mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

19-5128; Rev 0; 1/10

EVALUATION KIT AVAILABLE

OV to 16V, Dual Hot-Swap Controller with 10-Bit Current and Voltage Monitor and 4 LED Drivers

General Description

The MAX5970 dual hot-swap controller provides complete protection for systems with two supply voltages from 0V to +16V. The MAX5970 includes four programmable LED outputs. The two hot-swap channels can be configured to operate as independent hot-swap controllers, or as a pair operating together so that both channels shut down if either channel experiences a fault.

The MAX5970 provides two programmable levels of overcurrent circuit-breaker protection: a fast-trip threshold for a fast turn-off, and a lower slow-trip threshold for a delayed turn-off. The maximum overcurrent circuit-breaker threshold range is set independently for each channel with a trilevel logic input IRNG_, or by programming though the I²C interface.

The MAX5970 is an advanced hot-swap controller that monitors voltage and current with an internal 10-bit ADC which is continuously multiplexed to convert the output voltage and current of both hot-swap channels at 10ksps. Each 10-bit sample is stored in an internal circular buffer so that 50 past samples of each signal can be read back through the I²C interface at any time or after a fault condition.

The device includes five user-programmable digital comparators per hot-swap channel to implement overcurrent warning and two levels of overvoltage/undervoltage detection. When any of the measured values violates the programmable limits, an external ALERT output is asserted. In addition to the ALERT signal, the MAX5970 can be programmed to deassert the power-good signal and/or turn off the external MOSFET.

The MAX5970 features four I/Os that can be independently configured as general-purpose inputs/outputs (GPIOs) or as open-drain LED drivers with programmable blinking. These four I/Os can be configured for any mix of LED driver or GPIO function.

The MAX5970 is available in a 36-pin thin QFN-EP package and operates over the -40°C to $+85^{\circ}$ C extended temperature range.

_Features

- Two Independent Hot-Swap Controllers Operate from 0V to +16V
- 10-Bit ADC Monitors Voltage and Current of Each Channel
- Circular Buffers Store 5ms of Current and Voltage Measurements
- Two Independent Internal Charge Pumps Generate n-Channel MOSFET Gate Drives
- Internal 500mA Gate Pulldown Current for Fast Shutdown
- VariableSpeed/BiLevel[™] Circuit-Breaker Protection
- Independent Precision-Voltage Enable Inputs
- Alert Output Indicates Fault and Warning Conditions
- Independent Power-Good Outputs
- Independent Fault Outputs
- Four Open-Drain Outputs Sink 25mA to Directly Drive LEDs
- Programmable LED Flashing Function
- Autoretry or Latched Fault Management
- ♦ 400kHz I²C Interface
- Small 6mm x 6mm, 36-Pin TQFN-EP Package

Applications

Single PCI Express[®] Hot-Plug Slot Blade Servers

Disk Drives/DASD/Storage Systems

Soft-Switch for ASICs, FPGAs, and Microcontrollers with Independent Core and I/O Voltages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5970ETX+	-40°C to +85°C	36 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

VariableSpeed/BiLevel is a trademark of Maxim Integrated Products, Inc. PCI Express is a registered trademark of PCI-SIG Corp.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

IN, SENSE_, MON_, GATE_ to AGND . LED_ to AGND	
ON_, SDA, SCL to AGND	0.3V to +6V
REG, DREG, IRNG_, MODE, PROT, A_,	
PG_, ALERT, FAULT_ to AGND	-0.3V to +4V
REG to DREG	0.3V to +0.3V
RETRY, HWEN, POL to AGND	0.3V to (V _{REG} + 0.3V)
GATE1 to MON1, GATE2 to MON2	0.3V to +6V
GND_, DGND to AGND	0.3V to +0.3V
SDA, ALERT Current	20mA to +50mA
LED_ Current	20mA to +100mA

GATE_, MON_, GND_ Current750mA
All Other Pins Input/Output Current
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
36-Pin, 6mm x 6mm TQFN
(derate 35.7mW/°C above +70°C)2857mW**
Junction-to-Ambient Thermal Resistance (θ_{JA}) (Note 1) 28°C/W
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal consideration, refer to www.maxim-ic.com/thermal-tutorial.

**As per JEDEC51 Standard (Multilayer Board)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 2.7V \text{ to } 16V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{IN} = 3.3V \text{ and } T_A = +25^{\circ}C.)$ (Note 2)

	0.000		00101710110					
PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	
Supply Input-Voltage Range	Vin			2.7		16	V	
Hot-Swap Voltage Range				0		16	V	
Supply Current	lin				2.5	4	mA	
Internal LDO Output Voltage	REG	$I_{REG} = 0$ to 5m/	A, V _{IN} = 2.7V to 16V	2.49	2.53	2.6	V	
Undervoltage Lockout	UVLO	V _{IN} rising				2.7	V	
Undervoltage Lockout Hysteresis	UVLOHYS				100		mV	
CURRENT-MONITORING FUN	ICTION						•	
MON_, SENSE_ Input-Voltage Range				0		16	V	
SENSE_ Input Current		VSENSE_, VMON	_ = 16V		32	75	μA	
MON_ Input Current		VSENSE_, VMON	I_ = 16V		180	280	μA	
		25mV range		24.34				
Current Measurement LSB Voltage		50mV range		48.39		μV		
Voltage		100mV range			96.77]	
			VSENSE VMON_ = 5mV	-6.57		+6.22		
Current Measurement Error		VMON_ = 0V	VSENSE VMON_ = 20mV	-6.71		+6.82	- % FS	
(25mV Range)		V _{MON} = 2.5V	VSENSE VMON_ = 5mV	-9.71		+8.92		
		to 16V	VSENSE VMON_ = 20mV	-10.24		+9.36		
		V _{MON} = 0V	VSENSE VMON_ = 10mV	-4.24		+3.78		
Current Measurement Error	Measurement Error		$V_{SENSE} - V_{MON} = 40 mV$	-4.53		+5.36		
(50mV Range)		$V_{MON} = 2.5V$	VSENSE VMON_ = 10mV	-4.50		+4.00	_ ⁄₀ гЗ	
		to 16V	$V_{SENSE} - V_{MON} = 40 mV$	-4.20		+4.50		

