: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

-48V Simple Swapper Hot-Swap Switches

General Description

The MAX5911/MAX5912 are fully integrated hot-swap switches for negative supply rails. These devices allow the safe insertion and removal of circuit cards into live backplanes or ports without causing problematic glitches on the negative power-supply rail. They also monitor various circuit parameters and disconnect the load if a fault condition occurs, alerting the host with a logic-level FAULT output. The MAX5911/MAX5912 operate over a voltage range of -16 V to -65 V and are designed to permit hot plugging of an IP phone into a hub, but are not limited to that operation.
During startup, an internal power FET regulates the current between the backplane power source and the load to 280mA for MAX5911 and 415mA for MAX5912. After startup, the FET is fully enhanced to reduce its on-resistance. To ensure robust operation, the MAX5911/ MAX5912 contain built-in safety features that prevent damage to the internal FET. They include an enable input, which responds to positive logic signals (+3.3V or +5 V), allowing the host system to disconnect the load. ENABLE is also used to reset the device after a latching fault condition occurs.

The MAX5911/MAX5912 Simple SwapperTM hot-swap ICs monitor four parameters for these fault conditions: undervoltage lockout (UVLO), power-not-good, zerocurrent detection, and thermal shutdown. These devices are available in the extended temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The MAX5911 and MAX5912 come in 8-pin and 16-pin SOIC packages, respectively.

Applications

IP Phones
Network Routers
Network Switches

Internet Appliances
Power-Over-LAN

Typical Operating Circuit

Features
Provides Safe Hot Swap for -16V to -65V Power
Supplies

- 280mA Current Limit for MAX5911
- 415mA Current Limit for MAX5912
- Zero-Current Load Disconnect
- Integrated Power FET
- Status Output Reports Fault Condition
- Internal Switch-Protection Circuitry
- Built-In Thermal Shutdown
- DGND Can Vary Up to $\pm 5 \mathrm{~V}$ with Respect to AGND

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX5911ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX5912ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SO

Simple Swapper is a trademark of Maxim Integrated Products, Inc.
Pin Configurations

*THESE PINS ARE NOT INTERNALLY CONNECTED.

-48V Simple Swapper Hot-Swap Switches

ABSOLUTE MAXIMUM RATINGS

Voltages are with respect to AGND, unless otherwise noted.

VIN	+0.3 V to -70V
Vout	+0.3V to (VIN - 0.3V)
ENABLE to DGND	-0.3V to +11V
ENABLE to VIN	-0.3 V to +70V
FAULT to DGND	-0.3V to +11V
UVLO to VIN.	-0.3V to +11V
DGND	-5 V to +5 V
DGND to VIN.	-0.3 V to +70 V
FAULT Sink Current	.. 10 m

Continuous Output Current..............................Internally Limited
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).................. 470 mW
16 -Pin SO (derate $12.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)............ 1039 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS

$\left(\mathrm{V}_{\mathrm{IN}}=-48 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{UVLO}=\right.$ open circuit, $\mathrm{V}_{\mathrm{ENABLE}}=+3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	VIN			-65		-16	V
Supply Current	IIN	Measured at AGND at the end of output voltage slew			1.5	2.5	mA
Maximum Vout Current	IOUT(MAX)	$V_{\text {OUT }}=\mathrm{V}_{\text {IN }}+5 \mathrm{~V}$	MAX5911	-310	-280	-250	mA
			MAX5912	-457	-415	-373	
DMOS On-Resistance	RDS(ON)	$\begin{aligned} & \text { MAX5911 IOUT }=-225 \mathrm{~mA}, \\ & \text { MAX5912 IOUT }=-350 \mathrm{~mA} \end{aligned}$			2.5	4	Ω
Vout Leakage Current		Measured on Vout when internal DMOS is shut off				10	$\mu \mathrm{A}$
ENABLE Low Voltage	VIL	Referenced to DGND				0.8	V
ENABLE High Voltage	V_{IH}	Referenced to DGND		2.0			V
ENABLE High Input Current	IIH	$\mathrm{V}_{\text {ENABLE }}=+3.3 \mathrm{~V}$			140	300	$\mu \mathrm{A}$
ENABLE Low Pulse Width (Note 1)	tePW			200			ns
FAULT Output Low Voltage	VOL	1 FAULT $=3 \mathrm{~mA}$				0.4	V
FAULT Output Leakage Current	IOH	$\mathrm{V}_{\overline{\text { FAULT }}}=+3.3 \mathrm{~V}$				10	$\mu \mathrm{A}$
Zero-Current Detection Threshold	IFTH	Decreasing load current		-12	-8	-4	mA
Zero-Current Detection Threshold Hysteresis	IFHY				1.5		mA
Zero-Current Detection Delay (Note 2)	IFdel			280	350	520	ms
Current-Limit Delay (Note 3)	tLIMIT	VOUT shorted to AGND			10	20	$\mu \mathrm{s}$
Power-Good Threshold	VPG	IVIN - Voutl, IVIN - Voutl decreasing		1.95	2.15	2.35	V
Power-Good Hysteresis	PGHYS	\% of V_{PG}			5		\%

