: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

+48V, Single-Port Network Power Switch For Power-Over-LAN

Abstract

General Description The MAX5922A/B/C is a single-port network power controller with an integrated power MOSFET, operating from $\mathrm{a}+32 \mathrm{~V}$ to +60 V supply rail. The device is specifically designed for power-sourcing equipment (PSE) in power-over-LAN applications and is fully compliant to the IEEE 802.3af standard. The MAX5922 provides power devices (PD) discovery, classification, current limit, and other necessary functions for an IEEE 802.3af compliant PSE. The MAX5922 is suitable for PSE function in both switch/router systems where the power is delivered to the load through the signal pairs, and in midspan systems where the power is delivered to the load through the spare pairs. In midspan mode, a detection collision avoidance circuit (MAX5922A/C only) provides the necessary back-off timing to prevent fault detections that happen when two different PSEs try to detect and power the same PD. The MAX5922B/C have a detection disable input that can be connected high to disable the detection/classification functions or connected low to enable them. The MAX5922 features a programmable undervoltage lockout (UVLO) that keeps the device in shutdown until the input voltage exceeds a certain threshold, set to 38 V (MAX5922A) or 28V (MAX5922B/C) internally. After successfully discovering and classifying a PD, the MAX5922 enters startup mode. During startup, the MAX5922 limits the output voltage and current slew rate to minimize EMI (electromagnetic interference). The MAX5922 has an integrated $0.45 \Omega \mathrm{~N}$-channel power MOSFET that provides efficient operation and simplified system design. The MAX5922 monitors and provides current-limit protection to the load at all times. The current limit is programmable using an external current-sensing resistor. The MAX5922 features current-limit foldback and duty-cycle limit to ensure robust operation during load-fault and short-circuit conditions. Fault management allows the part to either latch-off or autorestart after a fault. The MAX5922 provides POK, $\overline{Z C}$, and $\overline{\text { FAULT }}$ status signals to indicate output power is good, zero-current fault, and other faults (overcurrent, overtemperature), respectively. The MAX5922 is available in a 28 -pin TSSOP package and is rated over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

- IEEE 802.3af Compliant
- +32 V to +60 V Wide Operating Input Range
- 0.45Ω Integrated Power Switch
- Power Device (PD) Detection and Classification
- 100رA PD Leakage Detection Tolerant
- Programmable Current Limit
- Zero-Current Detection with Status Output
- Detection Collision Avoidance Option for Midspan Application
- Input Logic Signals Compatible with 1.8 V to 5V CMOS Logic
- Separate Analog and Digital Grounds with Up to $\pm 4 \mathrm{~V}$ Offset
- Power-Good Status Output
- Overcurrent and Overtemperature Protection with Status Outputs
- Current-Limit Foldback with Timeout and DutyCycle Control
- Latch or Autorestart Fault Management

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5922AEUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP
MAX5922BEUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP
MAX5922CEUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP

Applications
Power-Sourcing Equipment (PSE)
Power-Over-LAN/Power-Over-MDI
(Media-Dependent Interface)
Computer Telephony
Single-Port Power Injector/Adapter
Midspan Power Injector
Switches/Routers with In-Line Power

+48V, Single-Port Network Power Switch For Power-Over-LAN

ABSOLUTE MAXIMUM RATINGS

(All voltages with respect to AGND_S, unless otherwise noted.)
IN.
-0.3 V to +76 V
UVLO .-0.3 V to +6 V
VDIG to DGND .-0.3 V to +6 V
OUT.
to DGND
\qquad
DRAIN \qquad 0.3 V to (V DRAIN $+0.3 \mathrm{~V})$

RDT. \qquad -0. 3
RCL to IN -0.3 V to +12 V

EN, DET_DIS, DCA, CLASS, ZC_EN, and LATTCH to DGND
\qquad
\qquad
\qquad EN, \qquad -10 V to +0.3 V and LATCH to DG

POK, $\overline{Z C}, C L 0, C L 1, C L 2$, and $\overline{\text { FAULT }}$ to DGND......-0.3V to +6 V DGND
.. -5 V to +5 V
Maximum Current into Drain ..0.8A Maximum Current into POK, $\bar{Z} \mathrm{CC}, \mathrm{CLO}, \mathrm{CL1}, \mathrm{CL2}, \overline{\mathrm{FAULT}} . .20 \mathrm{~mA}$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)

