10 | MHz |
|  |  | MAX534M |  | 8.3 |  |
| SCLK Pulse Width High | tch | MAX534C/E | 40 |  | ns |
|  |  | MAX534M | 50 |  |  |
| SCLK Pulse Width Low | tcL | MAX534C/E | 40 |  | ns |
|  |  | MAX534M | 50 |  |  |
| $\overline{C S}$ Fall to SCLK Rise Setup Time | tcss | MAX534C/E | 40 |  | ns |
|  |  | MAX534M | 50 |  |  |
| SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold Time | tcSH |  | 0 |  | ns |
| DIN to SCLK Rise to Setup Time | tDs | MAX534C/E | 40 |  | ns |
|  |  | MAX534M | 50 |  |  |
| DIN to SCLK Rise to Hold Time | tDH |  | 0 |  | ns |
| SCLK Rise to DOUT Valid Propagation Delay (Note 9) | tDO1 | MAX534C/E |  | 200 | ns |
|  |  | MAX534M |  | 230 |  |
| SCLK Fall to DOUT Valid Propagation Delay (Note 10) | tDO2 | MAX534C/E |  | 210 | ns |
|  |  | MAX534M |  | 250 |  |
| SCLK Rise to $\overline{\mathrm{CS}}$ Fall Delay | tcso | MAX534C/E | 40 |  | ns |
|  |  | MAX534M | 50 |  |  |
| $\overline{\mathrm{CS}}$ Rise to SCLK Rise Setup Time | tcs1 | MAX534C/E | 40 |  | ns |
|  |  | MAX534M | 50 |  |  |

Note 1: INL and DNL are measured with RL referenced to ground. Nonlinearity is measured from the first code that is greater than or equal to the maximum offset specification to code FF hex (full scale). See DAC Linearity and Voltage Offset section.
Note 2: $V_{\text {REF }}=4 \mathrm{Vp}-\mathrm{p}, 10 \mathrm{kHz}$. Channel-to-channel isolation is measured by setting one DAC's code to FF hex and setting all other DAC's codes to 00 hex.
Note 3: $\quad V_{\text {REF }}=4 \mathrm{Vp}-\mathrm{p}, 10 \mathrm{kHz}$. DAC code $=00$ hex.
Note 4: Guaranteed by design, not production tested.
Note 5: Output settling time is measured from the $50 \%$ point of the rising edge of $\overline{\mathrm{CS}}$ to $1 / 2 \mathrm{LSB}$ of Vout's final value.
Note 6: Digital crosstalk is defined as the glitch energy at any DAC output in response to a full-scale step change on any other DAC.
Note 7: If $\overline{\mathrm{LDAC}}$ is activated prior to $\overline{\mathrm{CS}}$ 's rising edge, it must stay low for tLDAC or longer after $\overline{\mathrm{CS}}$ goes high.
Note 8: When DOUT is not used. If DOUT is used, fCLK max is 4 MHz , due to the SCLK to DOUT propagation delay.
Note 9: Serial data clocked out at SCLK's rising edge (measured from $50 \%$ of the clock edge to $20 \%$ or $80 \%$ of VDD).
Note 10: Serial data clocked out at SCLK's falling edge (measured from $50 \%$ of the clock edge to $20 \%$ or $80 \%$ of $V_{D D}$ ).

## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers


+5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

| PIN | NAME |  |
| :---: | :---: | :--- |
| 1 | OUTB | DAC B Voltage Output |
| 2 | OUTA | DAC A Voltage Output |
| 3 | REF | Reference-Voltage Input |
| 4 | UPO | Software-Programmable Logic Output |
| 5 | PDE | Power-Down Enable. Must be high to allow software shutdown mode. |
| 6 | $\overline{\text { LDAC }}$ | Load DAC Input (active low). Driving this asynchronous input low (level sensitive) transfers the contents <br> of each input latch to its respective DAC latch. |
| 7 | $\overline{\text { CLR }}$ | Clear DAC Input (active low). Driving CLR low asynchronously clears the input and DAC registers, and <br> sets all DAC outputs to zero. |
| 8 | DOUT | Serial Data Output. Sinks and sources current. Data at DOUT can be clocked out on the rising or falling <br> edge of SCLK (Table 1). |
| 9 | $\overline{\text { CS }}$ | Chip-Select Input (active low). Data is shifted in and out when $\overline{\text { CS }}$ is low. Programming commands are <br> executed when $\overline{\text { CS returns high. }}$ |
| 10 | SCLK | Serial Clock Input. Data is clocked in on the rising edge and clocked out on the falling (default) or rising <br> edge (A0 = A1 = 1, see Table 1). <br> 11 |
| 12 | DIN | Serial Data Input. Data is clocked in on the rising edge of SCLK. |
| 13 | VDD | Digital Ground |
| 14 | AGND | Power Supply, +4.5V to +5.5V |
| 15 | OUTD | DAC D Voltage Output |
| 16 | OUTC | DAC C Voltage Output |

## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers


$t \in G X \forall W$

Figure 1. 3-Wire Interface Timing


Figure 2. Detailed Serial-Interface Timing Diagram

# +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers 

## Detailed Description

## Serial Interface

At power-on, the serial interface and all digital-toanalog converters (DACs) are cleared and set to code zero. The serial data output (DOUT) is set to transition on SCLK's falling edge.
The MAX534 communicates with microprocessors through a synchronous, full-duplex, 3-wire interface (Figure 1). Data is sent MSB first and can be transmitted in one 4 -bit and one 8 -bit (byte) packet or in one 12 -bit word. If a 16 -bit word is used, the first four bits are ignored. A 4 -wire interface adds a line for LDAC and allows asynchronous updating. The serial clock (SCLK) synchronizes the data transfer. Data is transmitted and received simultaneously.
Figure 2 shows the detailed serial-interface timing. Please note that the clock should be low if it is stopped between updates. DOUT does not go into a highimpedance state if the clock idles or $\overline{\mathrm{CS}}$ is high.
Serial data is clocked into the data registers in MSB-first format, with the address and configuration information preceding the actual DAC data. Data is clocked in on SCLK's rising edge while $\overline{\mathrm{CS}}$ is low. Data at DOUT is clocked out 12 clock cycles later, either at SCLK's falling edge (default or mode 0 ) or rising edge (mode 1).
Chip select ( $\overline{C S}$ ) must be low to enable the DAC. If $\overline{C S}$ is high, the interface is disabled and DOUT remains unchanged. CS must go low at least 40 ns before the first rising edge of the clock pulse to properly clock in the first bit. With $\overline{\mathrm{CS}}$ low, data is clocked into the MAX534's internal shift register on the rising edge of the external serial clock. Always clock in the full 12 bits because each time $\overline{C S}$ goes high the bits currently in the input shift register are interpreted as a command. SCLK can be driven at rates up to 10 MHz .


Figure 3. Serial Input Format

## Serial Input Data Format and Control Codes

The 12-bit serial input format shown in Figure 3 comprises two DAC address bits (A1, A0), two control bits (C1, C0), and eight bits of data (D7...D0).
The 4-bit address/control code configures the DAC as shown in Table 1.

Load Input Register, DAC Registers Unchanged (Single Update Operation)

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Add |  | 0 | 1 |  |  |  | 8-Bit | Dat |  |  |  |  |

( $\overline{\text { LDAC }}=\mathrm{H}$ )
When performing a single update operation, A1 and A0 select the respective input register. At the rising edge of $\overline{C S}$, the selected input register is loaded with the current shift-register data. All DAC outputs remain unchanged. This preloads individual data in the input register without changing the DAC outputs.

## Load Input and DAC Registers

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | 1 | 1 | 8-Bit Data |  |  |  |  |  |  |  |  |

( $\overline{\mathrm{LDAC}}=\mathrm{H}$ )
This command directly loads the selected DAC register at $\overline{\mathrm{CS}}$ 's rising edge. A 1 and A 0 set the DAC address. Current shift-register data is placed in the selected input and DAC registers.
For example, to load all four DAC registers simultaneously with individual settings (DAC $A=1 \mathrm{~V}, \mathrm{DAC} B=2 \mathrm{~V}$, DAC $C=3 \mathrm{~V}$, and DAC $D=4 \mathrm{~V}$ ), four commands are required. First, perform three single input register update operations for DACs $\mathrm{A}, \mathrm{B}$, and $\mathrm{C}(\mathrm{C} 1=0)$. The final command loads input register D and updates all four DAC registers from their respective input registers.