-48V Simple Swapper Hot-Swap Switches

ELECTRICAL SPECIFICATIONS (continued)

$\left(\mathrm{V} I \mathrm{~N}=-48 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{UVLO}=\right.$ open circuit, $\mathrm{V}_{\mathrm{ENABLE}}=+3.3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Not-Good Output Delay (Note 4)	PGdel	After IVIN - Voutl increases above (VPG + PGHYS)	8	14	20	ms
Thermal Shutdown Temperature (Note 5)	TJ			140		${ }^{\circ} \mathrm{C}$
Default UVLO		UVLO open circuit, IVIN increasing	-30	-28	-26	V
UVLO Hysteresis		UVLO open circuit, percentage of UVLO threshold		12		\%
UVLO Comparator Threshold		Referenced to $\mathrm{V}_{\text {IN }}$, UVLO open circuit, IVINI increasing		+1.258		V
UVLO Input Resistance	RuvLo			95		k Ω

Note 1: Minimum ENABLE low pulse width required to unlatch fault condition.
Note 2: The delay from lout falling below the zero-current threshold until $\overline{\text { FAULT }}$ is latched low and VOUT is disabled.
Note 3: The time from an output overcurrent or short-circuit condition until the output goes into current limit.
Note 4: The time from VOUT falling until FAULT is asserted low. $\overline{\text { FAULT }}$ is not latched for Power-Not-Good condition.
Note 5: When the device goes into thermal shutdown, the output is disabled and $\overline{\mathrm{FAULT}}$ is latched low.

Typical Operating Characteristics

$\left(V_{I N}=-48 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{UVLO}=\right.$ open circuit, $\mathrm{V}_{\mathrm{ENABLE}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=1.8 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

-48V Simple Swapper Hot-Swap Switches

-48V Simple Swapper Hot-Swap Switches

Typical Operating Characteristics (continued)
$\left(V_{I N}=-48 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0, \mathrm{UVLO}=\right.$ open circuit, $\mathrm{V}_{\mathrm{ENABLE}}=+3.3 \mathrm{~V}, \mathrm{RLOAD}=1.8 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

PIN		NAME	FUNCTION
MAX5911	MAX5912		
1	3	GATE	Gate of the Internal Power MOSFET. Normally leave open circuit. To slow down the output voltage ramp, connect two capacitors, one to V_{IN} and one to Vout. See GATE Connections for details.
2	4, 5, 12, 13	VIN	Voltage Input Terminal. Bypass VIN, to AGND with a $0.1 \mu \mathrm{~F}$ capacitor to improve noise immunity.
3	6	$\overline{\text { FAULT }}$	Fault Logic Output, open-drain. Tie $\overline{\text { FAULT to the positive logic supply with a }}$ $3.3 \mathrm{k} \Omega$ resistor. Referenced to DGND.
4	7	DGND	Digital Ground. Ground reference level for the external positive logic, $\overline{F A U L T}$, and ENABLE. DGND can vary up to $\pm 5 \mathrm{~V}$ with respect to AGND to accommodate differential ground voltages in large systems.
5	10	ENABLE	ENABLE Input. Turns on and off the internal FET. ENABLE is a positive logiclevel input referenced to DGND. Drive ENABLE high to enable Vout. Drive ENABLE low to disable Vout. Pulse ENABLE low to reset the MAX5911/ MAX5912 after a latched fault condition occurs.
6	11	AGND	Analog Ground. Ground reference level for VIN, Vout, and UVLO.
7	14	Vout	Voltage Output Terminal
8	15	UVLO	Undervoltage Lockout Input. Leave UVLO open circuit for default setting of -28 V . Alternatively, UVLO can be connected to a resistive divider to set the lockout voltage (see the Changing the Undervoltage Lockout Setting section). The comparator threshold level is +1.258 V with respect to V_{IN}.
-	1, 2, 8, 9, 16	N.C.	No Connection. No internal connection.

-48V Simple Swapper Hot-Swap Switches

Figure 1. Functional Block Diagram

Detailed Description

Figure 1 shows a functional block diagram. The MAX5911/MAX5912 are hot-swap switches for negative supply rails. The devices allow the safe insertion and removal of circuit cards into live backplanes or ports without causing undue glitches on the negative powersupply rail. They operate over the -16 V to -65 V voltage range. The devices act as a current regulator, using their on-board FET to limit the amount of current drawn from the backplane to 280 mA for MAX5911 and 415 mA for MAX5912. If the load current exceeds that current limit, the internal switch behaves like a constant current source.
The MAX5911/MAX5912 monitor the input voltage, the output voltage, the output current, and the die temperature. They assert their FAULT output if they detect an error condition.
A zero-current load disconnect feature activates if the load current drops below 8 mA for over 350ms. They also
include an enable input that responds to positive logic, allowing the host system to turn the FET switch on or off. The enable input is also used to reset the devices after an error condition has latched the output FET off.