ELECTRICAL CHARACTERISTICS (continued)

(VIN = 2.7V to 16V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VIN = 3.3V and TA = +25°C.) (Note 2)

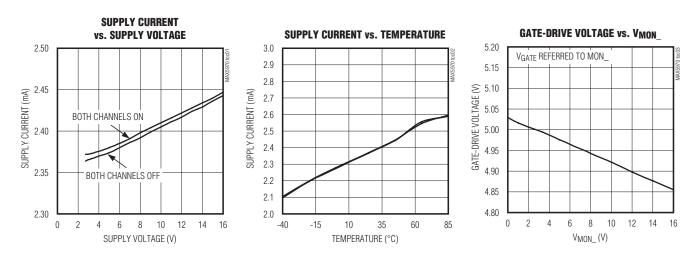
PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
			VSENSE VMON_ = 20mV	-2.70		+2.43	
Current Measurement Error		VMON_ = 0V	VSENSE VMON_ = 80mV	-3.63		+4.56	
(100mV Range)		V _{MON} _ = 2.5V	VSENSE VMON_ = 20mV	-3.14		+3.19	- % FS
		to 16V	VSENSE VMON_ = 80mV	-3.80		+3.93	
			Circuit breaker, DAC = 102	-2.106		+0.888	
Fast Current-Limit Threshold		$V_{MON} = 0V$	Circuit breaker, DAC = 255	-2.986		+0.641	
Error (25mV Range)		V _{MON} _ = 2.5V	Circuit breaker, DAC = 102	-3.000		+1.000	- mV
		to 16V	Circuit breaker, DAC = 255	-3.500		+1.500	-
			Circuit breaker, DAC = 102	-3.1188		+0.926	
Fast Current-Limit Threshold		$V_{MON} = 0V$	Circuit breaker, DAC = 255	-4.873		+0.3421	
Error (50mV Range)		VMON_ = 2.5V	Circuit breaker, DAC = 102	-3.2668		+0.9228	- mV
		to 16V	Circuit breaker, DAC = 255	-4.7		+1.0212	1
			Circuit breaker, DAC = 102	-4.7987		+1.1812	
Fast Current-Limit Threshold		$V_{MON} = 0V$	Circuit breaker, DAC = 255	-8.9236		+0.202	
Error (100mV Range)		VMON_ = 2.5V C	Circuit breaker, DAC = 102	-4.9991		+0.6374	- mV
		to 16V	Circuit breaker, DAC = 255	-8.262		+1	
			Circuit breaker, DAC = 102	-1.7965		+1.5496	
Slow Current-Limit Threshold Error (25mV Range)		$V_{MON} = 0V$	Circuit breaker, DAC = 255	-1.86		+1.5916	- mV
		V _{MON} _ = 2.5V	Circuit breaker, DAC = 102	-2.149		+1.9868	
		to 16V	Circuit breaker, DAC = 255	-2.2285		+1.9982	
		VMON_ = 0V VMON_ = 2.5V	Circuit breaker, DAC = 102	-2.3992		+1.8723	mV
Slow Current-Limit Threshold			Circuit breaker, DAC = 255	-2.5146		+2.1711	
Error (50mV Range)			Circuit breaker, DAC = 102	-2.4716		+2.181	
			Circuit breaker, DAC = 255	-2.7421		+2.1152	
			Circuit breaker, DAC = 102	-3.3412		+2.989	
Slow Current-Limit Threshold		$VMON_ = 0V$	Circuit breaker, DAC = 255	-3.8762		+3.6789	
Error (100mV Range)		$V_{MON} = 2.5V$	Circuit breaker, DAC = 102	-3.2084		+2.7798	- mV
		to 16V	Circuit breaker, DAC = 255	-3.8424		+2.6483	1
Fast Circuit-Breaker Response Time	tecb.	Overdrive = 10	% of current-sense range		2		μs
Slow Current-Limit Response	tSCB	Overdrive = 4%	of current-sense range		2.4		
Time		Overdrive = 8%	of current-sense range		1.2		ms
		Overdrive = 16	% of current-sense range		0.6		1
THREE-STATE INPUTS	I	1		I			1
A_, IRNG_, MODE, PROT Low Current	lin_low	Input voltage =	0.4V	-40			μA
A_, IRNG_, MODE, PROT T High Current	IIN_HIGH	Input voltage =	Input voltage = V _{REG} - 0.2V			40	μA
A_, IRNG_, MODE, PROT Open Current	IFLOAT	Maximum sourc	ce/sink current for open state	-4		+4	μΑ

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = 2.7V \text{ to } 16V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{IN} = 3.3V \text{ and } T_A = +25^{\circ}\text{C}.)$ (Note 2)