## Software "LDAC " Command

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | x | x | x | x | x | x | x | x |

( $\overline{\mathrm{LDAC}}=1$ )
When this command is initiated, all DAC registers are updated with the contents of their respective input registers at $\overline{\mathrm{CS}}$ 's rising edge. With the exception of using $\overline{\mathrm{CS}}$ to execute, this performs the same function as the asynchronous LDAC.

## +5 V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

Table 1. Serial-Interface Programming Commands

| 12-BIT SERIAL WORD |  |  |  |  | LDAC | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | A0 | C1 | C0 | D7........ D0 |  |  |
| 0 | 0 | 0 | 1 | 8-bit DAC data | 1 | Load input register A; all DAC outputs unchanged. |
| 0 | 1 | 0 | 1 | 8 -bit DAC data | 1 | Load input register B; all DAC outputs unchanged. |
| 1 | 0 | 0 | 1 | 8 -bit DAC data | 1 | Load input register C; all DAC outputs unchanged. |
| 1 | 1 | 0 | 1 | 8 -bit DAC data | 1 | Load input register D; all DAC outputs unchanged. |
| 0 | 0 | 1 | 1 | 8-bit DAC data | 1 | Load input register A; all DAC outputs updated |
| 0 | 1 | 1 | 1 | 8 -bit DAC data | 1 | Load input register B; all DAC outputs updated |
| 1 | 0 | 1 | 1 | 8 -bit DAC data | 1 | Load input register C; all DAC outputs updated |
| 1 | 1 | 1 | 1 | 8 -bit DAC data | 1 | Load input register D; all DAC outputs updated. |
| 0 | 1 | 0 | 0 | XXXXXXXX | 1 | Software $\overline{\text { LDAC }}$ commands. Update all DACs from their respective input registers. Also bring the part out of shutdown mode. |
| 1 | 0 | 0 | 0 | 8-bit DAC data | X | Load all DACs with shift-register data. Also bring the part out of shutdown mode. |
| 1 | 1 | 0 | 0 | XXXXXXXX | X | Software shutdown (provided PDE is high) |
| 0 | 0 | 1 | 0 | XXXXXXXX | X | UPO goes low. |
| 0 | 1 | 1 | 0 | XXXXXXXX | X | UPO goes high. |
| 0 | 0 | 0 | 0 | XXXXXXXX | X | No operation (NOP); shift data in shift registers. |
| 1 | 1 | 1 | 0 | XXXXXXXX | X | Set DOUT phase-SCLK rising (mode 1). DOUT clocked out on rising edge of SCLK. All DACs updated from their respective input registers. |
| 1 | 0 | 1 | 0 | XXXXXXXX | X | Set DOUT phase-SCLK falling (mode 0). DOUT clocked out on falling edge of SCLK. All DACs updated from their respective registers (default). |

Load All DACs with Shift-Register Data

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 8-Bit Data |  |  |  |  |  |  |  |

( $\overline{\mathrm{LDAC}}=\mathrm{X}$ )
When this command is initiated, all four DAC registers are updated with shift-register data. This command allows all DACs to be set to any analog value within the reference range. It can be used to substitute $\overline{C L R}$ if code 00 hex is programmed, which clears all DACs.

## Software Shutdown

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | $x$ |

( $\overline{\text { LDAC }}=\mathrm{X}, \mathrm{PDE}=\mathrm{H}$ )
This command shuts down all output buffer amplifiers, reducing supply current to $10 \mu \mathrm{~A}$ max.

User-Programmable Output (UPO)

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | UPO <br> Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | $x$ | Low |
| 0 | 1 | 1 | 0 | $x$ | High |

( $\overline{\text { DAC }}=\mathrm{X}$ )
This command initiates the user-programmable logic output for controlling another device across an isolated interface. Example devices are gain control of an amplifier and a polarity output for a motor speed control.

No Operation (NOP)

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | x | x | x | x | x | x | x | x |

( $\overline{\mathrm{LDAC}}=\mathrm{X}$ )
The NOP command (no operation) allows data to be shifted through the MAX534 shift register without affecting the input or DAC registers. This is useful in daisy chaining (also see the Daisy Chaining Devices section).

## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

For this command, the data bits are "Don't Cares." As an example, three MAX534s are daisy chained (A, B, and $C$ ), and devices $A$ and $C$ need to be updated. The 36 -bit-wide command would consist of one 12-bit word for device C, followed by an NOP instruction for device B and a third 12-bit word with data for device A. At CS's rising edge, device $B$ will not change state.

Set DOUT Phase-SCLK Rising (Mode 1)

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | x | x | x | x | x | x | x | x |

( $\overline{\mathrm{LDAC}}=\mathrm{x}$ )
The mode 1 command resets the serial-output DOUT to transition at SCLK's rising edge. Once this command is issued, DOUT's phase is latched and will not change except on power-up or if the specific command to set the phase to falling edge is issued.
This command also loads all DAC registers with the contents of their respective input registers, and is identical to the "LDAC" command.

Set DOUT Phase-SCLK Falling (Mode O, Default)

| A1 | A0 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | $x$ |

( $\overline{\mathrm{LDAC}}=\mathrm{x}$ )
This command resets DOUT to transition at SCLK's falling edge. The same command also updates all DAC registers with the contents of their respective input registers, identical to the "LDAC" command.

LDAC Operation (Hardware)
$\overline{\text { LDAC }}$ is typically used in 4 -wire interfaces (Figure 7). This command is level sensitive, and allows asynchronous hardware control of the DAC outputs. With LDAC low the DAC registers are transparent, and any time an input register is updated, the DAC output immediately follows.

Clear DACs with $\overline{C L R}$
Strobing the $\overline{C L R}$ pin low causes an asynchronous clear of input and DAC registers and sets all DAC outputs to zero. Similar to the $\overline{\text { LDAC }}$ pin, $\overline{C L R}$ can be invoked at any time, typically when the device is not selected $(\overline{\mathrm{CS}}=\mathrm{H})$. When the DAC data is all zeros, this function is equivalent to the "Update all DACs from Shift Registers" command.

## Serial Data Output

DOUT is the internal shift register's output. DOUT can be programmed to clock out data on SCLK's falling edge (mode 0 ) or rising edge (mode 1 ). In mode 0 , output data lags input data by 12.5 clock cycles, maintaining compatibility with Microwire and SPI. In mode 1, output data lags input data by 12 clock cycles. On power-up, DOUT defaults to mode 0 timing. DOUT never three-states; it always actively drives either high or low and remains unchanged when $\overline{\mathrm{CS}}$ is high.


Figure 4. Connections for Microwire


Figure 5. Connections for SPI/QSPI

## +5 V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

## Interfacing to the Microprocessor

The MAX534 is Microwire ${ }^{\text {TM }}$ and $\mathrm{SPI}^{T M} / \mathrm{QSPI}^{\text {TM }}$ compatible (Figures 4 and 5). For SPI and QSPI, clear the CPOL and CPHA configuration bits (CPOL = CPHA = 0 ). The SPI/QSPI CPOL = CPHA = 1 configuration can also be used if the DOUT output is ignored.
The MAX534 can interface with Intel's 80C5X/80C3X family in mode 0 if the SCLK clock polarity is inverted. More universally, if a serial port is not available, three lines from one of the parallel ports can be used for bit manipulation.
Digital feedthrough at the voltage outputs is greatly minimized by operating the serial clock only to update the registers. The clock idle state is low.

## Daisy-Chaining Devices

Any number of MAX534s can be daisy-chained by connecting DOUT of one device to DIN of the following device in the chain. The NOP instruction (Table 1) allows data to be passed from DIN to DOUT without changing the input or DAC registers of the passing device. A 3 -wire interface updates daisy-chained or individual MAX534s simultaneously by bringing $\overline{\mathrm{CS}}$ high (Figure 6).

## Analog Section

DAC Operation
The MAX534 uses a matrix decoding architecture for the DACs, which saves power in the overall system. The external reference voltage is divided down by a resistor string placed in a matrix fashion. Row and column decoders select the appropriate tab from the resistor string to provide the needed analog voltages. The resistor string presents a code-independent input impedance to the reference and guarantees a monotonic output. Figure 8 shows a simplified diagram of the four DACs.