28 -Pin TSSOP (Derate $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .1026 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=48 \mathrm{~V}, \mathrm{~V}_{\text {DIG }}=3.3 \mathrm{~V}, \mathrm{AGND}\right.$ S $=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}$, RSENSE $=0.5 \Omega \pm 1 \%, \mathrm{UVLO}=\mathrm{open}, \mathrm{EN}=\mathrm{V}_{\text {DIG }}, \mathrm{R}_{R C L}=150 \Omega \pm 1 \%$, RRDT $=18.2 \mathrm{k} \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Analog Input Voltage Range	VIN			32		60	V
Analog Input Supply Current	In	VIN $=60 \mathrm{~V}$, measured at AGND after OUT has stopped slewing			1	1.6	mA
Digital Input Voltage Range	V ${ }_{\text {DIG }}$			1.65		5.50	V
Digital Input Supply Current	IDIG	$V_{\text {DIG }}=5 \mathrm{~V}$			0.05	0.1	mA
DGND to AGND Operating Voltage Range				-4		+4	V
Current-Limit Response Time		OUT shorted to AGND (Note 2)			1		$\mu \mathrm{s}$
OUT Current-Limit Foldback Voltage	VFBStop	(Note 3)			18		V
Current-Limit Sense Voltage (VIN - VDRS) (Note 4)	VILIM	Maximum voltage across RSENSE at VOUT > $\mathrm{V}_{\text {FBSTOP }}$		198	212	223	mV
		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		203	212	221	
Current-Limit Sense Foldback Voltage (VIN - VDRS)	VILIM_fb	Vout $=0 \mathrm{~V}$		64	70	76	mV
Overcurrent Timeout	toc	OUT shorted to AGND (Note 5)		50	60	75	ms
Dmos On-Resistance	RDson	IOUT $=100 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.45		Ω
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			0.75	
Power-Off OUT Sink Current		$\mathrm{EN}=\mathrm{DGND}, \mathrm{V}_{\text {OUT }}=48 \mathrm{~V}$				15	$\mu \mathrm{A}$
Maximum Output Voltage Slew Rate	dVout/dt	Vout rising, no load			100		V/ms
Maximum Output Current Slew Rate	dlout/dt	Vout rising, CLOAD $=100 \mu \mathrm{~F}$			35		A/ms
Power-OK Threshold (VIN - Vout)	VthPok	Vout rising, POK from low to high		650	750	850	mV
		Hysteresis			10		\%
POK Output Low Voltage	VPOK_LOW	IPOK $=3 \mathrm{~mA}$				0.4	V
POK Output Leakage Current		VPOK $=3.3 \mathrm{~V}$			0.05	1	$\mu \mathrm{A}$

+48V, Single-Port Network Power Switch For Power-Over-LAN

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=48 \mathrm{~V}, \mathrm{~V}_{\text {DIG }}=3.3 \mathrm{~V}, \mathrm{AGND}-\mathrm{S}=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}\right.$, RSENSE $=0.5 \Omega \pm 1 \%$, UVLO $=\mathrm{open}, \mathrm{EN}=\mathrm{V}_{\text {DIG }}, \operatorname{RRCL}=150 \Omega \pm 1 \%$, RRDT $=18.2 \mathrm{k} \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POK Output Delay (Note 6)	tPOK_LOW	POK from high to low, Vout falling		1.0	1.4	1.8	ms
	tPOK_HIGH	POK from low to high, Vout rising		74	88	102	
Zero-Current Detection Threshold Voltage (VIN - VDRS)	VZCTH	(Note 4)		2.7	3.75	4.8	mV
$\overline{\text { ZC Output Low Voltage }}$	VZC_LOW	$\mathrm{I} \overline{\mathrm{ZC}}=3 \mathrm{~mA}$				0.4	V
$\overline{\text { ZC }}$ Output Leakage Current		$V_{\overline{Z C}}=3.3 \mathrm{~V}$			0.05	1	$\mu \mathrm{A}$
Zero-Current Detection Delay	tzCDEL	$\overline{\mathrm{ZC}}$ from high to low, Iout falling (Note 7)		300	350	400	ms
Zero-Current Deglitch Time	tzC_DEG	lout rising			10		ms
Thermal Shutdown		Temperature rising			150		${ }^{\circ} \mathrm{C}$
		Hysteresis			30		${ }^{\circ} \mathrm{C}$
Shutdown Autorestart Time	trestart	LATCH = low (Note 8)		1.60	1.92	2.24	s
UNDERVOLTAGE LOCKOUT							
Default VIN UVLO	UVLOth	UVLO floating, VIN rising	MAX5922A	36	38	40	V
			MAX5922B/ MAX5922C	26	28	30	
		Hysteresis	MAX5922A		4.4		
			MAX5922B/C		2.5		
UVLO Comparator Threshold	$V_{\text {ReF }}$	Referenced to AGND_S, VUVLO rising	MAX5922A	1.36	1.38	1.41	V
			MAX5922B/ MAX5922C	1.31	1.33	1.36	
		Hysteresis	MAX5922A		160		mV
			MAX5922B/ MAX5922C		120		
UVLO Input Resistance				50			$\mathrm{k} \Omega$
LOGIC SIGNALS							
EN, LATCH, DCA, DET_DIS CLASS, and ZC_EN Input High Voltage	V_{IH}	1.65 V < $\mathrm{V}_{\text {DIG }}<5.5 \mathrm{~V}$		$\begin{aligned} & 0.7 \times \\ & \text { VDIG } \end{aligned}$			V
EN, LATCH, DCA, DET_DIS CLASS, and ZC_EN Input Low Voltage	VIL	1.65 V < V VIG < 2.0 V				$\begin{aligned} & 0.3 \times \\ & \text { VDIG } \end{aligned}$	V
		$2.0 \mathrm{~V}<\mathrm{V}_{\text {DIG }}<5.5 \mathrm{~V}$		0.8			
EN, LATCH, DCA, DET_DIS CLASS, and ZC_EN Input Current				-1		+1	$\mu \mathrm{A}$
EN Low Pulse Width				3			$\mu \mathrm{s}$
FAULT, CLO, CL1 and CL2, Output Low Voltage	VoL	ISINK $=3 \mathrm{~mA}$				0.4	V
FAULT, CLO, CL1 and CL2, Output Leakage Current		$\begin{aligned} & V_{\overline{F A U L T}}=V_{C L 0}=V_{C L 1}=V_{C L 2}=3.3 \mathrm{~V}, \\ & \mathrm{CLASS}=0 \mathrm{~V} \end{aligned}$			0.05	1	$\mu \mathrm{A}$

