imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

General Description

The MAX5723/MAX5724/MAX5725 8-channel, low-power, 8-/10-/12-bit, voltage-output digital-to-analog converters (DACs) include output buffers and an internal 3ppm/°C reference that is selectable to be 2.048V, 2.500V, or 4.096V. The MAX5723/MAX5724/MAX5725 accept a wide supply voltage range of 2.7V to 5.5V with extremely low power (6mW) consumption to accommodate most low-voltage applications. A precision external reference input allows rail-to-rail operation and presents a 100k Ω (typ) load to an external reference.

The MAX5723/MAX5724/MAX5725 have a fast 50MHz, 4-wire SPI/QSPI™/MICROWIRE®/DSP-compatible serial interface that operates at clock rates up to 50MHz. The DAC output is buffered and has a low supply current of less than 250µA per channel and a low offset error of ±0.5mV (typ). On power-up, the MAX5723/MAX5724/ MAX5725 reset the DAC outputs to zero or midscale based on the status of M/Z logic input, providing flexibility for a variety of control applications. The internal reference is initially powered down to allow use of an external reference. The MAX5723/MAX5724/MAX5725 allow simultaneous output updates using software LOAD commands or the hardware load DAC logic input (LDAC).

The MAX5723/MAX5724/MAX5725 feature a programmable watchdog function which can be enabled to monitor the I/O interface for activity and integrity.

A clear logic input (CLR) allows the contents of the CODE and the DAC registers to be cleared asynchronously and simultaneously sets the DAC outputs to the programmable default value. The MAX5723/MAX5724/MAX5725 are available in a 20-pin TSSOP and an ultra-small, 20-bump WLP package and are specified over the -40°C to +125°C temperature range.

Applications

Programmable Voltage and Current Sources Gain and Offset Adjustment Automatic Tuning and Optical Control Power Amplifier Control and Biasing Process Control and Servo Loops Portable Instrumentation

QSPI is a trademark of Motorola, Inc. MICROWIRE is a registered trademark of National Semiconductor Corporation. µMAX is a registered trademark of Maxim Integrated Products, Inc.

Benefits and Features

- Eight High-Accuracy DAC Channels
 12-Bit Accuracy Without Adjustment
 - ♦ ±1 LSB INL Buffered Voltage Output
 - ♦ Guaranteed Monotonic Over All Operating Conditions
 - \diamond Independent Mode Settings for Each DAC
- Internal Output Buffer

 ♦ Rail-to-Rail Operation with External Reference

 ♦ 4.5µs Settling Time
 - \diamond Outputs Directly Drive 2k Ω Loads
- Small 6.5mm x 4.4mm 20-Pin TSSOP or Ultra-Small 2.5mm x 2.3mm 20-Bump WLP Package
- Wide 2.7V to 5.5V Supply Range
- ♦ Separate 1.8V to 5.5V V_{DDIO} Power-Supply Input
- Fast 50MHz 4-Wire SPI/QSPI/MICROWIRE/DSP-Compatible Serial Interface
- Programmable Interface Watchdog Timer
- Pin-Selectable Power-On-Reset to Zero-Scale or Midscale DAC Output
- ◆ **LDAC** and **CLR** For Asynchronous DAC Control

Functional Diagram

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to: www.maximintegrated.com/MAX5723.related

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

ABSOLUTE MAXIMUM RATINGS

 $\label{eq:VDD} \begin{array}{l} V_{DD,} V_{DDIO} \mbox{ to GND } -0.3V \mbox{ to +6V } \\ OUT_, \mbox{ REF to GND } 0.3V \mbox{ to the lower of } (V_{DD} + 0.3V) \mbox{ and +6V } \\ SCLK, \mbox{ CSB, } \overline{IRQ}, \mbox{ M/Z}, \mbox{ LDAC}, \mbox{ CLR to GND } -0.3V \mbox{ to +6V } \\ DIN, \mbox{ DOUT to GND } -0.3V \mbox{ to the lower of } \\ (V_{DDIO} + 0.3V) \mbox{ and +6V } \\ Continuous \mbox{ Power Dissipation } (T_A = +70^{\circ}\text{C}) \\ \mbox{ TSSOP (derate at 13.6mW/^{\circ}\text{C above } 70^{\circ}\text{C}) 1084mW } \\ \mbox{ WLP (derate at 21.3mW/^{\circ}\text{C above } 70^{\circ}\text{C}) 1700mW } \end{array}$

Maximum Continuous Current into Any Pin.	±50mA
Operating Temperature	40°C to +125°C
Storage Temperature	65°C to +150°C
Lead Temperature (TSSOP only)(soldering,	10s)+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Note 2: Visit <u>www.maximintegrated.com/app-notes/index.mvp/id/1891</u> for information about the thermal performance of WLP packaging.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 2.7V \text{ to } 5.5V, V_{DDIO} = 1.8V \text{ to } 5.5V, V_{GND} = 0V, C_L = 200\text{pF}, R_L = 2k\Omega, T_A = -40^{\circ}\text{C}$ to +125°C, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DC PERFORMANCE (Note 4)						
		MAX5723	8			
Resolution and Monotonicity	Ν	MAX5724	10			Bits
		MAX5725	12			
		MAX5723	-0.25	±0.05	+0.25	
Integral Nonlinearity (Note 5)	INL	MAX5724	-0.5	±0.2	+0.5	LSB
		MAX5725	-1	±0.5	+1	
		MAX5723	-0.25	±0.05	+0.25	
Differential Nonlinearity (Note 5)	DNL	MAX5724	-0.5	±0.1	+0.5	LSB
		MAX5725	-1	±0.2	+1	
Offset Error (Note 6)	OE		-5	±0.5	+5	mV
Offset Error Drift				±10		µV/°C
Gain Error (Note 6)	GE		-1.0	±0.1	+1.0	%FS
Gain Temperature Coefficient		With respect to V _{REF}		±3.0		ppm of FS/°C

