

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

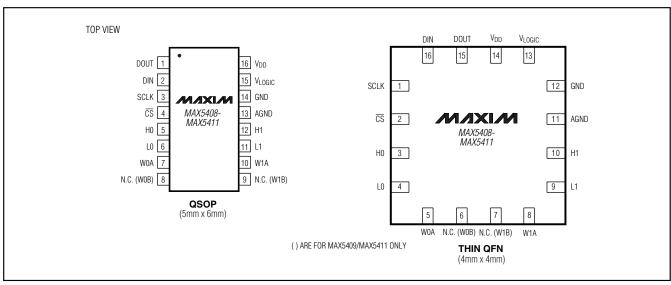
The MAX5408-MAX5411 dual, logarithmic taper digital potentiometers, with 32-tap points each, replace mechanical potentiometers in audio applications requiring digitally controlled resistors. The MAX5408/ MAX5410 are dual potentiometers with one wiper per potentiometer. The MAX5409/MAX5411 are dual potentiometers with two wipers per potentiometer (see Functional Diagram). An SPITM-compatible serial interface controls the wiper positions. The MAX5408-MAX5411 have a factory-set resistance of $10k\Omega$ per potentiometer. A zero-crossing detect feature minimizes the audible noise generated by wiper transitions. The MAX5408-MAX5411 have nominal temperature coefficients of 35ppm/°C end-to-end and 5ppm/°C ratiometric. The MAX5408-MAX5411 are available in 16-pin QSOP and 16-pin thin QFN packages and are specified over the extended temperature range (-40°C to +85°C).

Applications

Stereo Volume Control Fading and Balancing Stereo Signals Mechanical Potentiometer Replacement

Functional Diagram appears at end of data sheet. SPI is a trademark of Motorola. Inc.

Features


- ♦ Log Taper with 2dB Steps Between Taps
- **♦** 32-Tap Positions for Each Wiper
- ♦ Small 16-Pin QSOP/QFN Packages
- **♦ Single-Supply Voltage Operation** +2.7V to +3.6V (MAX5408/MAX5409) +4.5V to +5.5V (MAX5410/MAX5411)
- ♦ Low 0.5µA Standby Supply Current
- **♦ Zero-Crossing Detection for Clickless Switching**
- ♦ Mute Function to -90dB
- ♦ 10kΩ Fixed Resistance Value
- ♦ 3-Wire SPI-Compatible Serial Data Interface
- ♦ Power-On Reset: Wiper Goes to Maximum **Attenuation**
- Digital Output for Readback and Daisy-Chaining Capabilities

Ordering Information

PART	ART TEMP RANGE PACKAGE		WIPERS PER RESISTOR
MAX5408EEE	-40°C to +85°C	16 QSOP	1
MAX5408ETE	-40°C to +85°C	16 Thin QFN	1
MAX5409EEE	-40°C to +85°C	16 QSOP	2

Ordering Information continued at end of data sheet.

Pin Configurations

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{DD} , V _{LOGIC} , $\overline{\text{CS}}$, SCLK, DIN to GND.	0.3V to +6V
H_, L_, and W_ to GND	0.3V to $(V_{DD} + 0.3V)$
DOUT to GND	0.3V to $(V_{DD} + 0.3V)$
AGND to GND	0.3V to +0.3V
Input and Output Latchup Immunity	±200mA
Maximum Continuous Current into H_,	L_, and W±500µA

Continuous Power Dissipation ($T_A = +70$ °C)	
16-Pin QSOP (derate 8.3mW/°C above +70°C)	666.7mW
16-Pin QFN (derate 18.5mW/°C above +70°C)	1481mW
Operating Temperature Range40	0°C to +85°C
Storage Temperature Range60°	°C to +150°C
Maximum Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

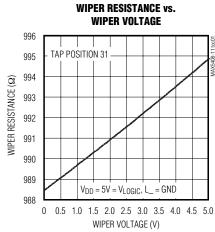
 $(V_{DD} = +2.7V \text{ to } +3.6V \text{ (MAX5408/MAX5409)}, V_{DD} = +4.5V \text{ to } +5.5V \text{ (MAX5410/MAX5411)}, V_{H_} = V_{DD}, V_{L_} = 0, T_{A} = T_{MIN} \text{ to } T_{MAX}.$ Typical values are at $T_{A} = +25^{\circ}C$, unless otherwise specified.)