+48V, Single-Port Network Power Switch For Power-Over-LAN

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=48 V, V_{\text {DIG }}=3.3 V, A G N D _S=A G N D=D G N D=0 V, R S E N S E=0.5 \Omega \pm 1 \%, U V L O=o p e n, E N=V_{D I G}, R R C L=150 \Omega \pm 1 \%\right.$, RRDT $=18.2 \mathrm{k} \Omega \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PD DETECTION (See Figure 3, PD Detection Section)						
Detection Probe Voltage Phase I	VPBI	RPD $=19 \mathrm{k} \Omega$ to $26.5 \mathrm{k} \Omega$	3.6	4	4.4	V
Detection Probe Voltage Phase II	VPBII	$\mathrm{RPD}=19 \mathrm{k} \Omega$ to $26.5 \mathrm{k} \Omega$	7.2	8	8.8	V
Detection Short-Circuit Current	ISC_DET	OUT shorted to AGND	0.68		1.50	mA
Valid PD Detected Lower-Limit Threshold	RPDL	(Note 9)	15		19	k Ω
Valid PD Detected Upper-Limit Threshold	RPDH	(Note 9)	26.5		33.0	k Ω
Total Detection Time	tdet			170	196	ms
Reject Capacitance During Detection	СРph	RPD $=19 \mathrm{k} \Omega$ to $26.5 \mathrm{k} \Omega$	6			$\mu \mathrm{F}$
Allowable Capacitance During Detection	CpdL	RPD $=19 \mathrm{k} \Omega$ to $26.5 \mathrm{k} \Omega$			0.6	$\mu \mathrm{F}$
PD CLASSIFICATION (See PD Classification Mode Section)						
Classification Probe Voltage	$V_{\text {CLASS }}$	IOUT $=0.5 \mathrm{~mA}$ to 45 mA	15		20	V
		No load			28	
Classification Short-Circuit Current	Isc_CLASS	Shorted to AGND	48		65	mA
Classification Time Duration	tCLASS	From detection completion	15	21.3	26	ms
Total Detection and Classification Delay Time	tTOT	From channel-enabled to power delivered at the OUT pin		191	230	ms
Class 0 to Class 1 Threshold	ICLASS_1L		5.5	6.5	7.5	mA
Class 1 to Class 2 Threshold	ICLASS_1-2		13	14.5	16	mA
Class 2 to Class 3 Threshold	ICLASS_2-3		21	23	25	mA
Class 3 to Class 4 Threshold	ICLASS_3-4		31	33	35	mA
Default To Class 0 High-Current Lower-Limit Threshold	ICLASS_4-0		43	46.5		mA
Collision Detection Delay Time (MAX5922A/MAX5922C Only)	tDCA	DCA $=$ high, $\mathrm{RPD}=15 \mathrm{k} \Omega$	2.38	2.8	3.22	s

Note 1: All specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. All temperature limits are guaranteed by design.
Note 2: This is the time from an output overcurrent or short-circuit condition until the output goes into regulated current limit.
Note 3: OUT voltage above which the output current limit is at its full value (see Figure 8).
Note 4: To be consistent with the IEEE 802.3af standard, choose RSENSE $=0.5 \Omega \pm 1 \%$.
Note 5: This is the time the part stays in current-limit mode during overload condition. After toc elapses (or when the junction temperature hits $+150^{\circ} \mathrm{C}$) the part shuts down.
Note 6: See the Typical Operating Characteristics and Figure 6.
Note 7: This is the delay from lout falling below the zero-current threshold until $\overline{\mathrm{ZC}}$ goes low and the IC shuts down (see the Zero-Current Detection section).
Note 8: See the Fault Management section.
Note 9: PD is detected by the procedures specified by the IEEE 802.3af standard. A probe voltage $\mathrm{V}_{\mathrm{PBI}}(+4 \mathrm{~V}$ typically) is forced at OUT and the current $I_{S 1}$ is measured after $t_{D E T} / 2$. A second probe voltage $V_{P B I I}(+8 \mathrm{~V}$ typically) is then forced and IS2 measured after tDET / 2 again. The voltage increment is then divided by the difference of the two currents (IS2 - IS1). This is the PD resistance value.