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	С	ONDITIONS	MIN	ТҮР	MAX	UNITS
Zero-Scale Error				0		+10	mV
Full-Scale Error		With respect to V	REF	-0.5		+0.5	%FS
DAC OUTPUT CHARACTERIST	ICS						
		No load		0		V _{DD}	
Output Voltage Range (Note 7)		2k Ω load to GND		0		V _{DD} - 0.2	V
		2k Ω load to V_DD		0.2		V _{DD}	
			$V_{DD} = 3V \pm 10\%,$ $ I_{OUT} \le 5mA$		300		
Load Regulation		$V_{OUT} = V_{FS}/2$	$V_{DD} = 5V \pm 10\%,$ $ I_{OUT} \le 10mA$		300		µv/mA
			$V_{DD} = 3V \pm 10\%,$ $ I_{OUT} \le 5mA$		0.3		
DC Output Impedance		$V_{OUT} = V_{FS}/2$	$V_{DD} = 5V \pm 10\%,$ $ I_{OUT} \le 10mA$		0.3		52
Maximum Capacitive Load Handling	CL				500		pF
Resistive Load Handling	RL			2			kΩ
Shart Circuit Output Ourrest			Sourcing (output shorted to GND)		30		
Short-Circuit Output Current		v _{DD} = 5.5v	Sinking (output shorted to V_{DD})		50		MA
DC Power-Supply Rejection		$V_{DD} = 3V \pm 10\%$	or 5V ±10%		100		μV/V
DYNAMIC PERFORMANCE							
Voltage-Output Slew Rate	SR	Positive and nega	ative		1.0		V/µs
		¹ ⁄ ₄ scale to ³ ⁄ ₄ sca	le, to \leq 1 LSB, MAX5723		2.2		
Voltage-Output Settling Time		¹ ⁄ ₄ scale to ³ ⁄ ₄ sca	le, to \leq 1 LSB, MAX5724		2.6		μs
		¹ ⁄ ₄ scale to ³ ⁄ ₄ sca	le, to \leq 1 LSB, MAX5725		4.5		
DAC Glitch Impulse		Major code trans		7		nV*s	
Channel-to-Channel		Internal reference		3.3			
Feedthrough (Note 8)		External referenc		4.07		nv^s	
Digital Feedthrough		Midscale code, a V _{DDIO}		0.2		nV*s	
Power Lip Time		Startup calibratio		200		μs	
		From power-dow	n		50		μs

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	МАХ	UNITS			
			f = 1kHz		90					
		External reference	f = 10 kHz		82					
		2.048V internal	f = 1kHz		112					
Output Voltage-Noise Density		reference	f = 10 kHz		102					
(DAC Output at Midscale)		2.5V internal	f = 1kHz		125		nv/vHz			
		reference	f = 10 kHz		110]			
		4.096V internal	f = 1kHz		160					
		reference	f = 10 kHz		145					
			f = 0.1Hz to $10Hz$		12					
		External reference	f = 0.1Hz to $10kHz$		76					
			f = 0.1Hz to 300kHz		385					
		0.0401/11	f = 0.1Hz to 10Hz		14					
		2.048V Internal	f = 0.1Hz to $10kHz$		91					
Integrated Output Noise		Telefence	f = 0.1Hz to 300kHz		450					
(DAC Output at Midscale)			f = 0.1Hz to 10Hz		15		μνρ-ρ			
		2.5V internal	f = 0.1Hz to $10kHz$		99					
		Telefence	f = 0.1Hz to 300kHz		470					
			f = 0.1Hz to 10Hz		16					
		4.096V internal	f = 0.1Hz to $10kHz$		124					
		reierence	f = 0.1Hz to 300kHz		490					
		E de marte de la company	f = 1kHz		114					
		External reference	f = 10 kHz		99					
		2.048V internal	f = 1kHz		175					
Output Voltage-Noise Density		reference	f = 10 kHz		153					
(DAC Output at Full Scale)		2.5V internal	f = 1kHz		200					
		reference	f = 10 kHz		174					
		4.096V internal	f = 1kHz		295					
		reference	f = 10 kHz		255					
			f = 0.1Hz to 10Hz		13					
		External reference	f = 0.1Hz to $10kHz$		94					
			f = 0.1Hz to 300kHz		540					
			f = 0.1Hz to $10Hz$		19]			
		2.048V internal	f = 0.1Hz to $10kHz$		143					
Integrated Output Noise		reierence	f = 0.1Hz to 300kHz		685					
(DAC Output at Full Scale)			f = 0.1Hz to $10Hz$		21		μν _{Ρ-Ρ}			
		2.5V internal	f = 0.1Hz to $10kHz$		159					
			f = 0.1Hz to 300kHz		705					
		4.0001/1	f = 0.1Hz to 10Hz		26					
		4.096V internal	f = 0.1Hz to $10kHz$		213]			
		reierence	f = 0.1Hz to 300kHz		750					

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	ТҮР	MAX	UNITS
REFERENCE INPUT							
Reference Input Range	V _{REF}			1.24		V _{DD}	V
Reference Input Current	I _{REF}	$V_{\text{REF}} = V_{\text{DD}} = 5.5 V$			55	74	μA
Reference Input Impedance	R _{REF}			75	100		kΩ
REFERENCE OUTPUT							
		$V_{REF} = 2.048V, T_{A} =$	+25°C	2.043	2.048	2.053	
Reference Output Voltage	V _{REF}	$V_{REF} = 2.5V, T_A = +2$	25°C	2.494	2.500	2.506	V
		V _{REF} = 4.096V, T _A =	+25°C	4.086	4.096	4.106	
Reference Temperature		MAX5725A			±3	±10	nnm/°C
Coefficient (Note 10)		MAX5723/MAX5724/	MAX5725B		±10	±25	
Reference Drive Capacity		External load			25		kΩ
Reference Capacitive Load Handling					200		pF
Reference Load Regulation		I _{SOURCE} = 0 to 500µ	A		2		mV/mA
Reference Line Regulation					0.05		mV/V
POWER REQUIREMENTS							
Cuentu Veltere	N	$V_{REF} = 4.096V$		4.5		5.5	
Supply voltage	V DD	All other options		2.7		5.5	V
I/O Supply Voltage	V _{DDIO}			1.8		5.5	V
			V _{REF} = 2.048V		1.6	2	
		Internal reference	$V_{\text{REF}} = 2.5 V$		1.7	2.1	
Supply Current (Note 11)	חח		$V_{BFF} = 4.096V$		2.0	2.5	mA
			$V_{\text{BFF}} = 3V$		1.6	2.0	1
		External reference	$V_{\text{BFF}} = 5V$		1.9	2.5	
		All DACs off, interna	l reference ON		140		
Power-Down Mode Supply	I _{PD}	All DACs off, interna $T_A = -40^{\circ}C$ to $+85^{\circ}C$		0.7	2	μA	
Current		All DACs off, interna $T_A = +125^{\circ}C$		2	4		
Digital Supply Current	IDDIO	Static logic inputs, a	ll outputs unloaded			1	μA
DIGITAL INPUT CHARACTERIS	STICS (SCLK	, DIN, CSB, LDAC, CI	_R, M/Z)				
Input Leakage Current	I _{IN}	V _{IN} = 0V or V _{DDIO} , a (Note 11)	Ill inputs except M/\overline{Z}		±0.1	±1	μA
		$ V_{IN} = 0V \text{ or } V_{DD}$, for	M/Z (Note 11)				