Normal Operation

Startup
When power is first applied with ENABLE high, or when ENABLE is asserted, the MAX5911/MAX5912 limit the current to the load to $280 \mathrm{~mA} / 415 \mathrm{~mA}$. If the output voltage has not reached the power-good threshold within the 14 ms power-good delay, $\overline{F A U L T}$ is pulled low. $\overline{\text { FAULT }}$ stays low until the output voltage exceeds the power-good threshold, at which time it is released and becomes high impedance.

Undervoltage Lockout Fault

If $\left|V_{I N}\right| \leq \mid$ UVLO \mid, where UVLO is the desired voltage at which the UVLO fault occurs, FAULT is pulled low and the internal FET is turned off. If the condition persists for over 350ms (IFDEL), the FET is latched off. The default UVLO voltage is -28 V , but it can be adjusted using an external resistive divider (see the Changing the Undervoltage Lockout Setting section). Once the FET is latched off, ENABLE must be pulsed low then brought back high to release $\overline{\text { FAULT }}$ and enable VOUT.

Thermal Shutdown Fault The MAX5911/MAX5912 monitor their internal die temperatures. If the temperature of the die exceeds $+140^{\circ} \mathrm{C}$, $\overline{\mathrm{FAULT}}$ is pulled low and the internal FET is latched off. ENABLE must be pulsed low and then brought high again to reset the FET latch, and release $\overline{\text { FAULT, provided the die is below the thermal shutdown }}$ temperature by $5^{\circ} \mathrm{C}$ (typ).

Power-Not-Good Fault
If IVIN - Voutl is more than the power-good threshold for over 14 ms , FAULT is pulled low. When the output voltage exceeds the power-good threshold, $\overline{\text { FAULT }}$ is released. $\overline{\text { FAULT }}$ output is not latched during a power-not-good fault.

Zero-Current Detection

If the load current drops below 8 mA for over 350 ms , $\overline{\text { FAULT }}$ is pulled low and the FET is latched off. ENABLE must be pulsed low and then brought high again to release $\overline{F A U L T}$ and enable VOUT.

Applications Information

Chosing A Device
The MAX5911 will output up to 280 mA (typ) and the MAX5912 up to 415 mA (typ). In applications where high heat is expected, use the MAX5912 for its superior

-48V Simple Swapper Hot-Swap Switches

Figure 2. UVLO Voltage Set by an External Resistive Divider
heat dissipation properties, and always solder all of its VIN pins to a large section of circuit board copper.

Logic Control
The enable input responds to +3.3 V logic signals and will force the internal FET off if it is pulled low. This feature allows the host to disconnect the load from the power bus if required. Additionally, all fault conditions that latch the internal FET off must be cleared by pulsing ENABLE low for at least 200ns, then reasserting ENABLE before normal operation can resume.

GATE Connections

GATE connects to the gate of the internal N -channel power MOSFET. Normally this pin should be left open circuit. To slow down the voltage ramp at VOUT, connect capacitors from GATE to VoUT and VIN. Size the capacitors so that the GATE to VIN capacitor is ten times the size of the GATE to VOUT capacitor. This technique to slow down the output voltage ramp will also cause the output discharge time to increase if the capacitor values exceed about 1nF. Additionally, this technique will cause the time delay for a power-notgood fault to increase.

FAULT Output
The $\overline{\text { FAULT }}$ output is open-drain and is pulled low if the MAX5911/MAX5912 detect an undervoltage fault, a thermal fault, a power-not-good fault, or a zero-current fault. See the Normal Operation section for specific details of fault operation. Connect FAULT to the logic supply with a pullup resistor; $3.3 \mathrm{k} \Omega$ is sufficient in most cases.

Changing the Undervoltage
 Lockout Setting

The UVLO value defaults to -28 V if the UVLO pin is left open circuit. The lockout voltage can be changed with a resistive divider. Connect the divider from VIN to AGND, and connect the center node of the divider to the UVLO pin. Figure 2 shows an example circuit. Use R1 $\leq 10 \mathrm{k} \Omega$, then calculate R2 using:

$$
\mathrm{R} 2=\mathrm{R} 1 \times\left(\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{UVLO})}}{1.258}-1\right)
$$

where $\mathrm{V}_{\mathrm{IN}}($ UVLO $)$ is the desired lockout voltage.

Chip Information

TRANSISTOR COUNT: 1021
PROCESS: BiCMOS

-48V Simple Swapper Hot-Swap Switches

\qquad

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad