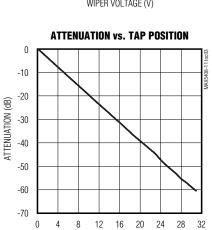
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
End-to-End Resistance			7	10	13	kΩ
Maximum Bandwidth		(Note 1) C _W = 50pF	100			kHz
Absolute Tolerance				±0.25		dB
Tap-to-Tap Tolerance				±0.1		dB
Total Harmonic Distortion + Noise	THD+N	V _{IN} = 1V _{RMS} , f = 1kHz, tap = -6dB		0.002		%
Channel Isolation				-100		dB
Interchannel Matching		f = 20Hz to 20kHz, tap = -6dB		±0.5		dB
Mute Attenuation				-90		dB
Power-Supply Rejection Ratio	PSRR			-80		dB
Wiper Resistance	Rw			1000	1700	Ω
Wiper Capacitance	Cw			10		рF
Digital Clock Feedthrough		fsclk = 20Hz to 20kHz, tap = -6dB		-90		dB
End-to-End Resistance Temperature Coefficient				35		ppm/°C
Ratiometric Resistance Temperature Coefficient				5		ppm/°C
DIGITAL INPUTS (V _{LOGIC} > 4.5V)			•			
Input High Voltage	VIH		2.4			V
Input Low Voltage	VIL				0.8	V
Input Leakage Current					±1	μΑ
Input Capacitance				5		рF
DIGITAL INPUTS (V _{LOGIC} < 4.5V))					
Input High Voltage	VIH		0.7 x VLOGIC			V
Input Low Voltage	VIL				0.3 x VLOGIC	V
Input Leakage Current					±1	μΑ
Input Capacitance				5		рF

ELECTRICAL CHARACTERISTICS (continued)

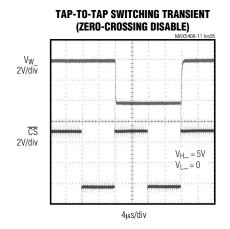
 $(V_{DD} = +2.7V \text{ to } +3.6V \text{ (MAX5408/MAX5409)}, V_{DD} = +4.5V \text{ to } +5.5V \text{ (MAX5410/MAX5411)}, V_{H_} = V_{DD}, V_{L_} = 0, T_A = T_{MIN} \text{ to } T_{MAX}.$ Typical values are at $T_A = +25^{\circ}\text{C}$, unless otherwise specified.)

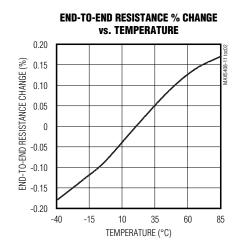
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL OUTPUT						
Output High Voltage	Voн	ISOURCE = 0.5mA	VLOGIC - 0.5			V
Output Low Voltage	V _{OL}	I _{SINK} = 2mA			0.4	V
TIMING CHARACTERISTICS (Fig	gure 1)					
SCLK Clock Period	tCP		100			ns
SCLK Pulse Width High	tcH		40			ns
SCLK Pulse Width Low	tCL		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	tCSH		0			ns
DIN Setup Time	tDS		40			ns
DIN Hold Time	t _{DH}		0			ns
SCLK Fall to DOUT Valid Propagation Delay	t _{DO}	C _{LOAD} = 200pF			80	ns
CS Rise to SCLK Rise Hold Time	tCS1		40			ns
CS Pulse Width High	tcsw		100			ns
Wiper Settling Time	tıw	Zero-crossing detect disabled		1		μs
POWER SUPPLIES						
Consiste Valtages		MAX5408/MAX5409 2.7		3.6	.,	
Supply Voltage	V _{DD}	MAX5410/MAX5411	4.5		5.5	V
Active Supply Current	1	f _{SCLK} = 2MHz (Note 2)			100	^
Standby Supply Current	IDD	(Note 3)		0.2	10	μΑ
Logic Supply Voltage	VLOGIC		2.7		5.5	V
Logic Active Supply Current	luggie	f _{SCLK} = 2MHz, DOUT = floating (Note 2)			120	
Logic Standby Supply Current	ILOGIC	DOUT = floating (Note 3)		0.5	10	μΑ