+48V, Single-Port Network Power Switch For Power-Over-LAN

Typical Operating Characteristics
(MAX5922A, VIN $=48 \mathrm{~V}$, VDIG, EN, LATCH, CLASS, and ZC_EN $=3.3 \mathrm{~V}, \mathrm{DCA}, \mathrm{AGND}$-S $=$ AGND $=$ DGND $=0 \mathrm{~V}$, RSENSE $=0.5 \Omega \pm 1 \%$, UVLO floating, $R_{R C L}=150 \mathrm{k} \Omega, \mathrm{R}_{\text {RDT }}=18.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Vin UNDERVOLTAGE LOCKOUT vs. TEMPERATURE

FOLDBACK-CURRENT LIMIT
(ILIM vs. Vout)

MOSFET RDSON
vs. TEMPERATURE

ZERO-CURRENT DETECTION THRESHOLD VOLTAGE vs. TEMPERATURE

DIGITAL SUPPLY CURRENT
vs. TEMPERATURE

SENSE TRIP VOLTAGE
vs. TEMPERATURE

ON-RESISTANCE vs. VDRAIN

+48V, Single-Port Network Power Switch For Power-Over-LAN

(MAX5922A, VIN $=48 \mathrm{~V}$, VDIG, EN, LATCH, CLASS, and ZC_EN $=3.3 \mathrm{~V}, \mathrm{DCA}$, AGND_S $=$ AGND $=$ DGND $=0 \mathrm{~V}$, RSENSE $=0.5 \Omega \pm 1 \%$, UVLO floating, $R_{R C L}=150 \mathrm{k} \Omega, \mathrm{R}_{\text {RDT }}=18.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

+48V, Single-Port Network Power Switch For Power-Over-LAN

(MAX5922A, VIN $=48 \mathrm{~V}$, VDIG, EN, LATCH, CLASS, and ZC_EN $=3.3 \mathrm{~V}, \mathrm{DCA}$, AGND_S $=$ AGND $=$ DGND $=0 \mathrm{~V}$, RSENSE $=0.5 \Omega \pm 1 \%$, UVLO floating, $R_{R C L}=150 \mathrm{k} \Omega, R_{R D T}=18.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ZERO-CURRENT

+48V, Single-Port Network Power Switch For Power-Over-LAN

(MAX5922A, VIN $=48 \mathrm{~V}$, VDIG, EN, LATCH, CLASS, and ZC_EN $=3.3 \mathrm{~V}, \mathrm{DCA}$, AGND_S $=$ AGND $=$ DGND $=0 \mathrm{~V}$, RSENSE $=0.5 \Omega \pm 1 \%$, UVLO floating, $R_{R C L}=150 \mathrm{k} \Omega, \mathrm{R}_{\text {RDT }}=18.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

+48V, Single-Port Network Power Switch For Power-Over-LAN

(MAX5922A, VIN $=48 \mathrm{~V}$, VDIG, EN, LATCH, CLASS, and ZC_EN $=3.3 \mathrm{~V}, \mathrm{DCA}$, AGND_S $=$ AGND $=$ DGND $=0 \mathrm{~V}$, RSENSE $=0.5 \Omega \pm 1 \%$, UVLO floating, $R_{R C L}=150 \mathrm{k} \Omega, \mathrm{R}_{R D T}=18.2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

+48V, Single-Port Network Power Switch For Power-Over-LAN

Pin Description

PIN	NAME	FUNCTION
*	AGND	Analog Ground. This is the return of analog power input. AGND can vary $\pm 4 \mathrm{~V}$ from DGND. AGND and DGND must be connected together at a single point in the system.
1, 2	DRAIN	Drain connection for the integrated MOSFET. Connect a sense resistor, RSENSE, from DRAIN to IN. These pins are also the current-sense resistor negative terminal. RSENSE sets the overcurrent-limit and open-circuit detection threshold. These two pins must be connected together.
3, 6, 26	N.C.	No Connection. Not internally connected. Leave pins 6 and 26 open. Pins 6 and 26 are left unconnected to provide additional spacing between the high-voltage pins and other pins.
4	IN	Input Voltage. Connect to a positive voltage source between +32 V to +60 V from IN to AGND. This is the current-sense resistor positive terminal. Bypass to AGND with a $47 \mu \mathrm{~F}, 100 \mathrm{~V}$ electrolytic capacitor and a $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$ ceramic capacitor. Place the ceramic capacitor close to this pin.
5	RCL	Classification Sense Resistor. Connect a $150 \Omega \pm 1 \%$ resistor from RCL to IN for sensing the classification current. Leave RCL floating when the PD classification function is not used.
7	AGND_S	Analog Ground Sense. Connect a 1Ω resistor from AGND_S to AGND. This resistor protects the IC during an output short-circuit condition.
8	UVLO	Undervoltage Lockout Adjustment Input. Referenced to AGND. Connect to the center point of a resistive-divider from IN to AGND to adjust the UVLO threshold. Leave open for default value.
9	RDT	Detection Sense Resistor. Connect an $18.2 \mathrm{k} \Omega \pm 1 \%$ resistor from RDT to AGND for sensing the PD detection current. Add a 680 nF capacitor in parallel to this resistor to filter out the power-line noise. Connect RDT to AGND when the PD detection function is not used.
10	$\overline{\text { FAULT }}$	Fault Signal Open-Drain Logic Output. Reference to DGND. $\overline{\text { FAULT }}$ is latched low when: 1. An overtemperature condition occurs and/or, 2. An overcurrent condition that has lasted for more than toc.
11	POK	Power-OK, Open-Drain Logic Output. Reference to DGND. POK goes open drain a time tpOK_HIGH after VOUT raises to within $\mathrm{V}_{\text {THPOK }}$ from $\mathrm{V}_{\text {IN }}$. POK goes low a time tpOK_LOW after VOUT falls out of the VTHPOK from VIN.
12	$\overline{\text { ZC }}$	Zero-Current Fault Signal. Open-drain logic output. Reference to DGND. $\overline{Z C}$ is latched low when there is a zero-current condition lasting longer than tzCDEL. $\overline{\mathrm{ZC}}$ is open-drain otherwise. The zero-current detection circuit is enabled immediately after the POK signal goes high. The $\overline{\mathrm{ZC}}$ is unlatched after a valid PD has been detected and eventually classified.
13	TP1	Must be Left Open or Connected to AGND
14	TP2	Must be Left Open or Connected to AGND
15	TP3	Must be Left Open or Connected to AGND
16	CL2	Classification Report Logic Output Bit 2. See the PD Classification section (Table 2).
17	CL1	Classification Report Logic Output Bit 1. See the PD Classification section (Table 2).
18	CLO	Classification Report Logic Output Bit 0. See the PD Classification section (Table 2).
19	DGND	Digital Ground. DGND can vary $\pm 4 \mathrm{~V}$ from AGND. DGND and AGND must to be connected together at a single point in the system.
20	LATCH	Fault Management Selection Digital Input. Referenced to DGND. Connect to a logic high to latch off after a fault condition. Connect to a logic low for automatic restart after a fault condition (see the Fault Management section).