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
		(All inputs except	2.2V < V _{DDIO} < 5.5V	0.7 x V _{DDIO}			V
Input High Voltage	V _{IH}	M/Z)	1.8V < V _{DDIO} < 2.2V	0.8 x V _{DDIO}			
		$2.7V < V_{DD} < 5.5V$	(for M/\overline{Z})	0.7 x V _{DD}			V
		(All inputs except	2.2V < V _{DDIO} < 5.5V			0.3 x V _{DDIO}	V
Input Low Voltage	V _{IL}	M/Z)	1.8V < V _{DDIO} < 2.2V			0.2 x V _{DDIO}	V
		$2.7V < V_{DD} < 5.5V$	(for M/\overline{Z})			0.3 x V _{DD}	V
Input Capacitance (Note 10)	C _{IN}					10	рF
Hysteresis Voltage	V _H				0.15		V
DIGITAL OUTPUT (IRQ)							
Output Low Voltage	V _{OL}	I _{SINK} = 3mA				0.2	V
Output Inactive Leakage	I _{OFF}				±0.1	±1	μA
Output Inactive Capacitance (Note 10)	C _{OFF}					10	pF
DIGITAL OUTPUT (DOUT)							
Outrat High Valtage	V	V _{DDIO} > 2.5V, I _{SOL}	JRCE = 3mA	V _{DDIO} - 0.2			
Output High Voltage	VOH	V _{DDIO} > 1.8V, I _{SOL}	JRCE = 2mA	V _{DDIO} - 0.2			V
Output Low Voltago	Ve	V _{DDIO} > 2.5V, I _{SINI}	_K = 3mA			0.2	V
Output Low Voltage	VOL	V _{DDIO} > 1.8V, I _{SINI}	K = 2mA			0.2	v
Output Short-Circuit Current	IOSS	ISINK, ISOURCE			±100		mA
Output Three-State Leakage	I _{OZ}				±0.1	±1	μA
Output Three-State Capacitance	C _{OZ}				10		рF
WATCHDOG TIMER CHARACT	ERISTICS						
Watchdog Timer Period	twdosc	$V_{DD} = 3V, T_A = +2$	5°C	0.95	1	1.05	ms
Watchdog Timer Period Supply Drift		$V_{DD} = 2.7V \text{ to } 5.5V$, T _A = +25°C		0.6		%/V
Watchdog Timer Period Temperature Drift		$V_{DD} = 3V$			0.0375		%/°C

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	ТҮР	MAX	UNITS
SPI TIMING CHARACTERISTIC	S						
			Write mode	0		50	
		2.7V < V _{DDIO} < 5.5V	Read mode, strobing on 1 SCLK	0		25	
	£		Read mode, strobing on ½ SCLK	0		12.5	
SOLK Frequency	ISCLK		Write mode	0		33	IVIHZ
		1.8V < V _{DDIO} < 2.7V	Read mode, strobing on 1 SCLK	0		20	
			Read mode, strobing on ½ SCLK	0		10	
SCI K Period	toour	2.7V < V _{DDIO} < 5.5V	, write mode	20			ne
	^I SCLK	1.8V < V _{DDIO} < 2.7V	, write mode	30			115
SCLK Pulse Width High	tсн			8			ns
SCLK Pulse Width Low	t _{CL}			8			ns
CSR Fall to SCLK Fall Satur Time	+	To first SCLK falling	$2.7\mathrm{V} < \mathrm{V}_\mathrm{DDIO} < 5.5\mathrm{V}$	8			
	^L CSS0	edge	$1.8\mathrm{V} < \mathrm{V}_\mathrm{DDIO} < 2.7\mathrm{V}$	12			ns
CSB Fall to SCLK Fall Hold Time	t _{CSH0}	t _{CSH0} Applies to inactive SCLK falling edge preceding the first SCLK falling edge					ns
CSB Rise to SCLK Fall Hold Time	t _{CSH1}	Applies to the 24th S	0			ns	
CSB Rise to SCLK Fall	t _{CSA}	Applies to the 24th S0 aborted sequence	CLK falling edge,	12			ns
SCLK Fall to CSB Fall	t _{CSF}	Applies to 24th SCL	< falling edge	100			ns
CSB Pulse Width High	t _{CSPW}			20			ns
DIN to SCLK Fall Setup Time	t _{DS}			5			ns
DIN to SCLK Fall Hold Time	t _{DH}			4.5			ns
CLR Pulse Width Low	t _{CLPW}			20			ns
CLR Rise to CSB Fall	tcsc	Required for comma	nd to be executed	20			ns
LDAC Pulse Width Low	t _{LDPW}			20			ns
LDAC Fall to SCLK Fall Hold	t _{LDH}	Applies to 24th SCL	K falling edge	20			ns
		DPHA = 0,	2.7V < V _{DDIO} < 5.5V			35	
SULK Fail to DUUT Transition	^I DOT	$C_{LOAD} = 20 pF$	1.8V < V _{DDIO} < 2.7V			40	ns
		DPHA = 1,	2.7V < V _{DDIO} < 5.5V			35	
SULK HISE TO DUUT Transition	^I DOT	$C_{LOAD} = 20 pF$	1.8V < V _{DDIO} < 2.7V			40	ns

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

ELECTRICAL CHARACTERISTICS (continued)

(V_{DD} = 2.7V to 5.5V, V_{DDIO} = 1.8V to 5.5V, V_{GND} = 0V, C_L = 200pF, R_L = 2k Ω , T_A = -40°C to +125°C, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
SCLK Fall to DOUT Hold	t _{DOH}	DPHA = 0, C _{LOAD} =	0pF	2			ns
SCLK Rise to DOUT Hold	t _{DOH}	DPHA = 1, C _{LOAD} =	0pF	2			ns
CSB Fall to DOUT Fall	t _{DOE}	Enable time, C _{LOAD}	= 20pF			20	ns
			2.7V < V _{DDIO} < 5.5V			20	
CSB Rise to DOUT HI-Z	^I DOZ	Disable time	1.8V < V _{DDIO} < 2.7V			40	ns

Note 3: Electrical specifications are production tested at $T_A = +25^{\circ}C$. Specifications over the entire operating temperature range are guaranteed by design and characterization. Typical specifications are at $T_A = +25^{\circ}C$.

Note 4: DC performance is tested without load, $V_{REF} = V_{DD}$.

Note 5: Linearity is tested with unloaded outputs to within 20mV of GND and V_{DD}.

