## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## General Description

The MAX5471/MAX5472/MAX5474/MAX5475 lineartaper digital potentiometers function as mechanical potentiometers, but replace the mechanics with a simple 3-wire up/down digital interface. These digital potentiometers feature nonvolatile memory (EEPROM) to return the wiper to its previously stored position upon power-up.
The MAX5471/MAX5472 are 2-terminal, variable resistors in 6-pin SOT23 packages. The MAX5474/MAX5475 are 3-terminal potentiometers in 8-pin SOT23 packages.
The MAX5471/MAX5474 have an end-to-end resistance of $50 \mathrm{k} \Omega$, and the MAX5472/MAX5475 have an end-to-end resistance of $100 \mathrm{k} \Omega$. All of these devices have 32 wiper positions, a low ratiometric temperature coefficient ( $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ), and all operate from a single +2.7 V to +5.25 V supply. Each device is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## Applications

Mechanical Potentiometer Replacement
Liquid-Crystal-Display (LCD) Screen Adjustment
Audio Volume Control
Programmable Filters

Pin Configurations


Features

- Wiper Position Stored in Nonvolatile Memory and Recalled Upon Power-Up
- Tiny SOT23 Package
- 35ppm/ ${ }^{\circ} \mathrm{C}$ End-to-End Resistance Temperature Coefficient
- 5ppm/ ${ }^{\circ} \mathrm{C}$ Ratiometric Temperature Coefficient
- 32 Tap Positions
- Voltage-Divider or Variable-Resistor Potentiometer Configuration
- $50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ End-to-End Resistance Values
- 1 $\mu \mathrm{A}$ (max) Static Supply Current
- 2.7V to 5.25V Single-Supply Operation
- 200,000 Wiper Store Cycles
- 50-Year Wiper Data Retention

Ordering Information

| PART | TEMP <br> RANGE | PIN-PACKAGE | PKG <br> CODE |
| :---: | :---: | :---: | :---: |
| MAX5471EZT-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6 Thin SOT23-6 | Z6-1 |
| MAX5472EZT-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 6 Thin SOT23-6 | Z6-1 |
| MAX5474EKA-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SOT23-8 | $\mathrm{K} 8 \mathrm{~S}-3$ |
| MAX5475EKA- T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SOT23-8 | $\mathrm{K} 8 \mathrm{~S}-3$ |

Selector Guide

| PART | END-TO-END <br> RESISTANCE (k $\boldsymbol{\Omega})$ | TOP MARK |
| :--- | :---: | :---: |
| MAX5471EZT | 50 | ABQN |
| MAX5472EZT | 100 | ABQM |
| MAX5474EKA | 50 | AEIZ |
| MAX5475EKA | 100 | AEIY |