[^0]
+48V, Single-Port Network Power Switch For Power-Over-LAN

Pin Description (continued)

PIN	NAME	FUNCTION
21	ZC_EN	Zero-Current-Detection Enable Logic Input. Referenced to DGND. Connect ZC_EN to a logic high to enable the zero-current detection circuitry. Connect ZC_EN to a logic low to disable this function.
22	EN	ON/OFF Control-Logic Input. Referenced to DGND. Connect to a logic high to enable the device. Connect to a logic low to disable the device and reset a latched-off condition.
23	VDIG	Digital Supply Voltage. VDIG is the supply voltage for the internal digital logic circuity. EN, LATCH, CLASS, DET_DIS, DCA, and ZC_EN input logic thresholds are automatically scaled to the voltage on VDIG. See the Typical Application Circuit for proper filtering.
24	CLASS	Classification Enable Digital Input. Connect to DGND to disable the classification function. Connect to VDIG to enable the classification function.
25	DET_DIS	PD Detection Disable Logic Input. When DET_DIS is connected to a logic high, the part skips the detection and classification (regardless of the status of CLASS) phases and powers on immediately after EN = high (MAX5922B/MAX5922C only).
	DCA	Detection Collision Avoidance Logic Input. Connect to a logic high to activate the detection collision avoidance circuitry for midspan system. Connect to DGND to disable this function. (MAX5922A only). See the Detection Collision Avoidance section.
27,28	OUT	Output Voltage

Figure 1. MAX5922 Block Diagram

+48V, Single-Port Network Power Switch For Power-Over-LAN

Detailed Description

The MAX5922 is a single-port network power controller with an integrated power MOSFET, operating from a +32 V to +60 V supply rail. The device is specifically designed for PSE in power-over-LAN applications and is fully compliant to the IEEE 802.3af standard. The MAX5922 provides PD discovery, classification, current limit, and other necessary functions for an IEEE 802.3afcompliant PSE.
The MAX5922 operates in three different modes: PD detection mode, PD classification mode, and power mode. Figures 2 and 4 illustrates the device's functional operation.

PD Detection Mode
Once powered up and enabled, the MAX5922 probes the output for a valid PD. A valid PD should have a $25 \mathrm{k} \Omega$ discovery signature characteristic as specified in the IEEE 802.3af standard. Table 1 shows the IEEE 802.3af specification for a PSE detection of PDs (see the Typical Application Circuit and Figure 3 (MAX5922 startup sequence)).
The MAX5922 performs the PD detection by forcing a probe voltage $(\mathrm{VPBI}=4 \mathrm{~V})$ at the OUT pin and senses the current out of this pin. The sensed current is sampled and held tDET (88 ms) after the probing voltage is sent. The probe voltage is then switched to $\mathrm{V}_{\mathrm{PBII}}=8 \mathrm{~V}$. At the end of another tDET period, the ratio of the difference of the two test voltages and sensed currents $(\Delta \mathrm{V} / \Delta \mathrm{I})$ is calculated to determine the PD resistance. The MAX5922 PD detection circuitry checks for a valid PD resistive signature between $19 \mathrm{k} \Omega$ and $26.5 \mathrm{k} \Omega$, with a parallel capacitance of up to $0.6 \mu \mathrm{~F}$. The MAX5922 PD detection circuit rejects all PDs showing resistive signature of less than $15 \mathrm{k} \Omega$ or greater than $33 \mathrm{k} \Omega$, and/or a capacitive signature greater than $6 \mu \mathrm{~F}$. Any resistive signature between $15 \mathrm{k} \Omega$ to $19 \mathrm{k} \Omega$, or between $26.5 \mathrm{k} \Omega$ to $33 \mathrm{k} \Omega$, and/or a capacitance between $0.6 \mu \mathrm{~F}$ to $6 \mu \mathrm{~F}$ can produce unpredictable detection results. If the MAX5922 does not detect a valid PD signature, it continually sends the probe voltages to the output indefinitely (see Figure 5).
The detection current reference is set by an external resistor (RRDT)) connected from the RDT pin to AGND. This resistor should be an $18.2 \mathrm{k} \Omega \pm 1 \%$, with an optional 680nF capacitor in parallel for filtering out power-line