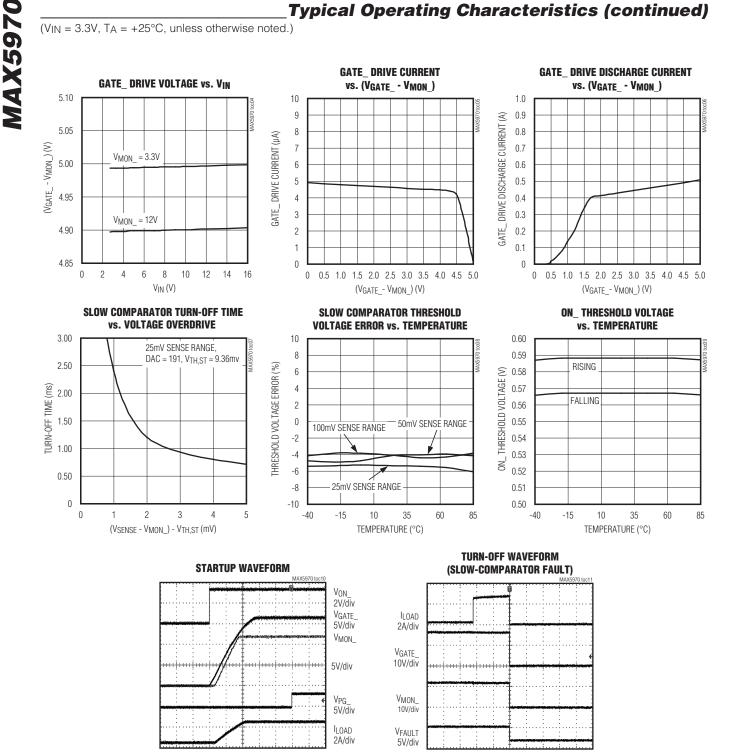
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
A_, IRNG_, MODE, PROT Low Voltage		Relative to AGND			0.4	V
A_, IRNG_, MODE, PROT High Voltage		Relative to REG	-0.24			V
TWO-STATE INPUTS		L				
ON_ Input Voltage	Von_		0.582	0.592	0.602	V
ON_ Input Hysteresis	VON_HYS			4		%
ON_ Input Current			-100		+100	nA
TIMING	1	· · · · · · · · · · · · · · · · · · ·				
				50		
		Register configurable		100		1
MON_ to PG_ Delay		(see Tables 31a and 31b)		200		ms
				400		1
CHARGE PUMP (GATE_)		· · · · · · · · · · · · · · · · · · ·				
Charge-Pump Output Voltage		Relative to MON_, IGATE = 0	4.5	5.1	5.5	V
Charge-Pump Output Source Current	IG(UP)		4	5	6	μA
GATE_ Discharge Current	IG(DN)	VGATE VMON_ = 2V		500		mA
OUTPUT (FAULT_, PG_, ALE	. ,					1
Output-Voltage Low		ISINK = 3.2mA	1		0.2	V
Output Leakage Current					1	μA
			<u> </u>			
LED_ Input Threshold Low Level	VIL				0.4	V
LED_ Input Threshold High Level	Vih		1.4			V
LED_ Output Low	Vol	I _{LED_} = 25mA			0.7	V
LED_ Input Leakage Current (Open Drain)	IGPIO_IX	V _{LED} = 16V	-1		+1	μA
LED_ Weak Pullup Current	IPU_WEAK	VLED_ = VIN - 0.65V	2			μA
ADC PERFORMANCE			1			
Resolution				10		Bits
Maximum Integral Nonlinearity	INL			1		LSB
ADC Total Monitoring Cycle Time		Two voltage and two current-sense conversion	95	100	110	μs
		16V range	15.23	15.49	15.69	
		8V range	7.655	7.743	7.811	1
MON_LSB Voltage		4V range	3.811	3.875	3.933	mV
		2V range	1.899	1.934	1.966	1
		16V range	10	25	41	
MON_ Code 000H to 001H		8V range	4.7	12	21	1
Transition Voltage		4V range	2	6	12	mV
0	 	2V range	0.5	3	5.5	1

ELECTRICAL CHARACTERISTICS (continued)


(VIN = 2.7V to 16V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VIN = 3.3V and TA = +25°C.) (Note 2)

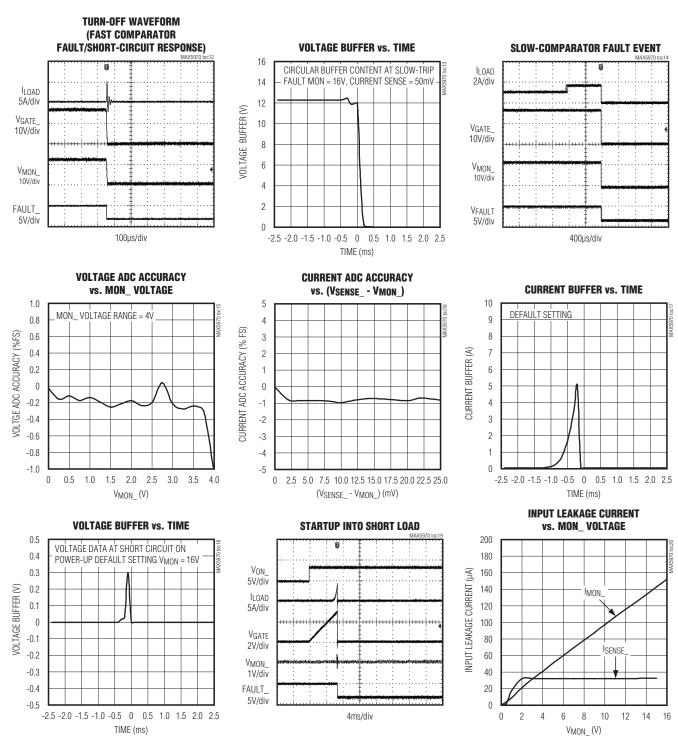
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I ² C INTERFACE		1	P			
Serial-Clock Frequency	fscl				400	kHz
Bus Free Time Between STOP and START Condition	tBUF		1.3			μs
START Condition Setup Time	tsu:sta		0.6			μs
START Condition Hold Time	thd:sta		0.6			μs
STOP Condition Setup Time	tsu:sto		0.6			μs
Clock High Period	thigh		0.6			μs
Clock Low Period	tlow		1.3			μs
Data Setup Time	tsu:dat		100			ns
Data Hald Time	t	Transmit	100			
Data Hold Time	thd:dat	Receive	300		900	– ns
Output Fall Time	tOF	C _{BUS} = 10pF to 400pF			250	ns
Pulse Width of Spike Suppressed	tSP			50		ns
SDA, SCL Input High Voltage	Vih		1.8			V
SDA, SCL Input Low Voltage	VIL				0.8	V
SDA, SCL Input Hysteresis	VHYST			0.22		V
SDA, SCL Input Current			-1		+1	μA
SDA, SCL Input Capacitance				15		pF
SDA Output Voltage	Vol	ISINK = 4mA			0.4	V

Note 2: All devices are 100% production tested at TA = +25°C. Limits over the temperature range are guaranteed by design.