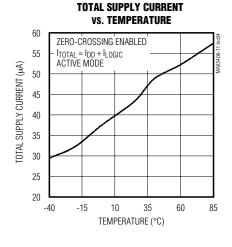

Note 1: Guaranteed by design, not production tested.

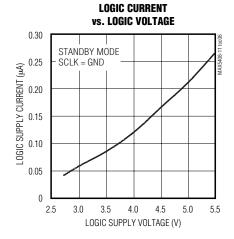

Note 2: Supply current measured while changing wiper position with zero crossing enabled.

Note 3: Supply current measured while wiper position is fixed.

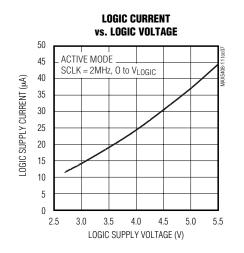

Typical Operating Characteristics

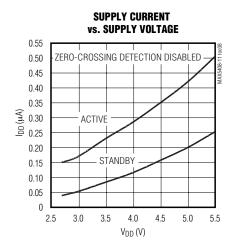

 $(V_{DD} = +3V (MAX5408/MAX5409), V_{DD} = +5V (MAX5410/MAX5411), DOUT = floating)$





TAP POSITION





Typical Operating Characteristics (continued)

 $(V_{DD} = +3V (MAX5408/MAX5409), V_{DD} = +5V (MAX5410/MAX5411), DOUT = floating)$

Pin Description

	PI	N			
MAX5408/ MAX5410 (QFN)	MAX5408/ MAX5410 (QSOP)	MAX5409/ MAX5411 (QFN)	MAX5409/ MAX5411 (QSOP)	NAME	FUNCTION
1	3	1	3	SCLK	Serial Clock Input
2	4	2	4	CS	Chip-Select Input
3	5	3	5	H0	High Terminal of Resistor 0
4	6	4	6	L0	Low Terminal of Resistor 0
5	7	5	7	WOA	Wiper Terminal A of Resistor 0
_	_	6	8	W0B	Wiper Terminal B of Resistor 0
_	_	7	9	W1B	Wiper Terminal B of Resistor 1
8	10	8	10	W1A	Wiper Terminal A of Resistor 1
9	11	9	11	L1	Low Terminal of Resistor 1
10	12	10	12	H1	High Terminal of Resistor 1
11	13	11	13	AGND	Analog Ground
12	14	12	14	GND	Ground
13	15	13	15	VLOGIC	Digital Logic Power Supply
14	16	14	16	V _{DD}	Analog Power Supply
15	1	15	1	DOUT	Serial Data Output
16	2	16	2	DIN	Serial Data Input
6, 7	8, 9	_	_	N.C.	No Connection. Not internally connected.

Table 1. Serial Interface Programming Commands for MAX5408/MAX5410

8-BIT SERIAL WORD		FUNCTION		
Α0	A1	A2	D4-D0	FUNCTION
0	0	0	5-bit DAC data	Set position of wiper W0A
0	0	1	5-bit DAC data	No change
0	1	0	5-bit DAC data	Set position of wiper W1A
0	1	1	5-bit DAC data	No change
1	0	0	4-bit mute data, D0 = "don't care"	Data for mute register (see Table 3)
1	0	1	4-bit zero-crossing detection data, D0 = "don't care"	Data for zero-crossing detection register (see Table 5)
1	1	0	00000	Readback contents of wiper register for W0A at DOUT
1	1	0	00001	No change
1	1	0	00010	Readback contents of wiper register for W1A at DOUT
1	1	0	00011	No change
1	1	0	00100	Readback contents of mute register at DOUT
1	1	0	00101	Readback contents of zero-crossing detection register at DOUT
1	1	1	D4 = 0, D3-D0 = "don't care"	Immediate update then analog power-down when zero crossing is enabled. No effect when zero crossing is disabled.

Detailed Description

Digital Serial Interface

An SPI-compatible serial interface controls the MAX5408–MAX5411. The input word to the device is eight bits long, composed of three address bits (A0, A1, and A2), followed by five data bits, with MSB first (see Tables 1 and 2). The first three address bits set the value of internal registers. The five data bits control the wiper position. For certain commands, some of the five data bits are "don't cares", but must be sent to the device.

The serial data is listed in Tables 1 and 2.

The control code determines:

- Potentiometer to update or register to set.
- Data for mute register (Tables 3 and 4).
- Data for zero-crossing detection register (Tables 5 and 6).

The data bits control the position of the wiper (Table 7). A logic low on the chip-select input $\overline{(CS)}$ enables the device's serial interface. A logic high on \overline{CS} disables the interface control circuitry. See Figure 1 for serial-interface timing description.

Figure 1. Serial Timing Diagram

Table 2. Serial Interface Programming Commands for MAX5409/MAX5411

		8-BIT	SERIAL WORD	FUNCTION
A0	A1	A2	D4-D0	FONCTION
0	0	0	5-bit DAC data	Set position of wiper W0A
0	0	1	5-bit DAC data	Set position of wiper W0B
0	1	0	5-bit DAC data	Set position of wiper W1A
0	1	1	5-bit DAC data	Set position of wiper W1B
1	0	0	4-bit mute data, D0 = "don't care"	Data for mute register (see Table 4)
1	0	1	4-bit zero-crossing detection data, D0 = "don't care"	Data for zero-crossing detection register (see Table 6)
1	1	0	00000	Readback contents of wiper register for W0A at DOUT
1	1	0	00001	Readback contents of wiper register for W0B at DOUT
1	1	0	00010	Readback contents of wiper register for W1A at DOUT
1	1	0	00011	Readback contents of wiper register for W1B at DOUT
1	1	0	00100	Readback contents of mute register at DOUT
1	1	0	00101	Readback contents of zero-crossing detection register at DOUT
1	1	1	D4 = 0, D3-D0 = "don't care"	Analog power-down
1	1	1	D4 = 1, D3-D0 = "don't care"	Analog power-up

Table 3. Mute Register Bit Definitions for MAX5408/MAX5410

DATA BIT	VALUE	FUNCTION
D4	0	Set wiper W0A to preprogrammed value (-62dB on power-up)
D4	1	Set wiper W0A to mute (-90dB)
D3	"don't care"	No change
D2	0	Set wiper W1A to preprogrammed value (-62dB on power-up)
	1	Set wiper W1A to mute (-90dB)
D1	"don't care"	No change
D0	"don't care"	No change

Table 4. Mute Register Bit Definitions for MAX5409/MAX5411

DATA BIT	VALUE	FUNCTION
D4	0	Set wiper W0A to preprogrammed value (-62dB on power-up)
D4	1	Set wiper W0A to mute (-90dB)
D3	0	Set wiper W0B to preprogrammed value (-62dB on power-up)
D3	1	Set wiper W0B to mute (-90dB)
Do	0	Set wiper W1A to preprogrammed value (-62dB on power-up)
D2	1	Set wiper W1A to mute (-90dB)
D1	0	Set wiper W1B to preprogrammed value (-62dB on power-up)
DI	1	Set wiper W1B to mute (-90dB)
D0	"don't care"	No change

Table 5. Zero-Crossing Detection Register Bit Definitions for MAX5408/MAX5410

	•		
DATA BIT	VALUE	FUNCTION	
D4	0	Disable wiper W0A zero-crossing detection circuit	
D4	1	Enable wiper W0A zero-crossing detection circuit	
D3	"don't care"	No change	
Do	0	Disable wiper W1A zero-crossing detection circuit	
D2	1	Enable wiper W1A zero-crossing detection circuit	
D1	"don't care"	No change	
D0	"don't care"	No change	