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

## ABSOLUTE MAXIMUM RATINGS



Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )
6 -Pin SOT23 (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )............ 727 mW 8-Pin SOT23 (derate $8.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )............ 714 mW Operating Temperature Range ........................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature ...................................................... $+150^{\circ} \mathrm{C}$ Storage Temperature Range ............................. $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) ................................. $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DC PERFORMANCE |  |  |  |  |  |  |
| Resolution | N |  | 32 |  |  | Tap |
| End-to-End Resistance |  | MAX5471/MAX5474 | 37.5 | 50 | 62.5 | k $\Omega$ |
|  |  | MAX5472/MAX5475 | 75 | 100 | 125 |  |
| End-to-End Resistance Temperature Coefficient | TCR |  |  | 35 |  | ppm/ ${ }^{\circ} \mathrm{C}$ |
| Ratiometric Resistance Temperature Coefficient |  |  |  | 5 |  | ppm/ ${ }^{\circ} \mathrm{C}$ |
| Integral Nonlinearity | INL | Variable-resistor mode (Note 2) |  | $\pm 0.5$ | $\pm 1.0$ | LSB |
|  |  | Voltage-divider mode (MAX5474/MAX5475) (Note 3) |  | $\pm 0.1$ | $\pm 0.5$ |  |
| Differential Nonlinearity | DNL | Variable-resistor mode (Note 2) |  | $\pm 0.5$ | $\pm 1.0$ | LSB |
|  |  | Voltage-divider mode (MAX5474/MAX5475) (Note 3) |  | $\pm 0.1$ | $\pm 0.5$ |  |
| Full-Scale Error |  | MAX5474/MAX5475 |  |  | -0.5 | LSB |
| Zero-Scale Error |  | MAX5474/MAX5475 |  |  | +0.5 | LSB |
| Wiper Resistance | RW | MAX5474/MAX5475 (Note 4) |  | 600 | 1200 | $\Omega$ |
| DIGITAL INPUTS ( $\overline{\mathbf{C S}}, \mathbf{U} / \overline{\mathbf{D},} \overline{\mathbf{I N C}})($ Note 5) |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ | $0.7 \times V_{\text {D }}$ |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{DD}} \geq 3.6 \mathrm{~V}$ | 2.4 |  |  |  |
| Input Low Voltage | VIL | $\mathrm{V}_{\mathrm{DD}}<3.6 \mathrm{~V}$ |  |  | $\times V_{D D}$ | V |
|  |  | $V_{D D} \geq 3.6 \mathrm{~V}$ |  |  | 0.8 |  |
| Input Current | IIN |  |  | $\pm 0.1$ | $\pm 1$ | $\mu \mathrm{A}$ |
| DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |
| Wiper -3dB Bandwidth (Note 6) |  | MAX5471/MAX5474 |  | 400 |  | kHz |
|  |  | MAX5472/MAX5475 |  | 200 |  |  |

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

## ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$ $=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIMING CHARACTERISTICS (Figure 1, Note 7) |  |  |  |  |  |  |
| $\overline{\mathrm{CS}}$ to $\overline{\mathrm{INC}}$ Setup | tcl |  | 50 |  |  | ns |
| $\overline{\text { INC }}$ High to U/ $\overline{\mathrm{D}}$ Change | tiD |  | 0 |  |  | ns |
| U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{INC}}$ Setup | tDI |  | 100 |  |  | ns |
| $\overline{\text { INC Low Period }}$ | tIL |  | 50 |  |  | ns |
| $\overline{\text { INC High Period }}$ | $\mathrm{tIH}^{\text {H }}$ |  | 50 |  |  | ns |
| $\overline{\text { INC Cycle Time }}$ | tCyc |  | 100 |  |  | ns |
| $\overline{\mathrm{INC}}$ Inactive to $\overline{\mathrm{CS}}$ Inactive | tic |  | 100 |  |  | ns |
| $\overline{\mathrm{INC}}$ Active to $\overline{\mathrm{CS}}$ Inactive | tIK |  | 100 |  |  | ns |
| $\overline{\mathrm{CS}}$ Deselect Time (Store) | tCPH |  | 100 |  |  | ns |
| Wiper Settling Time | tiw | (Note 8) |  | 1 |  | $\mu \mathrm{s}$ |
| Power-Up to Wiper Stable | tpu |  |  | 1 |  | $\mu \mathrm{s}$ |
| Wiper Store Cycle | twS |  | 12 |  |  | ms |
| NONVOLATILE MEMORY RELIABILITY |  |  |  |  |  |  |
| Data Retention |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | 50 |  | Year |
| Endurance |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 200,000 |  | Store |
|  |  | $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ |  | 50,000 |  |  |
| POWER SUPPLY |  |  |  |  |  |  |
| Supply Voltage | VDD |  | 2.70 |  | 5.25 | V |
| Supply Current | IDD | Write to memory |  |  | 400 | $\mu \mathrm{A}$ |
| Static Supply Current | ISD | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 9) |  | 0.35 | 1 | $\mu \mathrm{A}$ |