Typical Operating Characteristics

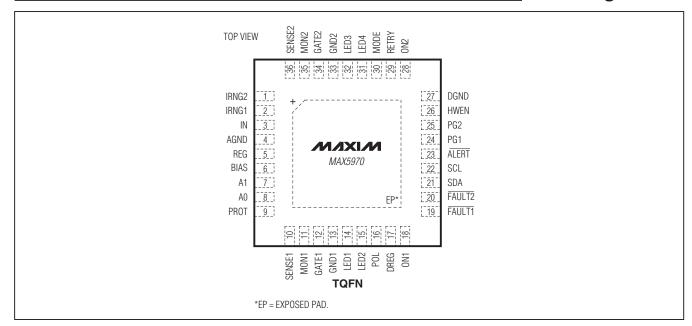
($V_{IN} = 3.3V$, $T_A = +25^{\circ}C$, unless otherwise noted.)

MAX5970


 $(V_{IN} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

10ms/div

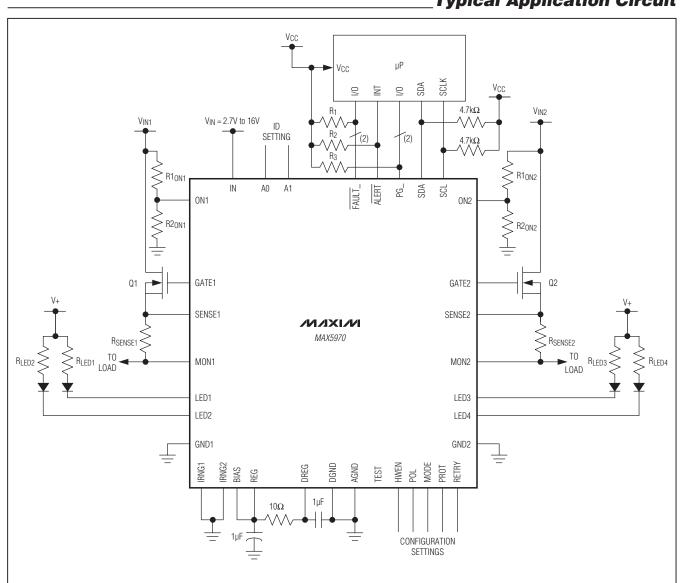
Typical Operating Characteristics (continued)


400µs/div

Typical Operating Characteristics (continued)

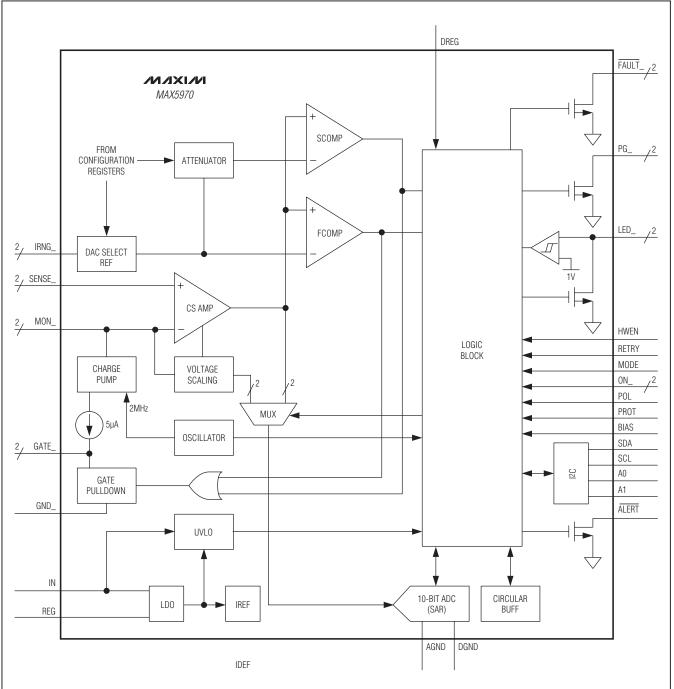
(V_{IN} = 3.3V, T_A = +25°C, unless otherwise noted.)

Pin Configuration



Pin Description

PIN	NAME	FUNCTION
1	IRNG2	Channel 2 Three-State Current-Sense Range Selection Input. Set the circuit-breaker threshold range by connecting to DGND, DREG, or leave unconnected.
2	IRNG1	Channel 1 Three-State Current-Sense Range Selection Input. Set the circuit-breaker threshold range by connecting to DGND, DREG, or leave unconnected.
3	IN	Power-Supply Input. Connect to a voltage from 2.7V to 16V. Bypass to AGND with a 1µF capacitor.
4	AGND	Analog Ground. Connect all GND_ and DGND to AGND externally using a star connection.
5	REG	Internal Regulator Output. Bypass to ground with a 1µF capacitor. Connect only to DREG. Do not use to power external circuitry.
6	BIAS	For normal operation, connect BIAS to REG.
7	A1	Three-State I ² C Address Input 1
8	A0	Three-State I ² C Address Input 0
9	PROT	Protection Behavior Input. Three-state input sets one of three different response options for undervoltage and overvoltage events.
10	SENSE1	Channel 1 Current-Sense Input. Connect SENSE1 to the source of an external MOSFET and to one end of RSENSE1.
11	MON1	Channel 1 Voltage Monitoring Input
12	GATE1	Channel 1 Gate-Drive Output. Connect to the gate of an external n-channel MOSFET.
13	GND1	Channel 1 Gate Discharge Current Ground Return. Connect all GND_ and DGND to AGND externally using a star connection.


