: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Precision-Matched Resistor-Divider in SOT23

General Description

The MAX5491 precision resistor-divider consists of two accurately matched resistors with access to the ends and center of the divider. This device offers excellent resistance matching of 0.035\% (A grade), 0.05\% (B grade), and 0.1% (C grade). The MAX5491 includes an extremely low resistance-ratio temperature drift of $2 p p m /{ }^{\circ} \mathrm{C}$ over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and has an end-to-end resistance of $30 \mathrm{k} \Omega$. Resistance ratios from 1:1 to 30:1 are available. Ten standard ratios are available (see Table 1), and custom ratios are also available upon request. To enhance device and system robustness, the MAX5491 also features $\pm 2 \mathrm{kV}$ Human Body Model electrostatic discharge (ESD) protection to ensure against real-world ESD events. The MAX5491 is ideal for precision gain-setting applications where tight resistance matching and low temperature drift are necessary.
The MAX5491 is available in a space-saving 3-pin SOT23 package, and is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Industrial Process Control
Instrumentation
Precision Gain Setting
Medical Equipment
Automatic Test Equipment
Base Stations
\qquad
-

Features
Resistance Ratios from 1:1 to 30:1
Custom Ratios Available Upon Request
T2kV Human Body Model ESD Protection
Tight Initial Ratio Accuracy
0.035% (MAX5491A)
0.05% (MAX5491B)
0.1% (MAX5491C)
Low 2ppm/ ${ }^{\circ} \mathrm{C}$ Resistor-Ratio-Drift
Up to 50V Operating Voltage Across Sum of R1
and R2
Tiny 3-Pin SOT23 Package

Ordering Information*

PART	TEMP RANGE	PIN- PACKAGE	RATIO ACCURACY (\%)
MAX5491_A \ldots - - - $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} 3$ SOT23-3			0.035
MAX5491_B_			0.05
MAX5491_C__-_- - - $40^{\circ} \mathrm{C}$ to + $85^{\circ} \mathrm{C} 3$ SOT23-3			0.1

*See the How to Order section for more details.

TOP VIEW

Precision-Matched Resistor-Divider in SOT23

ABSOLUTE MAXIMUM RATINGS

Voltage Between P1 and P2. ...50V
Continuous Current into Any Pin \qquad 1.75 mA

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
3-Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 571.4 mW
Operating Temperature Range ... $60^{\circ} \mathrm{C}$
Junction Temperature..................................... $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Initial Resistor Ratio Error (Note 2)		MAX5491_A, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.035	\%
		MAX5491_B, $T_{A}=+25^{\circ} \mathrm{C}$			± 0.05	
		MAX5491_C, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.1	
Resistance-Ratio Temperature Coefficient (Note 3)		1:1 \leq ratio $\leq 3.2: 1$		2		ppm/ ${ }^{\circ} \mathrm{C}$
		3.2:1 < ratio $\leq 10: 1$		4		
		10:1 < ratio $\leq 30: 1$		5.5		
Absolute Temperature Coefficient of Resistance	TCR	(Note 4)		35		ppm $/{ }^{\circ} \mathrm{C}$
Voltage Coefficient of Resistance	VCR	(Note 5)		0.1		ppm/V
End-to-End Resistance ($\mathrm{R}_{1}+\mathrm{R}_{2}$)			28.5	30	31.5	k Ω
Continuous Current		IR1, IR2			± 1.75	mA
Continuous Working Voltage Between P1 and P2	VP1-P2		0		50	V
Power Rating					87.5	mW
Pin Capacitance				2		pF
Resistance Ratio Long-Term Stability		2000 hr at $+70^{\circ} \mathrm{C}$		± 0.03		\%

Note 1: The MAX5491 is 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ are guaranteed by design.
Note 2: Testing conditions: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{P} 1-\mathrm{P} 2}=9 \mathrm{~V}$ and 50 V .
Note 3: Resistance-ratio temperature coefficient is defined as $\left|\frac{\Delta\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)}{\left\lvert\, \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \times \Delta \mathrm{T}\right.}\right|$
Note 4: $\begin{aligned} & \text { Absolute TCR is defined as } \\ & \text { and is tested at } 9 \mathrm{~V} \text { and } 50 \mathrm{~V} .\end{aligned}\left|\frac{\Delta\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \times \Delta \mathrm{T}}\right|$

Note 5: Resistance-ratio voltage coefficient is defined as

$$
\left|\frac{\Delta\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)}{\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \times \Delta \mathrm{V}}\right|
$$

Precision-Matched Resistor-Divider in SOT23

Typical Operating Characteristics

$\left(V_{P 1-P 2}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

NORMALIZED RESISTOR-RATIO DRIFT vs. TEMPERATURE

Pin Description

PIN	NAME	
1	P1	R_{1} Connection Terminal
2	PUNCTION	
3	P3	R_{2} Connection Terminal

Detailed Description

As shown in the Block Diagram, the MAX5491 consists of two precision, low-ratio-drift resistors with an end-toend resistance of $30 \mathrm{k} \Omega\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$. P3 is the center tap of the divider. The maximum working voltage of the MAX5491 is 50V. This device offers a wide range of
resistance ratios $\left(R_{1} / R_{2}\right)$ from $1: 1$ to $30: 1$ and is ideally suited for precision operational amplifier gain/attenuation control. The MAX5491 features a $\pm 2 k V$ ESD protection that enhances system robustness. A maximum initial ratio accuracy of 0.035% and a low $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ratio drift enhance system accuracy.

Precision-Matched Resistor-Divider in SOT23

Figure 1. Inverting Amplifier Configuration

Figure 3. Buffered Attenuator

Applications Information

Self-Heating and Error

Applying a voltage across terminals P1 and P2 causes the device to heat up due to power dissipation. In highvoltage applications, consider the error in resistanceratio temperature coefficient caused by self-heating. The worst-case self-heating occurs when the operating voltage attains its maximum value. Approximate the result of power dissipation under this condition as:

$$
P_{\text {DISS }}=\frac{\left(V_{\text {MAX }}\right)^{2}}{R}=\frac{(50 \mathrm{~V})^{2}}{30 \mathrm{k} \Omega}=83.3 \mathrm{~mW}
$$

Typical Applications

Figure 2. Noninverting Amplifier Configuration

Figure 4. Attenuator with Buffer
The thermal resistance from junction to ambient, $\theta \mathrm{J}-\mathrm{A}$, for a 3-pin SOT23 package is $141^{\circ} \mathrm{C} / \mathrm{W}$. Calculate the resulting temperature rise as:

$$
\Delta \mathrm{T}=83.3 \mathrm{~mW} \times 141^{\circ} \mathrm{C} / \mathrm{W}=11.7^{\circ} \mathrm{C}
$$

If the ratio temperature coefficient is $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{typ})$, the total error introduced by self-heating is:

$$
11.7^{\circ} \mathrm{C} \times 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}=23.4 \mathrm{ppm}
$$

Precision-Matched Resistor-Divider in SOT23

Example Part Numbers

PART	RESISTOR-RATIO RANGE	RESISTOR-RATIO ACCURACY (\% MAX)	RESISTOR RATIO
MAX5491RA02500-T	2.000 to 2.899	0.035	$2.5: 1$
MAX5491VC10000-T	10.000 to 15.999	0.100	$10: 1$
MAX5491SB03200-T	2.900 to 3.999	0.050	$3.2: 1$
MAX5491UA07538-T	6.000 to 9.999	0.035	$7.538: 1$

Table 1. Standard Ratios*

PART	RESISTOR RATIO	RESISTOR-RATIO SUFFIX	RESISTOR-RATIO ACCURACY (\% MAX)	TOP MARK
MAX5491LA01000-T	$1: 1$	01000	0.035	FZPD
MAX5491LB01000-T	$1: 1$	01000	0.050	FZPE
MAX5491LC01000-T	$1: 1$	01000	0.100	FZPF
MAX5491MA01100-T	$1.1: 1$	01100	0.035	FZPA
MAX5491MB01100-T	$1.1: 1$	01100	0.050	FZPB
MAX5491MC01100-T	$1.1: 1$	$1.5: 1$	01100	0.100
MAX5491NA01500-T	$1.5: 1$	01500	0.035	FZPC
MAX5491NB01500-T	$1.5: 1$	01500	0.050	FZOX
MAX5491NC01500-T	$2: 1$	01500	0.100	FZOY
MAX5491PA02000-T	$2: 1$	02000	0.035	FZOZ
MAX5491PB02000-T	$2: 1$	02000	0.050	FZOO
MAX5491PC02000-T	02500	0.100	FZOP	
MAX5491RA02500-T	$2.5: 1$		0.035	FZOQ

Precision-Matched Resistor-Divider in SOT23

Table 1. Standard Ratios* (continued)

PART	RESISTOR RATIO	RESISTOR-RATIO SUFFIX	RESISTOR-RATIO ACCURACY (\% MAX)	TOP MARK
MAX5491RB02500-T	$2.5: 1$	02500	0.050	FZPQ
MAX5491RC02500-T	$2.5: 1$	02500	0.100	FZON
MAX5491SA03200-T	$3.2: 1$	03200	0.035	FZOU
MAX5491SB03200-T	$3.2: 1$	03200	0.050	FZOV
MAX5491SC03200-T	$3.2: 1$	03200	0.100	FZOW
MAX5491TA05000-T	$5: 1$	05000	0.035	FZOR
MAX5491TB05000-T	$5: 1$	05000	0.050	FZOS
MAX5491TC05000-T	$5: 1$	05000	0.100	FZOT
MAX5491UA07538-T	$7.538: 1$	07538	0.035	FZPM
MAX5491UB07538-T	$7.538: 1$	07538	0.050	FZPN
MAX5491UC07538-T	$7.538: 1$	07538	0.100	FZPO
MAX5491VA10000-T	$10: 1$	10000	0.035	FZPJ
MAX5491VB10000-T	$10: 1$	10000	0.050	FZPK
MAX5491VC10000-T	$10: 1$	10000	0.100	FZPL
MAX5491WA30000-T	$30: 1$	30000	0.035	FZPG
MAX5491WB30000-T	$30: 1$	30000	0.050	FZPH
MAX5491WC30000-T	$30: 1$	30000	0.100	FZPI

*Standard ratios are available for ordering in any quantity. Nonstandard ratios are also available for values between 1:1 to 30:1. A minimum order quantity of 10,000 units is required for nonstandard ratios. Please contact factory for more information.

Table 2. Ratio Ranges

LETTER SUFFIX	RESISTOR-RATIO RANGE
L	1.000 to 1.099
M	1.100 to 1.349
N	1.350 to 1.699
P	1.700 to 2.000
R	2.001 to 2.899
S	2.900 to 3.999
T	4.000 to 5.999
U	6.000 to 9.999
V	10.000 to 15.999
W	16.000 to 30.000

TRANSISTOR COUNT: 0 PROCESS: BICMOS

Precision-Matched Resistor-Divider in SOT23

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