Note 6: Gain and offset calculated from measurements made with $V_{REF} = V_{DD}$ at codes 30 and 4065 for MAX5725, codes 8 and 1016 for MAX5724, and codes 2 and 254 for MAX5723.

Note 7: Subject to zero- and full-scale error limits and V_{REF} settings.

Note 8: Measured with all other DAC outputs at midscale with one channel transitioning 0 to full scale.

Note 9: On power-up, the device initiates an internal 200µs (typ) calibration sequence. All commands issued during this time will be ignored.

Note 10: Guaranteed by design.

Note 11: All channels active at V_{FS} , unloaded. Static logic inputs with $V_{IL} = V_{GND}$ and $V_{IH} = V_{DDIO}$ for all inputs.

Figure 1. SPI Serial Interface Timing Diagram

MAX5723/MAX5724/MAX5725 Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

Typical Operating Characteristics

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

Typical Operating Characteristics (continued)

(MAX5725, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

FULL-SCALE ERROR AND GAIN ERROR vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. TEMPERATURE

POWER-DOWN MODE SUPPLY CURRENT vs. Supply Voltage

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

Typical Operating Characteristics (continued)

(MAX5725, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

Typical Operating Characteristics (continued)

(MAX5725, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

CHANNEL-TO-CHANNEL FEEDTHROUGH (VDD = VREF = 5V, TA = +25°C, NO LOAD)

4µs/div

 $\label{eq:channel-to-channel feedthrough} CHANNEL-TO-CHANNEL FEEDTHROUGH (Vdd = 5V, Vref = 4.096V, T_A = +25^{\circ}C, NO LOAD)$

Maxim Integrated

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered **Output DACs with Internal Reference and SPI Interface**

Typical Operating Characteristics (continued)

(MAX5725, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

60

¥

7 8 9 10

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered **Output DACs with Internal Reference and SPI Interface**

Typical Operating Characteristics (continued)

(MAX5725, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

0.1Hz TO 10Hz OUTPUT NOISE, INTERNAL REFERENCE (VDD = 5V, VREF = 2.5V)

2µV/div

4s/div

0.1Hz TO 10Hz OUTPUT NOISE, INTERNAL **REFERENCE (VDD = 5V, VREF = 2.048V)** MIDSCALE UNLOADED $V_{P-P} = 13 \mu V$

2µV/div

0.1Hz TO 10Hz OUTPUT NOISE, INTERNAL REFERENCE (VDD = 5V, VREF = 4.096V)

2µV/div

Maxim Integrated

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

Typical Operating Characteristics (continued)

(MAX5725, 12-bit performance, $T_A = +25^{\circ}C$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE

WATCHDOG TIMER PERIOD HISTOGRAM

WATCHDOG TIMER FREQUENCY vs. TEMPERATURE

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

Pin Configurations

Pin Description

	PIN		FUNCTION
TSSOP	WLP	NAME	FUNCTION
1	D3	REF	Reference Voltage Input/Output
2	D2	DAC0	DAC Channel 0 Voltage Output
3	D1	OUT1	DAC Channel 1 Voltage Output
4	C1	OUT2	DAC Channel 2 Voltage Output
5	C2	OUT3	DAC Channel 3 Voltage Output
6	B2	OUT4	DAC Channel 4 Voltage Output
7	B1	OUT5	DAC Channel 5 Voltage Output
8	A1	OUT6	DAC Channel 6 Voltage Output
9	A2	OUT7	DAC Channel 7 Voltage Output
10	B3	V _{DD}	Analog Supply Voltage
11	A3	V _{DDIO}	Digital Supply Voltage
12	A4	DOUT	SPI Serial Data Output
13	A5	DIN	SPI Serial Data Input
14	B5	SCLK	SPI Serial Clock Input
15	B4	CSB	SPI Chip-Select Input
16	C5	ĪRQ	Active-Low Open Drain Interrupt Output. IRQ low indicates watchdog timeout.
17	C4	CLR	Active-Low Asynchronous DAC Clear Input
18	D5	LDAC	Active-Low Asynchronous DAC Load Input
19	D4	GND	Ground
20	C3	M/Z	DAC Output Reset Selection. Connect M/\overline{Z} to GND for zero-scale and connect M/\overline{Z} to V_{DD} for midscale.

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

Detailed Description

The MAX5723/MAX5724/MAX5725 are 8-channel, lowpower, 8-/10-/12-bit buffered voltage-output DACs. The 2.7V to 5.5V wide supply voltage range and low-power consumption accommodates most low-power and lowvoltage applications. The devices present a $100k\Omega$ load to the external reference. The internal output buffers allow rail-to-rail operation. An internal voltage reference is available with software-selectable options of 2.048V, 2.500V, or 4.096V. The devices feature a fast 4-wire SPI/QSPI/MICROWIRE/DSP-compatible serial interface to save board space and reduce the complexity in isolated applications interface. The MAX5723/MAX5724/ MAX5725 include a serial-in/parallel-out shift register, internal CODE and DAC registers, a power-on-reset (POR) circuit to initialize the DAC outputs to zero scale $(M/\overline{Z} = 0)$ or midscale $(M/\overline{Z} = 1)$, and control logic.

CLR is available to asynchronously clear the DAC outputs to a user-programmable default value, independent of the serial interface. LDAC is available to simultaneously update selected DACs on one or more devices. The MAX5723/MAX5724/MAX5725 also feature user-configurable interface watchdog, with status indicated by the IRQ output.

DAC Outputs (OUT_)

The MAX5723/MAX5724/MAX5725 include internal buffers on all DAC outputs, which provide improved load regulation for the DAC outputs. The output buffers slew at 1V/µs (typ) and drive resistive loads are as low as $2k\Omega$ in parallel with as much as 500pF of capacitance. The analog supply voltage (V_{DD}) determines the maximum output voltage range of the devices since it powers the output buffers. Under no-load conditions, the output buffers drive from GND to V_{DD}, subject to offset and gain errors. With a $2k\Omega$ load to GND, the output buffers drive from GND to vithin 200mV of V_{DD}. With a $2k\Omega$ load to V_{DD}, the output buffers drive from V_{DD} to within 200mV of GND.

The DAC ideal output voltage is defined by:

$$V_{OUT} = V_{REF} \times \frac{D}{2^N}$$

where D = code loaded into the DAC register, V_{REF} = reference voltage, N = resolution.

Internal Register Structure

The user interface is separated from the DAC logic to minimize digital feedthrough. Within the serial interface is an input shift register, the contents of which can be routed to control registers, individual, or multiple DACs as determined by the user command.

Within each DAC channel there is a CODE register followed by a DAC latch register (see the <u>Detailed</u> <u>Functional Diagram</u>). The contents of the CODE register hold pending DAC output settings which can later be loaded into the DAC registers. The CODE register can be updated using both CODE and CODE_LOAD user commands. The contents of the DAC register hold the current DAC output settings. The DAC register can be updated directly from the serial interface using the CODE_LOAD commands or can upload the current contents of the CODE register using LOAD commands or the LDAC logic input.

The contents of both CODE and DAC registers are maintained during power-down states, so that when the DACs are powered on, they return to their previously stored output settings. Any CODE or LOAD commands issued during power-down states continue to update the register contents.

Once the device is powered up, each DAC channel can be independently programmed with a desired RETURN value using the RETURN command. This becomes the value the CODE and DAC registers will use in the event of any watchdog, clear or gate activity, as selected by the DEFAULT command.

Hardware CLR operations and SW_CLEAR commands return the contents of all CODE and DAC registers to their user-selected defaults. SW_RESET commands will reset CODE and DAC register contents to their M/Z selected initial codes. A SW_GATE state can be used to momentarily hold selected DAC outputs in their DEFAULT positions. The contents of CODE and DAC registers can be manipulated by watchdog timer activity, enabling a variety of safety features.

Internal Reference

The MAX5723/MAX5724/MAX5725 include an internal precision voltage reference that is software selectable to be 2.048V, 2.500V, or 4.096V. When an internal reference is selected, that voltage is available on the REF output for other external circuitry (see the <u>Typical Operating</u> *Circuits*) and can drive loads down to $25k\Omega$.

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

External Reference

The external reference input has a typical input impedance of 100k Ω and accepts an input voltage from +1.24V to V_{DD}. Apply an external voltage between REF and GND to use an external reference. The MAX5723/MAX5724/MAX5725 power up and reset to external reference mode. Visit **www.maximintegrated.com/products/references** for a list of available external voltage-reference devices.

M/Z Input

The MAX5723/MAX5724/MAX5725 feature a pin-selectable DAC reset state using the M/Z input. Upon a poweron reset, all CODE and DAC data registers are reset to zero scale (M/Z = GND) or midscale (M/Z = V_{DD}). M/Z is referenced to V_{DD} (not V_{DDIO}). In addition, M/Z must be valid at the time the device is powered up—connect M/Z directly to V_{DD} or GND.

Load DAC (LDAC) Input

The MAX5723/MAX5724/MAX5725 feature an active-low asynchronous $\overline{\text{LDAC}}$ logic input that allows DAC outputs to update simultaneously. Connect $\overline{\text{LDAC}}$ to V_{DDIO} or keep $\overline{\text{LDAC}}$ high during normal operation when the device is controlled only through the serial interface. Drive $\overline{\text{LDAC}}$ low to update the DAC outputs with data from the CODE registers. Holding $\overline{\text{LDAC}}$ low causes the DAC registers to become transparent and CODE data is passed through to the DAC registers immediately updating the DAC outputs. A software CONFIG command can be used to configure the $\overline{\text{LDAC}}$ operation of each DAC independently.

Clear (CLR) Input

The MAX5723/MAX5724/MAX5725 feature an asynchronous active-low $\overline{\text{CLR}}$ logic input that simultaneously sets all selected DAC outputs to their programmable DEFAULT states. Driving $\overline{\text{CLR}}$ low clears the contents of both the CODE and DAC registers and also ignores any on-going SPI command which modifies registers associated with a DAC configured to accept clear operations. To allow a new SPI command, drive $\overline{\text{CLR}}$ high, satisfying the t_{CSC} timing requirement. A software CONFIG com-

Table 1. Format DAC Data Bit Positions

mand can be used to configure the clear operation of each DAC independently.

Watchdog Feature

The MAX5723/MAX5724/MAX5725 feature an interface watchdog timer with programmable timeout duration. This monitors the I/O interface for activity and integrity. If the watchdog is enabled, the host processor must write a valid command to the device within the timeout period to prevent a timeout. If the watchdog is allowed to timeout, selected DAC outputs are returned to the programmable DEFAULT state, protecting the system against control faults.

By default, all watchdog features are disabled; users wishing to activate any watchdog feature must configure the device accordingly. Individual DAC channels can be configured using the CONFIG command to accept the watchdog alarm and to gate, clear, or hold their outputs in response to an alarm. A watchdog refresh event and watchdog behavior upon timeout is defined by a programmable safety level using the WDOG_CONFIG command.

IRQ Output

The MAX5723/MAX5724/MAX5725 feature an active-low open-drain interrupt output indicating to the host when a watchdog timeout has occurred.

Interface Power Supply (V_{DDIO})

The MAX5723/MAX5724/MAX5725 feature a separate supply input (V_{DDIO}) for the digital interface (1.8V to 5.5V). Connect V_{DDIO} to the I/O supply of the host processor.

SPI Serial Interface

The MAX5723/MAX5724/MAX5725 4-wire serial interface is compatible with MICROWIRE, SPI, QSPI, and DSPs. The interface provides three inputs, SCLK, CSB, and DIN. The chip-select input (CSB, active-low) frames the data loaded through the serial data input (DIN). Following a CSB input high-to-low transition, the data is shifted in synchronously and latched into the input register on each falling edge of the serial clock input (SCLK). Each serial operation word is 24-bits long. The DAC data is left justified as shown in <u>Table 1</u>. The serial

PART	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
MAX5723	D7	D6	D5	D4	D3	D2	D1	D0	Х	Х	Х	Х	Х	Х	Х	Х
MAX5724	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Х	Х	Х	Х	Х	Х
MAX5725	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Х	Х	Х	Х

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

input register transfers its contents to the destination registers after loading 24 bits of data on the 24th SCLK falling edge. To initiate a new SPI operation, drive CSB high and then low to begin the next operation sequence, being sure to meet all relevant timing requirements. During CSB high periods, SCLK is ignored, allowing communication to other devices on the same bus. SPI operations consisting of more than 24 SCLK cycles are executed on the 24th SCLK falling edge, using the first three bytes of data available. SPI operations consisting of less than 24 SCLK cycles will not be executed. The content of the SPI operation consists of a command byte followed by a two-byte data word.

The DOUT phase for all SPI_READ commands is determined by the readback command used, allowing the selection of the SCLK DOUT update edge best suited to the digital I/O implementation, maximizing data transfer speed and/or timing margin.