PIN	NAME	FUNCTION
14	LED1	LED Driver 1
15	LED2	LED Driver 2
16	POL	Polarity Select Input. Connect to DREG for active-high power-good outputs (PG_). Connect to GND for active-low power-good outputs.
17	DREG	Logic Power-Supply Input. Connect to REG externally through a 10Ω resistor and to DGND with a $1\mu\text{F}$ ceramic capacitor.
18	ON1	Channel 1 Precision Turn-On Input
19	FAULT1	Channel 1 Active-Low Open-Drain Fault Output. FAULT1 goes low if an overcurrent occurs on channel 1.
20	FAULT2	Channel 2 Active-Low Open-Drain Fault Output. FAULT2 goes low if an overcurrent occurs on channel 2.
21	SDA	I ² C Serial-Data Input/Output
22	SCL	I ² C Serial-Clock Input
23	ALERT	Open-Drain Alert Output. ALERT goes low during a fault to notify the system of an impending failure.
24	PG1	Channel 1 Open-Drain Power-Good Output
25	PG2	Channel 2 Open-Drain Power-Good Output
26	HWEN	Hardware Enable Input. Connect to DREG or DGND. State is read upon power-up as V _{IN} crosses the UVLO threshold and sets enable register bits with this value. After UVLO, this input becomes inactive until power is cycled.
27	DGND	Digital Ground. Connect all GND_ and DGND to AGND externally using a star connection.
28	ON2	Channel 2 Precision Turn-On Input
29	RETRY	Autoretry Fault Management Input. Connect to DREG to enable autoretry operation. Connect to DGND to enable latched-off operation.
30	MODE	Hot-Swap Two-State Mode Select Input. Connect MODE to DGND, DREG or leave it unconnected to oper- ate the hot-swap channels independently or as a pair.
31	LED4	LED Driver 4
32	LED3	LED Driver 3
33	GND2	Channel 2 Gate Discharge Current Ground Return. Connect all GND_ and DGND to AGND externally using a star connection.
34	GATE2	Channel 2 Gate-Drive Output. Connect to gate of an external n-channel MOSFET.
35	MON2	Channel 2 Voltage Monitoring Input
36	SENSE2	Channel 2 Current-Sense Input. Connect SENSE2 to the source of an external MOSFET and to one end of RSENSE2.
	EP	Exposed Pad. EP is internally grounded. Connect externally to ground plane using a star connection.

Pin Description (continued)

Typical Application Circuit

MAX5970

Detailed Description

The MAX5970 includes a set of registers that are accessed through the I^2C interface. Some of the registers

are read only and some of the registers are read and write that are updated to configure the MAX5970 for a specific operation. See Tables 1a and 1b for the registers map.

RESET READ/ REGISTER DESCRIPTION **CHANNEL 1 CHANNEL 2** WRITE VALUE High 8 bits ([9:2]) of latest current-signal adc_chx_cs_msb 0x00 0x04 R ADC result Low 2 bits ([1:0]) of latest current-signal ADC 0x01 0x05 R adc_chx_cs_lsb result High 8 bits ([9:2]) of latest voltage-signal adc_chx_mon_msb 0x02 0x06 R ADC result Low 2 bits ([1:0]) of latest voltage-signal R adc_chx_mon_ lsb 0x03 0x07 ADC result High 8 bits ([9:2]) of current-signal minimum R min chx cs msb 0x08 0x10 0xFF value Low 2 bits ([1:0]) of current-signal minimum R min_chx_cs_ lsb 0x09 0x11 0x03 value High 8 bits ([9:2]) of current-signal maximum 0x0A 0x12 0x00 R max_chx_cs_msb value Low 2 bits ([1:0]) of current-signal maximum max_chx_cs_ lsb 0x0B 0x13 0x00 R value High 8 bits ([9:2]) of voltage-signal minimum min_chx_mon_msb 0x0C 0x14 0xFF R value Low 2 bits ([1:0]) of voltage-signal minimum 0x0D 0x03 R min chx mon Isb 0x15 value High 8 bits ([9:2]) of voltage-signal maximum R max_chx_mon_msb 0x0F 0x16 0x00 value Low 2 bits ([1:0]) of voltage-signal maximum max_chx_mon_ lsb 0x0F 0x17 0x00 R value High 8 bits ([9:2]) of undervoltage warning uv1thr chx msb 0x1A 0x24 0x00 R/W (UV1) threshold Low 2 bits ([1:0]) of undervoltage warning uv1thr_chx_lsb 0x25 0x00 R/W 0x1B (UV1) threshold High 8 bits ([9:2]) of undervoltage critical uv2thr chx msb 0x1C 0x26 0x00 R/W (UV2) threshold Low 2 bits ([1:0]) of undervoltage critical uv2thr_chx_ lsb 0x1D 0x27 0x00 R/W (UV2) threshold High 8 bits ([9:2]) of overvoltage warning 0xFF R/W ov1thr_chx_msb 0x1E 0x28 (OV1) threshold

0x1F

0x29

Low 2 bits ([1:0]) of overvoltage warning

(OV1) threshold

Table 1a. Register Address Map (Channel Specific)