Note 1: All devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and are guaranteed by design and characterization for $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$.
Note 2: The DNL and INL are measured with the potentiometer configured as a variable resistor. For the 3-terminal potentiometers (MAX5474/MAX5475), H is unconnected and $\mathrm{L}=\mathrm{GND}$. At $\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{~W}$ is driven with a source current of $80 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ configuration, and $40 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ configuration. At $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$, the wiper terminal is driven with a source current of $40 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ configuration, and $20 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ configuration.
Note 3: The DNL and INL are measured with the potentiometer configured as a voltage-divider with $H=V_{D D}$ and $L=G N D$ (MAX5474/MAX5475 only). The wiper terminal is unloaded.
Note 4: The wiper resistance is the worst value measured by injecting the currents given in Note 2 into W with $\mathrm{L}=\mathrm{GND}$. $R_{w}=\left(V_{w}-V_{H}\right) / l_{w}$.
Note 5: The device draws higher supply current when digital inputs are driven with voltages between $0.3 \mathrm{~V} \times \mathrm{V}_{\mathrm{DD}}$ and $0.7 \times \mathrm{V}_{\mathrm{DD}}$. Drive the digital inputs as close as possible to VDD or GND. (See the Typical Operating Characteristics for the Supply Current vs. Digital Input Voltage graph.)
Note 6: Wiper at midscale with a 10 pF load.
Note 7: Digital timing is guaranteed by design and characterization, and is not production tested.
Note 8: Wiper settling time is the worst-case $0 \%$ to $50 \%$ rise time measured between consecutive wiper positions. $H=V_{D D}, L=$ GND, and the wiper terminal is unloaded and measured with a 10pF oscilloscope probe (see the Typical Operating Characteristics for the Tap-to-Tap Switching Transient).
Note 9: Digital inputs $\overline{C S}, ~ U / \bar{D}$, and $\overline{I N C}$ are connected to GND or VDD. See the Typical Operating Characteristics for the Static Supply Current vs. Temperature graph.

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23


#### Abstract

( $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$


Typical Operating Characteristics


H-TO-GND RESISTANCE
vs. TAP POSITION


## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

## Typical Operating Characteristics (continued)

$\left(V_{D D}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)


## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23


$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$



Pin Description

| PIN |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: |
| MAX5471/ MAX5472 | MAX5474/ MAX5475 |  |  |
| 1 | 1 | $\overline{\mathrm{CS}}$ | Chip-Select Input. Drive low to change wiper position (W) through $\overline{\mathrm{NC}}$ and U/D. A low-tohigh transition with $\overline{\mathrm{INC}}$ high stores the wiper position in nonvolatile memory. |
| 2 | 3 | GND | Ground |
| 3 | 4 | U/D | Up/Down Control Input. With U/ $\overline{\mathrm{D}}$ low, a high-to-low $\overline{\mathrm{NC}}$ transition decrements the wiper position. With U/D high, a high-to-low $\overline{\mathrm{INC}}$ transition increments the wiper position. |
| 4 | 5 | $\overline{\text { INC }}$ | Wiper Increment Control Input. With $\overline{\mathrm{CS}}$ low, the wiper position moves in the direction determined by the state of $U / \bar{D}$ on a high-to-low transition. |
| 5 | 6 | H | High Terminal of Resistor. The voltage at H can be greater than or less than the voltage at L . Current can flow into or out of H . |
| 6 | 2 | VDD | Power Supply |
| - | 7 | W | Wiper Terminal of Resistor |
| - | 8 | L | Low Terminal of Resistor. The voltage at L can be greater than or less than the voltage at H . Current can flow into or out of L . |

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23



Figure 1. Digital Interface and Timing Diagram

## Detailed Description

The MAX5471/MAX5472/MAX5474/MAX5475 contain a resistor array with 31 resistive elements (Figures 2 and 3). The MAX5471/MAX5474 have a total end-to-end resistance of $50 \mathrm{k} \Omega$, and the MAX5472/MAX5475 have an end-to-end resistance of $100 \mathrm{k} \Omega$. The MAX5471/ MAX5472 wiper is connected to the high terminal, and the low terminal is internally connected to ground, making the device a variable resistor. The MAX5474/ MAX5475 allow access to the high, low, and wiper terminals for a standard voltage-divider configuration.
The wiper is moved among the 32 tap points through a simple 3-wire interface. Nonvolatile memory allows the wiper position to be stored and recalled to the same point upon power-up.

## Digital Interface

Logic inputs $\overline{\mathrm{CS}}, \mathrm{U} / \overline{\mathrm{D}}$, and $\overline{\mathrm{INC}}$ control the wiper position and store it in nonvolatile memory (see the Truth Table). The chip-select ( $\overline{\mathrm{CS}}$ ) input enables the serial interface when low and disables the interface when high. The position of the wiper is stored when $\overline{\mathrm{CS}}$ transitions from low to high and $\overline{\mathrm{INC}}$ is high (see the Storing Wiper Position section).
With the serial interface active ( $\overline{\mathrm{CS}}$ low), a high-to-low (falling edge) transition on INC moves the wiper position by one resistive element in the direction determined by the state of $U / \bar{D}$. If $U / \bar{D}$ is high, the wiper increments and it increases the resistance between W and $L$ (it decreases the resistance between $H$ and $W$ ). If $U / \bar{D}$ is low, the wiper decrements and it decreases the resistance between $W$ and $L$ (it increases the resistance between $H$ and $W$ ). The direction of the wiper
(state of $U / \bar{D}$ ) can be changed at any time as long as the setup and hold times are met.
Since the MAX5471/MAX5472 have the wiper internally connected to H , an increment command increases the resistance between H and GND, and a decrement command decreases the resistance between H and GND.
The wiper performs a make-before-break transition, ensuring that there is never an open circuit during a transition from one resistor tap to another. When the wiper is at either end of the resistor array (max/min), additional transitions in the direction of the endpoint do not change the counter value (the wiper does not wrap around).

Storing Wiper Position
The position of the wiper is stored in nonvolatile memory whenever $\overline{\mathrm{CS}}$ transitions low-to-high (rising edge) while $\overline{\mathrm{INC}}$ is high. Upon power-up, the wiper returns to this stored position. By keeping INC low while taking $\overline{\mathrm{CS}}$ high, the serial interface can be disabled and the potentiometer placed in standby without storing the latest wiper position. The factory-default wiper position is midscale.
These devices can also be operated like a one-time programmable (OTP) device. Once the desired wiper position is trimmed and stored in nonvolatile memory, disable the serial interface by connecting $\overline{\mathrm{CS}}$ to VDD, and $\overline{I N C}$ to GND. The disabled interface places the device in standby and disallows any changes to the wiper position. In OTP mode, these devices become a fixed 3-terminal potentiometer or a 1-terminal resistor to GND with less than $1 \mu \mathrm{~A}$ of supply current.

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

Truth Table

| $\overline{\mathbf{C S}}$ | $\mathbf{U / \overline { \mathbf { D } }}$ | $\overline{\mathbf{I N C}}$ | W |
| :---: | :---: | :---: | :---: |
| L | L | $\downarrow$ | Decrement |
| L | H | $\downarrow$ | Increment |
| L | X | $\uparrow$ | No change |
| H | X | X | No change |
| $\downarrow$ | X | X | No change |
| $\uparrow$ | X | L | Position not stored |
| $\uparrow$ | X | H | Position stored |

[^0]Standby Mode The MAX5471/MAX5472/MAX5474/MAX5475 are always in standby mode, except during the transition of a logic input or while the wiper position is being stored. When in standby mode, the static supply current is reduced to less than $1 \mu \mathrm{~A}$ and the resistive terminals $(\mathrm{H}$, W , and L) are unaffected.


Figure 2. MAX5471/MAX5472 Functional Diagram

## Applications Information

The MAX5471/MAX5472/MAX5474/MAX5475 are intended for circuits requiring digitally controlled adjustable resistance, such as LCD contrast control (where voltage biasing adjusts the display contrast), or programmable filters with adjustable gain and/or cutoff frequency.

Positive LCD Bias Control
Figures 4 and 5 show an application where the voltagedivider or variable resistor is used to make an adjustable, positive LCD-bias voltage. The op amp provides buffering and gain to the resistor-divider network made by the potentiometer (Figure 4) or to a fixed resistor and a variable resistor (Figure 5).

## Programmable Filter

Figure 6 shows the configuration of a 1st-order programmable filter. The gain of the filter is adjusted by R2, and the cutoff frequency is adjusted by R3. Use the following equations to calculate the gain $(G)$ and the 3 dB cutoff frequency ( fc ):

$$
\begin{aligned}
G & =1+\frac{R 1}{R 2} \\
f_{C}= & \frac{1}{2 \pi \times R 3 \times C}
\end{aligned}
$$



Figure 3. MAX5474/MAX5475 Functional Diagram

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23



Figure 4. Positive LCD Bias Control Using a Voltage-Divider


Figure 5. Positive LCD Bias Control Using a Variable Resistor


Figure 6. Programmable Filter

Chip Information
TRANSISTOR COUNT: 5031
PROCESS: BiCMOS

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)


## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Natesi

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. PD AND EEI ARE REFERENCE DATUM AND DD NDT INCLUDE MDLD FLASH OR PROTRUSIONS, AND ARE MEASURED AT THE BDTTIM PARTING LINE. MGLD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm ON "D" AND 0.25 mm IN 'E" PER SIDE.
3. THE LEAD WIDTH DIMENSION DIES NDT INCLUDE DAMBAR PROTRUSION. ALLIWABLE DAMBAR PRDTRUSIIN SHALL BE 0.07 mm TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSIIN AT MAXIMUM MATERIAL CONDITIIN
4. DATUM PLANE "H" LOCATED AT MDLD PARTING LINE AND COINCIDENT WITH LEAD, Where lead exits plastic body at the bottam af parting line.
5. THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TRLERANCE ZONE. THIS TILERANCE ZNNE IS DEINED BY TWO PARALEL LINES. INE PLANE IS THE SEATING PLANE, DATUM [-C-JI, AND THE OTER PLANE IS AT THE SPECIFIED DISTANCE FROM [-C-] IN THE DIRECTION INDICATED. FORMED LEADS SHALL BE
PLANAR WITH RESPECT TO ONE ANDTHER WITH O.10mm AT SEATING PLANE.
6. THIS PART IS CIMPLIANT WITH JEDEC SPECIFICATION MD-193 EXCEPT FOR THE "e" DIMENSION WHICH IS 0.95 mm INSTEAD DF 1.00 mm . THIS PART IS IN FULL COMPLIANCE TO EIAJ SPECIFICATION SC-74.
7. CLPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. CIPLANARITY SHALL NDT EXCEED 0.08MM.
8. WARPAGE SHALL NDT EXCEED 0.10 mm .
9. TLE TERMNAL ML IDENTIFIER AND TERMINAL NUMBERTNG CONVENTITN SHALL CDNFORM TO JESD 95-1 PP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE IPTIINAL. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MLLD DR MARKED FEATURE.
10. MARKing is for package drientation reference anly.
11. ALL dimensions apply ta bath Leaded $\langle$ and lead free (+) Package codes.

| SYMBCLS |  |  |  |
| :---: | :---: | :---: | :---: |
|  | MIN | NDM | MAX |
| A | - | - | 1.10 |
| A1 | 0.00 | 0.075 | 0.10 |
| A2 | 0.85 | 0.88 | 0.90 |
| A3 | 0.50 BSC |  |  |
| b | 0.30 | - | 0.45 |
| b1 | 0.25 | 0.35 | 0.40 |
| c | 0.15 | - | 0.20 |
| c1 | 0.12 | 0.127 | 0.15 |
| D | 2.80 | 2.90 | 3.00 |
| E | 2.75 BSC |  |  |
| E1 | 1.55 | 1.60 | 1.65 |
| L | 0.30 | 0.40 | 0.50 |
| e1 | 1.90 BSC |  |  |
| e | 0.95 BSC |  |  |
| $\infty$ | $0 \times$ | 4* | $8{ }^{\circ}$ |
| a,a. | 0.20 |  |  |
| Pkg. codesı Z6-1, Z6-2 |  |  |  |

田DALLAS /VINKI/VI
PACKAGE DUTLINE, 6L THIN SLT23, (LDW PRDFILE)

| APPROVAL | DOCUMENT CONTROL NO. <br>  <br>  <br> $21-0114$ | C | $2 / 2$ |
| :--- | :---: | :---: | :---: |

## 32-Tap, Nonvolatile, Linear-Taper Digital Potentiometers in SOT23

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)


Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.


[^0]:    $\downarrow=$ High-to-low transition.
    $\uparrow=$ Low-to-high transition.
    $X=$ Don't care .