Table 1. IEEE802.3af PD Specification

PARAMETER	VALID PD DETECTION SIGNATURE	NON-VALID PD DETECTION SIGNATURE
V/I (Slope)	$19 \mathrm{k} \Omega<\mathrm{RPD}<$ $26.5 \mathrm{k} \Omega$	$15 \mathrm{k} \Omega>\mathrm{RPD}$ or $R_{R D}>33 \mathrm{k} \Omega$
Input Capacitance	$\mathrm{CPD}<0.6 \mu \mathrm{~F}$	$\mathrm{CPD}>6 \mu \mathrm{~F}$
Offset Voltage	Up to 2.0 V	-
Current Offset	Up to $12 \mu \mathrm{~A}$	-

noise. An internal diode in series with the detection voltage source and OUT is provided to restrict PD detection to the 1st quadrant as specified by the IEEE standard 802.3af (see Figure 3). To prevent damage to non-PD devices and to protect itself from output short circuit, the MAX5922 limits the current out of the OUT pin during PD detection to 1.5 mA (max).
For midspan systems where power is delivered to the PD through the spare pairs, the detection collision avoidance must be activated. In this mode, after every failed PD detection cycle, the MAX5922A/MAX5922C enter a back-off mode where they drive the OUT pin into high impedance for tDCA (2.8s). The DCA pin must be connected high (MAX5922A) to activate the detection collision avoidance circuitry (if connected low, the detection collision avoidance circuitry is disabled). The MAX5922C has the detection collision avoidance circuitry permanently enabled (see the Typical Application Circuit). After tDCA, the MAX5922A (with DCA high) and the MAX5922C resume PD detection operation. The MAX5922B has the detection collision avoidance circuitry permanently disabled.

Detection Enable/Disable

The MAX5922A has the PD detection mode permanently enabled. The MAX5922B/MAX5922C are equipped with a DET_DIS pin, which provides the option of enabling or disabling the power-device detection phase. With the DET_DIS pin connected high, the PD detection and classification phases are disabled regardless of the status of the class pin. With the DET_DIS pin connected low, the PD detection is enabled.

+48V, Single-Port Network Power Switch For Power-Over-LAN

*FOR THE MAX5922B, THE DCA FUNCTION IS INTERNALLY DISABLED. FOR THE MAX5922C, THE DCA FUNCTION IS INTERNALLY ENABLED.

Figure 2. Operational Flow Chart (MAX5922A and MAX5922B/MAX5922C with DET_DIS Connected Low)

+48V, Single-Port Network Power Switch For Power-Over-LAN

Figure 3. PSE Detection Source

Figure 4. Operational Flow Chart (MAX5922B/MAX5922C with DET_DIS Connected High)

+48V, Single-Port Network Power Switch For Power-Over-LAN

Figure 5. PD Detection with an Invalid PD Signature
Table 2. PD Classification Threshold Limits

SENSED CURRENT (mA)	CL2	CL1	CLO	
0.5 to 4 or above 43	0	0	0	Class 0
9 to 12	0	0	1	Class 1
17 to 20	0	1	0	Class 2
26 to 30	0	1	1	Class 3
36 to 42	1	0	0	Class 4
N/A	1	0	1	Not used
N/A	1	1	0	Successful detection (classification disabled or DET_DIS = low)
Power device not detected yet or CLASS pin connected low.	1	1	1	Detection ongoing

PD Classification Mode (PD Classification)

Following a valid PD detection, and if the CLASS pin is high, the MAX5922 enters the PD classification mode. If the CLASS pin is low, the PD classification mode is skipped and the MAX5922 goes directly from PD detection to the power mode. During the PD classification mode, the MAX5922 forces a probe voltage (17.5V) at the OUT pin and measures the current out of this pin. The measured current determines the class of the PD. The classification results are reported at the classification logic outputs CLO, CL1, CL2. Table 2 shows the classification threshold limits and the corresponding logic outputs CLO, CL1, and CL2.

Connect an external $150 \Omega \pm 1 \%$ resistor (RRCL) from RCL to IN to set the classification current reference. If the PD classification function is not used, RCL can be left floating. For the MAX5922B/MAX5922C, the DET_DIS pin must be connected low to enable the classification phase. If DET_DIS is connected high, the classification phase is disabled regardless of the state of the CLASS pin. After the classification phase, the MAX5922 enters power-up.

Power-Up Mode
After the PD is successfully detected and classified, the MAX5922 enters power-up mode. During this mode, the MAX5922 gradually turns on the integrated N-channel MOSFET. To minimize EMI, the MAX5922 limits the

+48V, Single-Port Network Power Switch For Power-Over-LAN

Figure 6. Startup Sequence
output voltage slew rate at the OUT pin to dV OUT/dt $=$ $100 \mathrm{~V} / \mathrm{ms}$ (max) and the output-current slew rate out of the OUT pin to $\mathrm{dlOUT} / \mathrm{dt}=35 \mathrm{~A} / \mathrm{ms}(\mathrm{max})$.
The MAX5922 has an integrated $0.45 \Omega \mathrm{~N}$-channel power MOSFET. The MOSFET's drain is connected to the DRAIN pin and its source is connected to the OUT pin. The MAX5922 monitors and provides current-limit protection to the load at all times. The current limit is programmable using an external current-sensing resistor connected from IN to DRAIN. To be compatible with the IEE802.3af standard, use a $0.5 \Omega \pm 1 \%, 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistor. The MAX5922 features current-limit foldback and duty-cycle limit to ensure robust operation during load-fault and short-circuit conditions (see the Overcurrent Protection section).
When VOUT is within 750 mV of VIN for more than tPOK_HIGH, POK goes open drain. Figure 6 shows a typical startup sequence.
After POK is asserted, the MAX5922 activates the zerocurrent detection function. This function monitors the output for an undercurrent condition and eventually turns off the power to the output if the PD is disconnected (see the Zero-Current Detection section).