R/W

0x03

ov1thr_chx_lsb

REGISTER	DESCRIPTION	CHANNEL 1	CHANNEL 2	RESET VALUE	READ/ WRITE
ov2thr_chx_msb	High 8 bits ([9:2]) of overvoltage critical (OV2) threshold	0x20	0x2A	0xFF	R/W
ov2thr_chx_ lsb	Low 2 bits ([1:0]) of overvoltage critical (OV2) threshold	0x21	0x2B	0x03	R/W
oithr_chx_msb	High 8 bits ([9:2]) of overcurrent warning threshold	0x22	0x2C	0xFF	R/W
oithr_chx_ lsb	Low 2 bits ([1:0]) of overcurrent warning threshold	0x23	0x2D	0x03	R/W
dac_chx-fast	Fast-comparator threshold DAC setting	0x2E	0x2F	0xBF	R/W
cubf_ba_chx_v	Base address for block read of 50-sample voltage-signal data buffer	0x46	0x48		R
cubf_ba_chx_i	Base address for block read of 50-sample current-signal data buffer	0x47	0x49	_	R

Table 1a. Register Address Map (Channel Specific) (continued)

Table 1b. Register Address Map (General)

REGISTER	DESCRIPTION	ADDRESS (HEX CODE)	RESET VALUE	READ/ WRITE
mon_range	MON input range setting	0x18	0x00	R/W
cbuf_chx_store	Selective enabling of circular buffer	0x19	0x0F	R/W
ifast2slow	Current threshold fast-to-slow ratio setting	0x30	0x0F	R/W
status0	Slow-trip and fast-trip comparators status register	0x31	0x00	R
status1	PROT, MODE, and ON_ inputs status register	0x32	_	R
status2	Fast-trip threshold maximum range setting bits, from IRNG_ three-state inputs	0x33	_	R/W
status3	LATCH, POL, ALERT, and PG_ status register	0x34		R
fault0	Status register for undervoltage detection (warning or critical)	0x35	0x00	R/C
fault1	Status register for overvoltage detection (warning or critical)	0x36	0x00	R/C
fault2	Status register for overcurrent detection (warning)	0x37	0x00	R/C
pgdly	Delay setting between MON measurement and PG_ assertion	0x38	0x00	R/W
fokey	Load register with 0xA5 to enable force-on function	0x39	0x00	R/W
foset	Register that enables force-on function for a channel	0x3A	0x00	R/W
chxen	Channel enable bits	0x3B	_	R/W
dgl_i	OC deglitch enable bits	0x3C	0x00	R/W
dgl_uv	UV deglitch enable bits	0x3D	0x00	R/W
dgl_ov	OV deglitch enable bits	0x3E	0x00	R/W
cbufrd_hibyonly	Circular buffers readout mode: 8 bit or 10 bit	0x3F	0x0F	R/W
cbuf_dly_stop	Circular buffer stop-delay. Number of samples recorded to the circular buffer after channel shutdown.	0x40	0x19	R/W
peak_log_rst	Reset control bits for peak-detection registers	0x41	0x00	R/W
peak_log_hold	Hold control bits for peak-detection registers	0x42	0x00	R/W

Table 1b. Register Address Map (General) (continued)

REGISTER	DESCRIPTION	ADDRESS (HEX CODE)	RESET VALUE	READ/ WRITE
LED_Flash	LED flash/GPIO enable register	0x43	0x00	R/W
LED_ph_pu	LED phase/weak pullup enable register	0x44	0x00	R/W
LED_state	LED pins voltage state register (LED pins set open)	0x45	0x00	R

Grouping Hot-Swap Channels

The MAX5970 can operate as either two independent hot-swap controllers or as a pair. See Table 2 for the configuration option based on the MODE logic level.

Hot-Swap Channels On-Off Control

Depending on the configuration of the Chx_EN1 and Chx_EN2 bits, when VIN is above the VUVLO threshold and the ON_ input reaches its internal threshold, the MAX5970 turns on the external n-channel MOSFET for the corresponding channel, allowing power to flow to the load. The channel is enabled depending on the output of a majority function. Chx_EN1, Chx_EN2, and ON_ are the inputs to the majority function and the channel is enabled when two or more of these inputs are 1.

(Channel enabled) = (Chx_EN1 x Chx_EN2) + (Chx_EN1 x ON_) + (Chx_EN2 x ON_)

The inputs ON_ and Chx_EN2 can be set externally; the initial state of the Chx_EN2 bits in register *chxen* is set by the state of the HWEN input when VIN rises above VUVLO. The ON_ inputs connect to internal precision analog comparators with a 0.6V threshold. Whenever VON_ is above 0.6V, the corresponding ON_ bit in register *status1[0:1]* is set to 1. The inputs Chx_EN1 and Chx_EN2 can be set using the I²C interface; the Chx_EN1 bits have a default value of 0. This makes it possible to enable or disable each of the MAX5970 channels independently with or without using the I²C interface (see Tables 3, 4a, and 4b).

Table 2. Grouping Hot-S	wap Channels
-------------------------	--------------

MODE INPUT	FUNCTION	DESCRIPTION
Low	Independent	Each channel operates as an independent hot-swap controller. A fault shutdown in one channel does not affect operation of other channel.
High/unconnected	Paired	Channel 0 and channel 1 operate together as one pair. A fault shutdown in one channel shuts down both channels in the pair. Both channels share the ADC monitoring capability.

Table 3. chxen Register Format

Description:		Channel enal	Channel enable bits, from HWEN input and Chx_EN1 bits					
Register Title		chxen						
Register Add	ress:	0x3B						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
				Ch2_EN2	Ch2_EN1	Ch1_EN2	Ch1_EN1] _ [
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-

Table 4a. status1 Register Function

REGISTER ADDRESS	BIT RANGE	DESCRIPTION
	[1:0]	ON_Inputs State 1 = ON_ above 600mV channel enable threshold 0 = ON_ below 600mV channel enable threshold Bit 0: ON1 Bit 1: ON2
0x32	[4]	Channel Grouping Mode (MODE Input) 0 = Grouped (MODE high or open) 1 = Independent (MODE low)
	[7:6]	Voltage Critical Behavior (PROT Input) 00 = Assert ALERT upon UV/OV critical (same as UV/OV warning behavior) 01 = Assert ALERT and deassert PG_ upon UV/OV critical 10 = Assert ALERT, deassert PG_, and shutdown channel(s) upon UV/OV critical 11 = (Not possible)

Table 4b. status1 Register Format

Description:		Channel grouping (three-state MODE input), fault-detection behavior (three-state PROT input ON_ inputs status register)T input), and
Register Title	:	status1						
Register Add	ress:	0x32						
R	R	R	R	R	R	R	R	RESET VALUE
prot[1]	prot[0]	_	mode[0]		_	ON2	ON1	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Figure 1 shows the detailed logic operation of the hotswap enable signals Chx_EN1, Chx_EN2, and ON_, as well as the effect of various fault conditions.

An input undervoltage threshold control for enabling the hot-swap channel can be implemented by placing a resistive divider between the drain of the hot-swap MOSFET and ground, with the midpoint connected to ON_. The turn-on threshold voltage for the channel is then:

$V_{EN} = 0.6V \times (R1 + R2)/R2$

The maximum rating for the $\mbox{ON}\xspace$ is 6V; do not exceed this value.

Startup

When all conditions for channel turn-on are met, the external n-channel MOSFET switch is fully enhanced with a typical gate-to-source voltage of 5V to ensure a low drain-to-source resistance. The charge pump at each GATE_ driver sources 5 μ A to control the output voltage turn-on voltage slew rate. An external capacitor can be added from GATE_ to GND_ to further reduce the voltage slew rate. Placing a 1k Ω resistor in series with this capacitance prevents the added capacitance from increasing the gate turn-off time. Total inrush current is the load current summed with the product of the gate voltage slew rate dV/dt and the load capacitance.

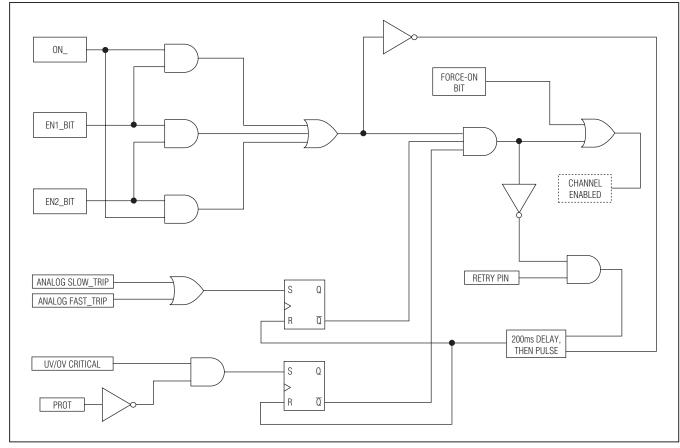


Figure 1. Channel On-Off Control Logic Functional Schematic

To determine the output dV/dt during startup, divide the GATE_ pullup current $I_{G(UP)}$ by the gate-to-ground capacitance. The voltage at the source of the external MOSFET follows the gate voltage, so the load dV/dt is the same as the gate dV/dt. Inrush current is the product of the dV/dt and the load capacitance. The time to start up tsU is the hot-swap voltage VS_ divided by the output dV/dt.

Be sure to choose an external MOSFET that can handle the power dissipated during startup. The inrush current is roughly constant during startup, and the voltage drop across the MOSFET (drain to source) decreases linearly as the load capacitance charges. The resulting power dissipation is therefore roughly equivalent to a single pulse of magnitude (VS_ x Inrush current)/2 and duration ts_U. Refer to the thermal resistance charts in the MOSFET data sheet to determine the junction temperature rise during startup, and ensure that this does not exceed the maximum junction temperature for worstcase ambient conditions.

Circuit-Breaker Protection

As the channel is turned on and during normal operation, two analog comparators are used to detect an overcurrent condition by sensing the voltage across an external resistor connected between SENSE_ and MON_. If the voltage across the sense resistor is less than the slow-trip and fast-trip circuit-breaker thresholds, the GATE_ output remains high. If either of the thresholds is exceeded due to an overcurrent condition, the gate of the MOSFET is pulled down to MON_ by an internal 500mA current source.

The higher of the two comparator thresholds, the fasttrip, is set by an internal 8-bit DAC (see Table 8), within one of three configurable full-scale current-sense ranges: 25mV, 50mV, or 100mV (see Tables 7a and 7b). The 8-bit fast-trip threshold DAC can be programmed

		5						
Description:		Current threshold fast to slow setting bits						
Register Title	:	ifast2slow						
Register Add	ress:	0x30						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
	_		_	Ch2 FS1	Ch2 FS0	Ch1 FS1	Ch1_FS0	0x0F
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	1

Table 5a. ifast2slow Register Format

Table 5b. Setting Fast-Trip to Slow-Trip Threshold Ratio

Chx_FS1	Chx_FS0	FAST-TRIP TO SLOW-TRIP RATIO (%)
0	0	125
0	1	150
1	0	175
1	1	200

from 40% to 100% of the selected full-scale currentsense range. The slow-trip threshold follows the fast-trip threshold as one of four programmable ratios, set by the ifast2slow register (see Tables 5a and 5b).

The fast-trip threshold is always higher than the slow-trip threshold, and the fast-trip comparator responds very quickly to protect the system against sudden, severe overcurrent events. The slower response of the slowtrip comparator varies depending upon the amount of overdrive beyond the slow-trip threshold. If the overdrive is small and short-lived, the comparator does not shut down the affected channel. As the overcurrent event increases in magnitude, the response time of the slowtrip comparator decreases. This scheme provides good rejection of noise and spurious overcurrent transients near the slow-trip threshold while aggressively protecting the system against larger overcurrent events that occur as a result of a load fault.