## Reference Input

The voltage at REF sets the full-scale output voltage for all four DACs. The $460 \mathrm{k} \Omega$ typical input impedance at REF is code independent. The output voltage for any DAC can be represented by a digitally programmable voltage source as follows:

$$
\text { VOUT }=(N B \times \text { VREF }) / 256
$$

where NB is the numerical value of the DAC's binary input code.


Figure 6. Daisy-chained or individual MAX534s are simultaneously updated by bringing $\overline{C S}$ high. Only three wires are required.

## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers



Figure 7. Multiple MAX534s sharing one DIN line. Simultaneously update by strobing $\overline{L D A C}$, or specifically update by enabling an individual $\overline{C S}$.


Figure 8. DAC Simplified Circuit Diagram

Output Buffer Amplifiers All MAX534 voltage outputs are internally buffered by precision unity-gain followers that slew at about $0.6 \mathrm{~V} / \mu \mathrm{s}$. The outputs can swing from GND to VDD. With a 0 V to +4 V (or +4 V to 0 V ) output transition, the amplifier outputs will typically settle to $1 / 2$ LSB in $8 \mu$ s when loaded with $10 \mathrm{k} \Omega$ in parallel with 100 pF .
The buffer amplifiers are stable with any combination of resistive $(\geq 10 \mathrm{k} \Omega)$ or capacitive loads.

## +5 V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

## Applications Information

## DAC Linearity and Voltage Offset

The output buffer can have a negative input offset voltage that would normally drive the output negative, but since there is no negative supply the output stays at 0 V (Figure 9). When linearity is determined using the endpoint method, it is measured between zero code (all inputs 0 ) and full-scale code (all inputs 1) after offset and gain error are calibrated out. However, in singlesupply operation the next code after zero may not change the output, so the lowest code that produces a positive output is the lower endpoint.

Power Sequencing
The voltage applied to REF should not exceed VDD at any time. If proper power sequencing is not possible, connect an external Schottky diode between REF and VDD to ensure compliance with the absolute maximum ratings. Do not apply signals to the digital inputs before the device is fully powered up.

Power-Supply Bypassing and Ground Management Connect AGND and DGND together at the IC. This ground should then return to the highest-quality ground available. Bypass VDD with a $0.1 \mu \mathrm{~F}$ capacitor, located as close to VDD and DGND as possible.


Figure 9. Effect of Negative Offset (Single Supply)

Careful PC board layout minimizes crosstalk among DAC outputs and digital inputs. Figure 10 shows suggested circuit board layout to minimize crosstalk.

Unipolar-Output,
Two-Quadrant Multiplication In unipolar operation, the output voltages and the reference input are the same polarity. Figure 11 shows the MAX534 unipolar configuration, and Table 2 shows the unipolar code.


Figure 10. Suggested PC Board Layout for Minimizing Crosstalk (Bottom View)


Figure 11. Unipolar Output Circuit

## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers

| DAC CONTENTS |  | ANALOG OUTPUT |
| :---: | :---: | :---: |
| MSB | LSB |  |
| 1111 | 1111 | $+\mathrm{V}_{\text {REF }}\left(\frac{255}{256}\right)$ |
| 1000 | 0001 | $+\mathrm{V}_{\text {REF }}\left(\frac{129}{256}\right)$ |
| 1000 | 0000 | $+\mathrm{V}_{\text {REF }}\left(\frac{128}{256}\right)=+\frac{\mathrm{V}_{\text {REF }}}{2}$ |
| 0111 | 1111 | $+\mathrm{V}_{\text {REF }}\left(\frac{127}{256}\right)$ |
| 0000 | 0001 | $+\mathrm{V}_{\text {REF }}\left(\frac{1}{256}\right)$ |
| 0000 | 0000 | OV |

Note: $1 \mathrm{LSB}=\left(\mathrm{V}_{\mathrm{REF}}\right)\left(2^{-8}\right)=+\mathrm{V}_{\mathrm{REF}}\left(\frac{1}{256}\right)$


# +5 V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers 

$\qquad$
TRANSISTOR COUNT: 6821

Package Information


## +5V, Low-Power, 8-Bit Quad DAC with Rail-to-Rail Output Buffers



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 $\qquad$ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1996 Maxim Integrated Products
Printed USA
NIAXINI is a registered trademark of Maxim Integrated Products.