Undervoltage Lockout (UVLO)

The MAX5922 operates from $\mathrm{a}+32 \mathrm{~V}$ to +60 V supply voltage range and has a default UVLO set at +38 V (MAX5922A) or +28V (MAX5922B/MAX5922C). The UVLO threshold is adjustable using a resistive-divider connected to the UVLO pin (see Figure 7). When the input voltage is below the UVLO threshold, all operation stops and the MOSFET is held off. When the input voltage is above the UVLO threshold and EN is high, the MAX5922 goes into operation. See Figures 2 and 4 for the operational flow charts.
To adjust the UVLO threshold, connect an external resistive-divider from IN to UVLO and then from UVLO to AGND. Use the following equation to calculate the new UVLO threshold:

$$
\mathrm{V}_{\mathrm{UVLO}}^{-} \operatorname{TH}=\mathrm{V}_{\mathrm{REF}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

VREF is typically 1.38 V (MAX5922A) or 1.33 V (MAX5922B/ MAX5922C). The UVLO pin input resistance is $50 \mathrm{k} \Omega$ (min), keep the R1 and R2 parallel combination value at least 20 times smaller than $50 \mathrm{k} \Omega$ to minimize the new UVLO threshold error.

+48V, Single-Port Network Power Switch For Power-Over-LAN

Figure 7. Setting Undervoltage Lockout with an External Resistive-Divider

Digital Logic

VDIG is the input supply for the internal logic circuitry. The logic input thresholds of EN, LATCH, CLASS, DCA (MAX5922A), DET_DIS (MAX5922B/MAX5922C), and ZC_EN are CMOS compatible and are determined by the voltage at V DIG which can range from 1.65 V to 5.5 V . The POK, $\overline{\mathrm{ZC}}, \mathrm{CLO}, \mathrm{CL} 1, \mathrm{CL2}$, and $\overline{\text { FAULT }}$ outputs are open drain. VDIG and all logic inputs and outputs are referenced to DGND. DGND is not connected to AGND internally and must be connected externally at a single point in the system to AGND. The maximum allowable difference in the voltage between DGND and AGND is $\pm 4 \mathrm{~V}$.

Enable (EN)

EN is a logic input to enable the MAX5922. Bringing EN low halts all operations and turns off the internal power MOSFET. When EN is high and the input voltage is above the UVLO threshold, the MAX5922 begins operating. Enable is also used to unlatch the part after a latched fault condition. This is done by toggling EN Iow and high again after a fault condition.

Overcurrent Protection

The MAX5922 provides a sophisticated overcurrent protection circuitry to ensure the device's robustness under output-current transient and current fault conditions. The current protection circuitry employs a constant current limit, a current foldback, and an overcurrent timeout. The device monitors the voltage drop, VSENSE (VSENSE $=$ VIN - VDRAIN) to determine the load current.

Constant Current Limit

The MAX5922 monitors VSENSE at all times during power mode and regulates the current through the power MOSFET as necessary to keep VSENSE (max) to the current-limit sense voltage (VILIM $=212 \mathrm{mV}$). The load-current limit, ILIM, is programmed by the currentsense resistor, RSENSE, connected from IN to DRAIN (lLIM $=$ VILIM/RSENSE). When the load current is less than ILIM, the MOSFET is fully on. When the load is trying to draw more than ILIM, the OUT pin works like a constant current source, limiting the output current to ILIM. If IOUT is at ILIM for greater than the current-limit timeout, a current-limit fault is generated and the power MOSFET is turned off (see the Overcurrent Timeout and Fault Management sections).

Current Foldback

While in current-limit condition, the voltage at the OUT pin drops. As the load resistance reduces (more loading), the output voltage reduces accordingly to maintain a constant load current. The power dissipation in the power MOSFET is (VDRAIN - VOUT) \times ILIM. As the output voltage drops lower, more power is dissipated across the power MOSFET. To reduce this power dissipation, the MAX5922 offers a current foldback feature where it linearly reduces the VILIM value when VOUT drops below the OUT current-limit foldback voltage $\left(V_{\text {FBSTOP }}=18 \mathrm{~V}\right)$. Figure 8 illustrates this current foldback limit behavior.

Overcurrent Timeout

The MAX5922 keeps track of the time it is in current limit. An internal digital counter begins incrementing its count at 1count/ms when VSENSE exceeds its limit (either VILIM or VILIM foldback in foldback mode). The counter is reset to zero if the current falls back below the current limit. When the cumulative count reaches 60 , an overcurrent fault is generated. After an overcurrent fault condition, the switch is turned off and the FAULT signal goes low (see Figure 9).