Table 6. Zero-Crossing Detection Register Bit Definitions for MAX5409/MAX5411

DATA BIT	VALUE	FUNCTION	
D4	0	Disable wiper WOA zero-crossing detection circuit	
D4	1	Enable wiper W0A zero-crossing detection circuit	
Da	0	Disable wiper W0B zero-crossing detection circuit	
D3	1	Enable wiper W0B zero-crossing detection circuit	
Do	0	Disable wiper W1A zero-crossing detection circuit	
D2	1	Enable wiper W1A zero-crossing detection circuit	
D1	0	Disable wiper W1B zero-crossing detection circuit	
D1	1	Enable wiper W1B zero-crossing detection circuit	
D0	"don't care"	No change	

Table 7. Attenuation and Wiper Position

POSITION	OUTPUT LEVEL (dB)
0	0
1	-2
2	-4
3	-6
4	-8
::	::
30	-60
31	-62
MUTE	<-90

The digital output, DOUT, lags the digital input signal, DIN by 8.5 clock cycles. Force CS high to disable DOUT, placing DOUT in three-state mode. Force CS low to enable DOUT and disable three-state mode.

Force \overline{CS} high, after a word has been written to the MAX5408–MAX5411 to make a readback request. The next \overline{CS} low period writes the requested data to DOUT.

A readback request overwrites any previous data in the shift register. Note that the data appears at DOUT in the order: A0, A1, A2, D4, D3, D2, D1, D0. A0 will be available after the first high-to-low transition of SCLK when $\overline{\text{CS}}$ is low. The input continues to load the shift register while data is being read out of the MAX5408–MAX5411. The input data appears at DOUT 8.5 clock cycles later. A $\overline{\text{CS}}$ transition from low-to-high latches the input data. For any control byte, the state of SCLK must be the same for both $\overline{\text{CS}}$ low-to-high transitions and $\overline{\text{CS}}$ high-to-low transitions in order to preserve the data at DOUT while $\overline{\text{CS}}$ transitions. For proper operation, ensure that the input data remains valid on both the SCLK rising and falling edges when daisy chaining multiple devices.

Zero-Crossing Detection

The zero-crossing detection register enables the zero-crossing detect feature. The zero-crossing detect feature reduces the audible noise ("clicks and pops") that result from wiper transitions. The wiper changes position only when the voltage at L_ is the same as the voltage at H_. Each wiper has a zero-crossing and timeout

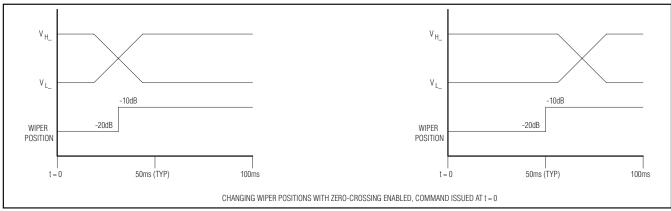


Figure 2. Zero-Crossing Timing Diagram

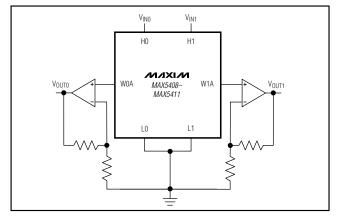


Figure 3. Attenuation Control

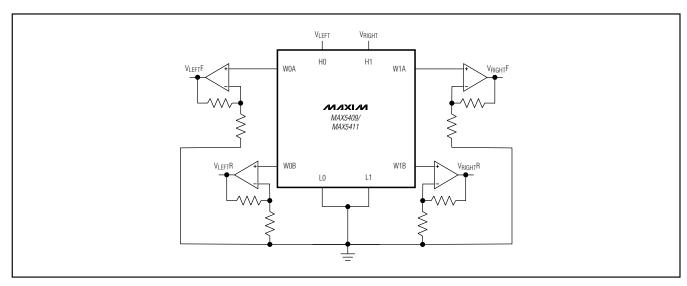


Figure 4. Stereo Volume Control with Front and Rear Fade

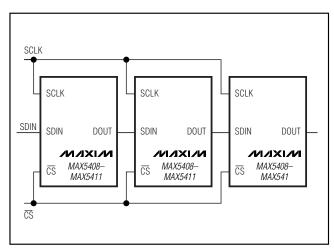


Figure 5. Daisy-Chaining of Serial Interfaces

circuit (see Figure 2). With zero-crossing enabled, the MAX5408–MAX5411 change wiper position after 50ms or when zero crossing is detected.

Power-On Reset

The power-on reset (POR) feature sets all the wipers to the maximum attenuation (tap position 31, -62dB) at power-up. If either V_{DD} or V_{LOGIC} is zero volts, a power-on reset intiates when one of the supplies is brought back to the operating voltage.

Mute Function

When mute is enabled, the wipers go to -90dB attenuation. When mute is disabled, the wiper returns to its position before mute was enabled. All wipers can be muted simultaneously or independently.

Applications Information

Attenuation Control

Figure 3 shows the application of an attenuation control. The op amps are connected in a follower configuration with a fixed gain. The digitally controlled potentiometer attenuates the input signal.

Stereo Volume Control

Figure 4 shows the application of stereo volume control using MAX5409/MAX5411. The op amps are connected in a follower configuration with fixed gain. The digitally controlled potentiometer attenuates the input signals. The second wiper of each potentiometer controls the signal amplitude at the rear set of speakers.

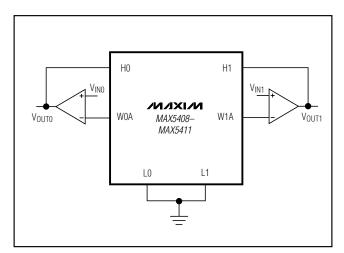


Figure 6. Gain Control

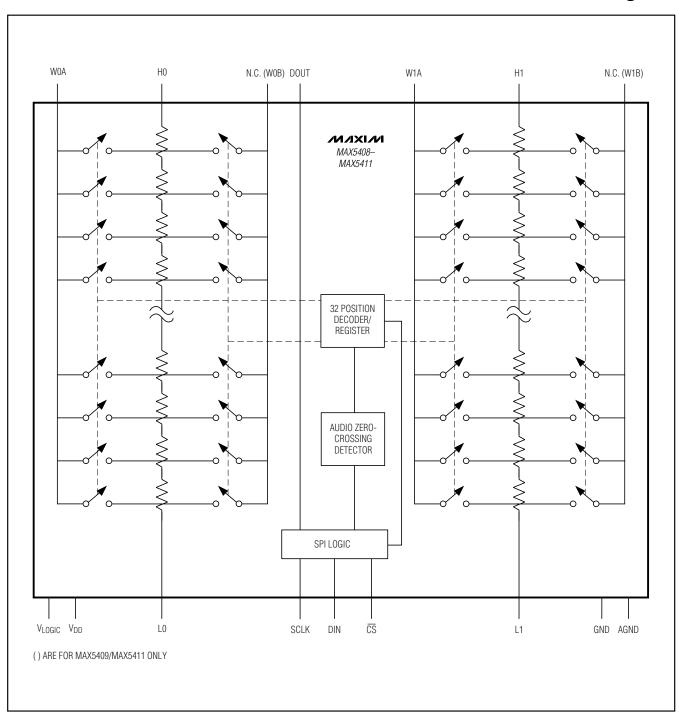
Daisy-Chaining

Figure 5 shows an application daisy-chaining the serial-interfaces of the MAX5408–MAX5411. A single-write command updates multiple devices from a single digital port in this configuration (see *Digital Serial Interface* section).