Guaranteed non-zero DOUT hold times allow the microprocessor to strobe DOUT on the same edge as the MAX5723/MAX5724/MAX5725 updates for fastest SPI read mode transfers. For example, if DPHA = 0 is used, the MAX5723/MAX5724/MAX5725 update DOUT in response to SCLK falling edges 8-23, while a microprocessor (μ P) with low data hold time requirements can strobe in the DOUT data on SCLK falling edges 9-24. The device supports readback speeds of up to 25MHz for a microprocessor with 5ns data input setup requirements and allowing 35ns for t_{DOT} at V_{DDIO} > 2.7V.

Variable DOUT phase also supports microprocessors with longer data input hold time requirements. For example, if DPHA = 1 is used, the MAX5723/MAX5724/ MAX5725 updates DOUT in response to SCLK rising edges 9-24 while the microprocessor can strobe in the DOUT data on SCLK falling edges 9-24. The device supports readback speeds up to 12.5MHz for a μ P with 5ns data input setup requirements and allowing 35ns for t_{DOT} (assuming 50% duty cycle SCLK).

For improved readback speed while monitoring device status, the SPI_READ_STATUS command repeats the device status information for multiple bits, allowing polling of the device at maximum interface speeds (up to 50MHz when the readback strobe is placed away from DOUT transition edges). This transfer speed cannot be achieved for other forms of readback using the SPI_READ_DATA command, where more DOUT bus transitions occur.

Figure 2. Typical SPI Application Circuit

Figure 1 shows the timing diagram for the complete 4-wire serial interface transmission. The DAC code settings (D) for the MAX5723/MAX5724/MAX5725 are accepted in an offset binary format (see <u>Table 1</u>). Otherwise, the expected data format for each command is listed in <u>Table 2</u>. See <u>Figure 2</u> for an example of a typical SPI circuit application.

SPI User-Command Register Map

This section lists the user-accessible commands and registers for the MAX5723/MAX5724/MAX5725.

Table 2 provides detailed information about the Command Registers.

Table 2. SPI Commands Summary

COMMAND	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0	DESCRIPTION
CONFIGURAT	ION A	ND S	OFTW	VARE	сом		s																		
WDOG	0	0	0	1	×	x	×	x		TII	MEOU	IT SEL	ECTIC	DN[11:	4]		SE	TIME	OUT ION[3	:0]	WD_MASK	Sat Le 00: 01: 10: I 11:	fety vel Low Med High Max	x	Updates watchdog settings and safety levels
REF	0	0	1	0	0	FEF Power 0= DAC 1=ON	REF 00 = 01 = 10 = 11 =	Mode = EXT = 2.5V = 2.0V = 4.1V	x	x	x	x	х	x	x	x	x	x	х	x	x	x	x	x	Sets the reference operating mode. REF Power (B18): 0 = Internal reference is only powered if at least one DAC is powered 1 = Internal reference is always powered
SW_GATE_ CLR	0	0	1	1	0	0	0	0	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	0	Removes any existing GATE condition
SW_GATE_	0	0	1	1	0	0	0	1	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	0	Initiates a GATE condition
WD_REFRESH	0	0	1	1	0	0	1	0	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	0	Refreshes the watchdog timer
WD_RESET	0	0	1	1	0	0	1	1	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	0	Reset the watchdog time out alarm status and refreshes the watchdog timer
SW_CLEAR	0	0	1	1	0	1	0	0	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	0	Executes a software clear (all CODE and DAC registers cleared to their DEFAULT values)
SW_RESET	0	0	1	1	0	1	0	1	1	0	0	1	0	1	1	0	0	0	1	1	0	0	0	0	Executes a software reset (all CODE, DAC, and control registers returned to their power-on reset values)
CONFIG	0	1	0	1	0	0	0	0	DAC7	DAC6	DAC5	DAC4	DAC3	DAC2	DAC1	DACO	WD Cor 00: 01: (10: 11: H	OOG nfig. DIS GATE CLR IOLD	GATE_ENB	LDAC_ENB	CLEAR_ENB	X	×	X	Configures selected DAC Watchdog, GATE, LOAD, and CLEAR operations. DACs selected with a 1 in the corresponding DACn bit are updated, DACs with a 0 in the corresponding DACn bit are not impacted)

Output DACs with Internal Reference and SPI Interface Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered MAX5723/MAX5724/MAX5725

Output DACs with Internal Reference and SPI Interface Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered MAX5723/MAX5724/MAX5725

Table 2. SPI Commands Summary (continued)

COMMAND	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	В9	B8	В7	B6	B5	В4	В3	B2	B1	В0	DESCRIPTION
POWER	0	1	0	0	0	0	0	0	DAC7	DAC6	DAC5	DAC4	DAC3	DAC2	DAC 1	DACO	Pov Mo 00 Nor 01 PD1 10 = 100 11 = Hi	wer de = mal = 1kΩ = PD 0kΩ = PD -Z	x	×	x	x	x	x	Sets the Power Mode of the selected DACs (DACs selected with a 1 in the corresponding DACn bit are updated, DACs with a 0 in the corresponding DACn bit are not impacted)
DEFAULT	0	1	1	0	0	0	0	0	DAC7	DAC6	DAC5	DAC4	DAC3	DAC2	DAC1	DACO	Defa 0 00 01 100 101+	ult Va 00: M 1: ZEI 10: MI 1: FU : RETI : No F	lues: Z RO ID LL JRN Effect						Sets the DEFAULT code settings for selected DACs. Note, DACs in RETURN mode programmable RETURN codes. (DACs selected with a 1 in the corresponding DACn bit are updated, DACs with a 0 in the corresponding DACn bit are not impacted)
DAC COMMAN	NDS			1																					r
RETURNn	0	1	1	1		DAC S	electio	n			RET	URN F DATA	REGIS ⁻ [11:4]	TER			RET	URN I DAT/	REGIS A[3:0]	TER	х	x	x	х	Writes data to the selected RETURN register(s)
CODEn	1	0	0	0		DAC S	electio	n			CC	DE RI DATA	EGISTE [11:4]	ER			СС	DE R	EGIST A[3:0]	ER	х	x	x	х	Writes data to the selected CODE register(s)
LOADn	1	0	0	1		DAC S	electio	n	х	Х	x	х	Х	x	x	x	х	х	х	х	х	х	x	х	Transfers data from the selected CODE registers to the selected DAC register(s)
CODEn_ LOAD_ALL	1	0	1	0		DAC S	electio	n			CC	DE RI DATA	EGISTE [11:4]	ER			СС	DE R DAT/	EGIST A[3:0]	ER	х	x	x	x	Simultaneously writes data to the selected CODE register(s) while updating all DAC registers
CODEn_ LOADn	1	0	1	1		DAC S	election	n			СС	DE RI DATA	EGISTE [11:4]	ER			СС	DE R	EGIST A[3:0]	ER	х	x	x	х	Simultaneously writes data to the selected CODE register(s) while updating selected DAC register(s)
CODE_ALL	1	1	0	0	0	0	0	0			CC	DE RI DATA	EGISTI [11:4]	ER			СС	DE R	EGIST 4[3:0]	ER	х	х	x	x	Writes data to all CODE registers

Maxim Integrated

													'														
COMMAND	B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	В3	B2	B1	B0	DESCRIPTION		
LOAD_ALL	1	1	0	0	0	0	0	1	х	x	x	x	x	x	x	x	х	x	x	х	x	x	x	x	Updates all DAC latches with current CODE register data		
CODE_ALL LOAD_ALL	1	1	0	0	0	0	1	0	CODE REGISTER DATA[11:4]								СС	DDE R DATA	EGIST A[3:0]	ER	х	х	x	х	Simultaneously writes data to the all CODE registers while updating all DAC registers		
RETURN_ALL	1	1	0	0	0	0	1	1			RET	URN I DATA	N REGISTER TA[11:4]					URN I DAT/	REGIS A[3:0]	TER	x	x	x	x	Writes data to all RETURN registers		
SPI_DATA_ REQUEST	1	1	0	1		DAC S	election	ı	INC	DATA SEL [1:0] 00 = DAC 01 = CODE 10 = RET 11 = WDT			x	x	x	x	x x		x x x		x	x	x	x	Setup data request for readback. INC indicates if the DAC selection is incremented to the next DAC after each SPI_READ_DATA operation DATA SEL[1:0] indicates the data content to be read back		
SPI_READ	1	1	1	0	0	0	x	x	х	x	x	x	х	х	х	x	х	x	х	х	х	х	x	х	DPHA = 0 Readback status		
STATUS	1	1	1	0	0	1	х	х	х	x	x	х	x	x	х	x	х	х	х	х	х	х	х	х	DPHA = 1 Readback status		
SPI_READ	1	1	1	0	1	0	х	х	х	x	x	х	x	x	х	x	х	х	х	х	х	х	х	х	DPHA = 0 Readback requested data		
DATA	1	1	1	0	1	1	x	х	х	×	x	х	х	х	х	х	х	x	х	х	х	х	х	х	DPHA = 1 Readback requested data		
NO OPERATIO	ON CC	омма	NDS																								
No Operation	1	1	0	0	0	1	х	x	х	х	х	x	x	x	х	x	х	x	х	х	х	х	x	х	These commands will		
	1	1	0	0	1	0	х	x	х	х	х	x	X	x	х	х	х	x	х	х	х	х	x	х	device, but will refresh the watchdog timer if		
	1	1	0	0	1	1	X	Х	Х	х	Х	X	X	х	Х	X	Х	Х	Х	Х	Х	Х	х	Х	safety level is set to low.		
Reserved Con	nman	de A	ny con	nmanc	le not	enocifi	cally lis	le hat	hove	aro ros	arvad	for Ma	vim int	ornal		N											

Output DACs with Internal Reference and SPI Interface

Octal-Channel, 8-/10-/12-Bit Buffered

MAX5723/MAX5724/MAX5725

Ultra-Small,

Table 2. SPI Commands Summary (continued)

Maxim Integrated

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

RETURNn Command

The RETURN command (B[23:20] = 0111) sets the programmable default RETURN value. This value is used for all future watchdog, clear, and gate operations when RET is selected for the DAC using the DEFAULT command. Issuing this command with DAC_ADDRESS set to all DACs will program the value for all RETURN registers and is equivalent to RETURN_ALL. **Note:** This command is inaccessible when a watchdog timeout has occurred if the watchdog timer is configured for safety level = high or max.

CODEn Command

The CODEn command (B[23:20] = 1000) updates the CODE register contents for the selected DAC(s). Changes to the CODE register content based on this command will not affect DAC outputs directly unless the LDAC input is in a low state or the DAC latch has been configured as transparent using the CONFIG command. Issuing this command with DAC_ADDRESS set to all DACs will program the value for all CODE registers and is equivalent to CODE_ALL.

LOADn Command The LOADn command (B[23:20] = 1001) updates the DAC register content for the selected DAC(s) by uploading the current contents of the selected CODE register(s) into the selected DAC register(s). Channels for which CODE content has not been modified since the last LOAD or LDAC operation will not be updated to reduce digital crosstalk. Issuing this command with DAC_ADDRESS set to all DACs will update the contents of all DAC registers and is equivalent to LOAD_ALL.

CODEn_LOADn Command

The CODEn_LOADn command (B[23:20] = 1011) updates the CODE register contents for the selected DAC(s) as well as the DAC register content of the selected DAC(s). Channels for which CODE content has not been modified since the last LOAD or $\overline{\text{LDAC}}$ operation will not be updated to reduce digital crosstalk. Issuing this command with DAC_ADDRESS set to all DACs is equivalent to the CODE_ALL_LOAD_ALL (B[23:16] = 1100_0010) command.

CODEn_LOAD_ALL Command

The CODEn_LOAD_ALL command (B[23:20] = 1010) updates the CODE register contents for the selected DAC(s) as well as the DAC register content of all DACs. Channels for which CODE content has not been modified since the last LOAD or LDAC operation will not be updated to reduce digital crosstalk. Issuing this command with

Table 3. DAC Selection

B19	B18	B17	B16	DAC SELECTED
0	0	0	0	DAC0
0	0	0	1	DAC1
0	0	1	0	DAC2
0	0	1	1	DAC3
0	1	0	0	DAC4
0	1	0	1	DAC5
0	1	1	0	DAC6
0	1	1	1	DAC7
1	Х	Х	Х	ALL DACs

DAC_ADDRESS set to all DACs will update the CODE and DAC register contents of all DACs and is equivalent to CODE_ALL_LOAD_ALL. Note this command by definition will modify at least one CODE register; to avoid this use the LOAD command with DAC_ADDRESS set to all DACs or the LOAD_ALL command.

CODE_ALL Command

The CODE_ALL command $(B[23:16] = 1100_0000)$ updates the CODE register contents for all DACs.

LOAD_ALL Command

The LOAD_ALL command (B[23:16] = 1100_0001) updates the DAC register content for all DACs by uploading the current contents of the CODE registers to the DAC registers.

CODE_ALL_LOAD_ALL Command

The CODE_ALL_LOAD_ALL command (B[23:16] = $1100_{-}0010$) updates the CODE register contents for all DACs as well as the DAC register content of all DACs.

RETURN_ALL Command

The RETURN_ALL command (B[23:16] = 1100_0011) updates the RETURN register contents for all DACs.

NO_OP Commands Command

All unused commands in the space (B[23:16] = 1100_01XX or 1100_1XXX) have no effect on the device, but will refresh the watchdog timer (if active) with the safety level set to low.

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

WDOG Command

The WDOG command (B[23:20] = 0001) updates the watchdog timeout settings and safety levels for the device. Timeout thresholds are selected in 1ms increments (1ms to 4095ms are available). The WD_MASK bit can be used to mask the IRQ operation in response to the watchdog status, if WD_MASK = 1, watchdog alarms will not assert IRQ. The watchdog alarm status (WD bit) can be polled using the available SPI status readback commands regardless of WD_MASK settings. A write to this register will not reset a previously triggered watchdog alarm (use the WD_RESET command for this purpose). The watchdog timer refresh and timeout behavior is defined by the programmable safety level below.

Available safety levels (WL[1:0]):

Low (00): Watchdog timer will refresh with the execution of any valid user mode command or no-op. Any successful slave address acknowledge qualifies to restart the watchdog timer (run to the ninth SCL edge), regardless of the command which follows. Issuing hardware CLR or LDAC falling edge will also refresh the watchdog timer. A triggered watchdog alarm does not prevent writes to

Table 4. WDOG Command Format

any register. LDAC and CLR inputs still function after a watchdog timeout event.

Medium (01): A WD_REFRESH command must be executed in order to refresh the watchdog timer. Other commands as well as <u>LDAC</u> or <u>CLR</u> activity do not refresh the watchdog timer. A triggered watchdog alarm does not prevent writes to any register. <u>LDAC</u> and <u>CLR</u> inputs still function after a watchdog timeout event.

High (10): A WD_REFRESH command must be executed to refresh the watchdog timer. Other commands as well as LDAC or CLR activity do not refresh the watchdog timer. A triggered watchdog alarm prevents execution of all POWER, REF, CONFIG, DEFAULT, and RETURN commands. LDAC and CLR inputs still function after a watchdog timeout event.

Max (11): A WD_REFRESH command must be executed to refresh the watchdog timer. Other commands, as well as <u>LDAC</u> or <u>CLR</u> activity, do not refresh the watchdog timer. A triggered watchdog alarm prevents execution of all POWER, REF, CONFIG, DEFAULT, and RETURN commands. <u>LDAC</u> and <u>CLR</u> are gated and do not function after a watchdog timeout event.

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B 9	B8	B7	B 6	B 5	B 4	B3	B2	B1	B 0
0	0	0	1	Х	X	X	X	C11	C10	C 9	C8	C7	C6	C5	C 4	C3 C2 C1 C0				WDM	WL1	WL0	Х
WDOG Command Don't Care									Tirr	neout :	Select	tion			Tim	eout	Selec	tion	WD_MASK	WD Sa Le 00: 0 M 1 Hi 11:	POG fety vel: Low 1: ed 0: gh Max	Don't Care	
Default Value →						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х		
Command Byte					Data High Byte									Data Low Byte									

Table 5. Watchdog Safety Level Protection

WATCHDOG SAFETY LEVEL	ANY COMMAND REFRESHES WDT	CLR/LDAC REFRESHES WDT	SW_RESET PLUS WD_RFRS REFRESHES WDT	ALL REGISTERS ACCESSIBLE AFTER WDT TIMEOUT*	CLR/LDAC AFFECT DAC REGISTERS AFTER WDT TIMEOUT*				
00 (Low)	Х	Х	Х	Х	Х				
01 (Med)	—	—	Х	Х	Х				
10 (High)	—	—	Х	—	Х				
11 (Max)		_	Х	_					

*Unless otherwise affected by Watchdog HOLD or CLR configurations as set by the CONFIG command. See the CONFIG register definition for details.

Ultra-Small, Octal-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and SPI Interface

REF Command

The REF command (B[23:20] = 0010) updates the global reference setting used for all DAC channels. If an internal reference mode is selected, bit RF2 (B18) defines the reference power mode. If RF2 is set to zero (default), the reference will be powered down any time all DAC channels are powered down (i.e. the device is in STANDBY mode). If RF2 is set to one, the reference will remain powered even if all DAC channels are powered down, allowing continued operation of external circuitry (note in this mode the low current shutdown state is not available). This command is inaccessible when a watchdog timeout has occurred and the watchdog time is configured with a safety level of high or max.

SW_GATE_CLR Command

The SW_GATE_CLR command (B[23:0] = 0011_0000_ 1001_0110_0011_0000) will remove any existing GATE condition initiated by a previous SW_GATE_SET comand.

SW_GATE_SET Command

The SW_GATE_SET command (B[23:0] = $0011_0001_1001_0110_0011_0000$) will initiate a GATE condition. Any DACs configured with GTB = 0 (see the <u>CONFIG</u> <u>Command</u> section) will have their outputs held at the selected DEFAULT value until the GATE condition is later removed by a subsequent SW_GATE_CLR command. While in gate mode, the CODE and DAC registers continue to function normally and are not reset (unless reset by a watchdog timeout).

WD_REFRESH Command

The WD_REFRESH command (B[23:0] = $0011_001_$ 1001_0110_0011_0000) will refresh the watchdog timer. This is the only command which will refresh the watchdog timer if the device is configured with a safety level of medium, high, or max. Use this command to prevent the watchdog timer from timing out.

WD_RESET Command

A WD_RESET command (B[23:0] = $0011_0011_1001_011_0001_0000$) will reset the watchdog interrupt (timeout) status and refresh the watchdog timer. Use this command to reset the IRQ timeout condition after the watchdog timer has timed out. Any DACs impacted by an existing timeout condition will return to normal operation.

SW_CLEAR Command

A software clear command (B[23:0] = $0011_0100_01_0110_0011_0000$) will clear the contents of the CODE and DAC registers to the DEFAULT state for all channels configured with CLB = 0 (see CONFIG command).

SW_RESET Command

A software reset command (B[23:0] = 0011_0101_ 1001_0110_0011_0000) will reset all CODE, DAC, and configuration registers to their defaults (including POWER, DEFAULT, CONFIG, WDOG, and REF registers), simulating a power-on reset.

B23	B22	B21	B20	B19	B18	B17	B16	B15	B14	B13	B12	B11	B10	B9	B 8	B 7	B6	B5	B 4	B 3	B2	B1	B0
0	0	1	0	0	RF2	RF1	RF0	X	X	X	X	X	X	Х	Х	X	Х	Х	Χ	Х	X	Х	Χ
R	REF Command					Mode: EXT 2.5V 2.0V 4.0V				Don't	Care						[Don't	Care	1			
Default Value →				0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Command Byte								Data High Byte								Data Low Byte							

Table 6. REF Command Format