Figure 8. Current Foldback Characteristic

+48V, Single-Port Network Power Switch For Power-Over-LAN

This overcurrent timeout enables the MAX5922 to operate in a periodic overcurrent condition without causing a fault (see Figure 9).

Abstract

Power-OK (POK) POK goes open-drain tpOK_HIGH (88ms) after VOUT rises to within $\mathrm{V}_{\text {THPOK }}(0.75 \mathrm{~V}$) from VIN. POK goes low tpOK_LOW (1.4ms) after Vout drops 0.82V below VIN.

Zero-Current Detection

Zero-current detection is enabled if ZC_EN is high and only after the startup period has finished (indicated by POK going high). When VSENSE falls below the zerocurrent threshold (VZCTH) for a continuous tZCDEL = 350 ms , a zero-current fault is generated. The MOSFET is turned off and $\overline{Z C}$ is latched low. The MAX5922A and the MAX5922B/MAX5922C (with DET_DIS = low) immediately begin a PD detection sequence, regardless of the status of the LATCH input. \bar{Z} is unlatched and goes high impedance after a PD is detected. $\overline{Z C}$ is also high impedance during initial power-up. When DET_DIS is high (MAX5922B/MAX5922C), a zero-current fault shuts down the MOSFET and the EN pin needs to be toggled to unlatch the fault.
At any time during a zero-current condition, if VSENSE goes above $V_{\text {ZCTH }}$ for the zero-current deglitch time (tZC_DEG $=10 \mathrm{~ms}$), the zero-current counter resets to zero and a zero-current fault is not generated. Bring ZC_EN low to disable the zero-current detection function. $\overline{\mathrm{ZC}}$ stays high impedance in this mode.

Figure 9. Overcurrent Response

Thermal Shutdown
If the MAX5922 die temperature reaches $+150^{\circ} \mathrm{C}$, an overtemperature fault is generated. The MOSFET turns off and FAULT goes low. The MAX5922 die temperature must cool down below $120^{\circ} \mathrm{C}$ before the overtemperature fault condition is removed (see Fault Management section).

Fault Report ($\overline{\text { FAULT }}$)
$\overline{\text { FAULT }}$ goes low when there is an overcurrent fault and/or an overtemperature fault. $\overline{\text { FAULT }}$ is open-drain otherwise. After a fault, the $\overline{F A U L T}$ signal is latched low. $\overline{F A U L T}$ is unlatched at the beginning of the next power mode.

Fault Management
The MAX5922 offers either latched-off or auto-retry fault management configurable by the LATCH input. Bringing LATCH high puts the device into latch mode while pulling LATCH low selects the autoretry option.
In latch mode, the MAX5922 turns the MOSFET off and keeps it off after an overcurrent fault or an over-temperature fault. After the fault condition goes away, recycle the power supplies or toggle the EN pin low and high again to unlatch the part. However, the part waits a tRESTART period (1.92s) before recovering from a fault condition and resuming normal operation.

In autoretry mode, the MAX5922 turns the MOSFET off after an overcurrent or overtemperature fault. After the fault condition is removed, the device waits a tRESTART period (1.92s) and then automatically restarts and enters the PD detection mode (MAX5922A and MAX5922B/MAX5922C with DET_DIS low). If DET_DIS is high (MAX5922B/MAX5922C), the MAX5922B/ MAX5922C automatically restart into the power-up mode after tRESTDRT. If the fault was due to an overtemperature condition, the MAX5922 waits for its die temperature to cool down below the hysteresis level before starting the tRESTART time.

Detection Collision Avoidance

Detection collision avoidance is enabled by connecting the DCA pin directly to VDIG and disabled by connecting it to DGND. When DCA is high, the MAX5922A activates a back-off time, tDCA (2.8s), after every failed detection during PD detection mode. During this backoff time, the MAX5922A turns off the MOSFET and drives the OUT pin to high impedance. This function is required by the IEEE 802.3af standard if the PSE resides in a midspan system. After tDCA, the MAX5922A starts a PD detection sequence. The MAX5922B has this function internally disabled and the MAX5922C has this function internally enabled.

+48V, Single-Port Network Power Switch For Power-Over-LAN

Selector Guide

PART	PIN-PACKAGE	DETECTION COLLISION AVOIDANCE	PD DETECTION DISABLE
MAX5922AEUI	28 TSSOP	Selectable	-
MAX5922BEUI	28 TSSOP	Disabled	Selectable
MAX5922CEUI	28 TSSOP	Enabled	Selectable

Pin Configuration
Chip Information

	\bullet	28 OUT
		27 OUT
		26 N.C.
		25 DET_DIS (DCA)
	MノXIM	24 Class
	MAX5922A MAX5922B	23 V VIG
	MAX5922C	22 EN
		21 ZC_EN
		20 Latch
		19 DGND
		18 CLO
		$17 \mathrm{CL1}$
		$16 \mathrm{CL2}$
		15 TP3
	TSSOP	
) MAX5922A ONLY.	

TRANSISTOR COUNT: 8687
PROCESS: BiCMOS
+48V, Single-Port Network Power Switch For Power-Over-LAN

+48V, Single-Port Network Power Switch For Power-Over-LAN

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: *This is not a device pin.