Gain Control

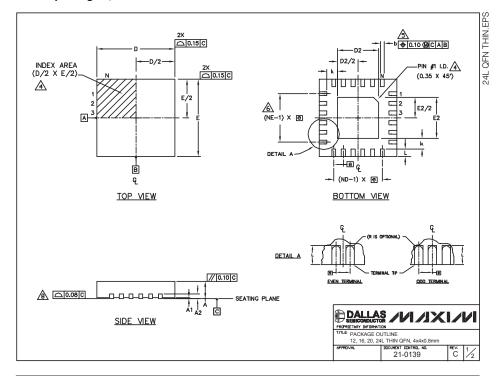
Note: Muting the potentiometer creates unpredictable behavior at the output of the op amp, and may seriously degrade the performance of the op amp.

_Ordering Information (continued)


PART	TEMP RANGE	PIN- PACKAGE	WIPERS PER RESISTOR
MAX5409ETE	-40°C to +85°C	16 Thin QFN	2
MAX5410EEE	-40°C to +85°C	16 QSOP	1
MAX5410ETE	-40°C to +85°C	16 Thin QFN	1
MAX5411EEE	-40°C to +85°C	16 QSOP	2
MAX5411ETE	-40°C to +85°C	16 Thin QFN	2

Chip Information

TRANSISTOR COUNT: 12,875


PROCESS: BICMOS

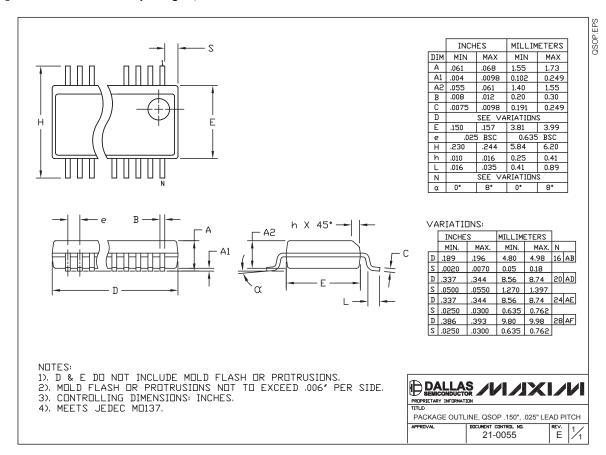
Functional Diagram

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				COM	10N	DIME	IIZN	ZNC				
PKG	12	≥L 4×	4	16L 4×4		20L 4×4			24L 4×4			
REF.	MIN.	NDM.	MAX	MIN.	NDM.	MAX.	MIN.	NDM.	MAX	MIN.	NDM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0.0	20.0	0.05	0.0	0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05
A2	0	.20 RE	F	0	.20 RE	F	0.20 REF		0.20 REF			
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
Ε	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
6	(.80 BS	C.	0.	65 BS	c.	0.50 BSC.		0	0.50 BSC.		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50
N		12		16		20		24				
ND		3		4		5		6				
NE		3		4		5		6				
Jedec Var.		WGGB			WGGC		VGGD-1		WGGD-2			

Е	XPOS	SED	PAD	VAR	ITAI	DNS		
PKG. CDDES	D2			E5			DOWN BONDS	
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLOVED	
T1244-2	1.95	2.10	2.25	1.95	2.10	2.25	ND	
T1244-3	1.95	2.10	2.25	1.95	2.10	2,25	YES	
T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND	
T1644-2	1.95	2.10	2,25	1.95	2,10	2,25	ND	
T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES	
T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND	
T2044-1	1.95	2.10	2.25	1.95	2.10	2.25	ND	
T2044-2	1.95	2.10	2.25	1.95	2.10	2,25	YES	
T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	NO	
T2444-1	2.45	2.60	2.63	2.45	2.60	2.63	ND	
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES	
T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES	
T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	NΠ	


NOTES:

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- N IS THE TOTAL NUMBER OF TERMINALS.
- THE TERMINAL \$1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \$1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \$1 IDENTIFIER MAY BE ETHER A MOLD OR MARKED FEATURE.
- DIMENSION IS APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- & NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- & COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-1, T2444-3 AND T2444-4.

DALLAS ///XI//I PACKAGE OUTLINE 12, 16, 20, 24L THIN QFN, 4x4x0.8mn C 2/2 21-0139

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.