Setting Circuit-Breaker Thresholds

To select and set the MAX5970 slow-trip and fast-trip comparator thresholds, use the following procedure:

 Select one of four ratios between the fast-trip threshold and the slow-trip threshold: 200%, 175%, 150%, or 125%. A system that experiences brief, but large transient load currents should use a higher ratio, whereas a system that operates continuously at higher average load currents might benefit from a smaller ratio to ensure adequate protection. The ratio is set by writing to the ifast2slow register. The default setting on power-up is 200%.

2) Determine the slow-trip threshold VTH,ST based on the anticipated maximum continuous load current during normal operation, and the value of the current-sense resistor. The slow-trip threshold should include some margin (possibly 20%) above the maximum load current to prevent spurious circuit-breaker shutdown and to accommodate passive component tolerances:

VTH,ST = RSENSE × ILOAD,MAX × 120%

3) Calculate the necessary fast-trip threshold V_{TH,FT} based on the ratio set in step 1:

VTH,FT = VTH,ST x (ifast2slow ratio)

- 4) Select one of the four maximum current-sense ranges: 25mV, 50mV, or 100mV. The current-sense range is initially set upon power-up by the state of the associated IRNG_ input, but can be altered at any time by writing to the status2 register. For maximum accuracy and best measurement resolution, select the lowest current-sense range that is larger than the VTH,FT value calculated in Step 3.
- 5) Program the fast-trip and slow-trip thresholds by writing an 8-bit value to the dac_chx register. This 8-bit value is determined from the desired VTH,ST value that was calculated in Step 2, the threshold ratio from Step 1, and the current-sense range from Step 4:

DAC = V_{TH,ST} x 255 x (ifast2slow ratio)/ (IRNG_ current-sense range)

ster x (if:

MAX597(

MAX5970

The MAX5970 provides a great deal of system flexibility because the current-sense range, DAC setting, and threshold ratio can be changed on the fly for systems that must protect a wide range of interchangeable load devices, or for systems that control the allocation of power to smart loads. Table 6 shows the specified

ranges for the fast-trip and slow-trip thresholds for all combinations of current-sense range and threshold ratio.

When an overcurrent event causes the MAX5970 to shut down a channel, a corresponding open-drain FAULT_ output alerts the system. Figure 2 shows the operation and fault-management flowchart for one channel of the MAX5970.

Table 6. Specified Current-Sense and Circu	it-Breaker Threshold Ranges
--	-----------------------------

IRNG_ INPUT	FAST-TRIP DAC OUTPUT RANGE (mV)	GAIN (2-BIT) (V _{FAST} /V _{SLOW}) ifast2slow (DEFAULT = 11)	SLOW-TRIP THRESHOLD RANGE (mV)
		00 (125%)	8.00 to 20.00
	10 to 25	01 (150%)	6.67 to 16.67
Low	10 10 25	10 (175%)	5.71 to 14.29
		11 (200%)	5.00 to 12.50
		00 (125%)	16.00 to 40.00
High	00 to 50	01 (150%)	13.33 to 33.33
High	20 to 50	10 (175%)	11.48 to 28.57
		11 (200%)	10.00 to 25.00
		00 (125%)	32.00 to 80.00
Linconnected	40 to 100	01 (150%)	26.67 to 66.67
Unconnected	40 to 100	10 (175%)	22.86 to 57.14
		11 (200%)	20.00 to 50.00

Table 7a. IRNG Inputs Status Register Format

Description:Fast-trip threshold maximum range setting bits, from IRNG_ three-state inputsRegister Title:Status 2								
Register Add		0x33						
-								
				R/W	R/W	R/W	R/W	RESET VALUE
_	_	_	_	CH1_ IRNG1	CH1_ IRNG0	CH0_ IRNG1	CH0_ IRNG0	_
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 7b. Setting Current-Sense Range

IRNG_ PIN STATE	Chx_IRNG1	Chx_IRNG0	MAXIMUM CURRENT-SENSE SIGNAL (mV)
Low	1	0	25
High	0	1	50
Open	0	0	100

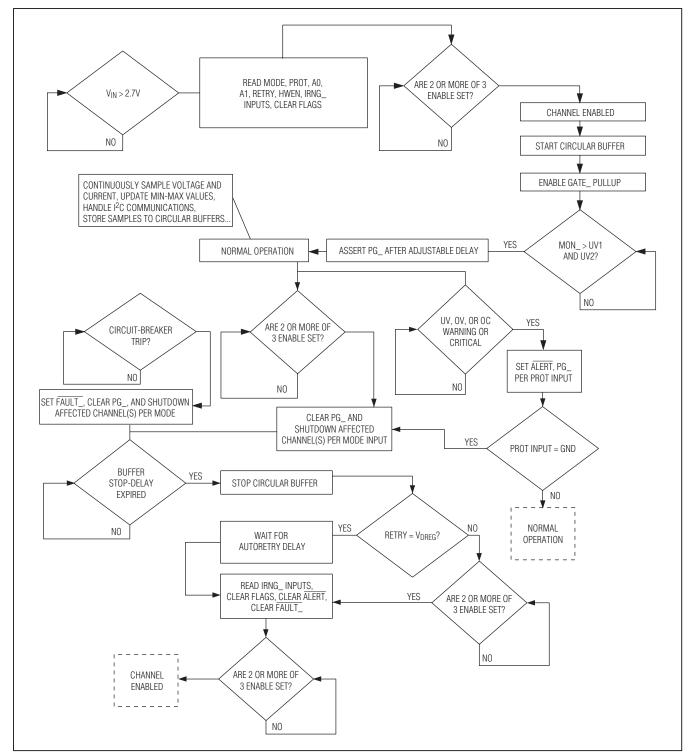


Figure 2. Operation and Fault-Management Flowchart for One Channel

Description:		Fast-comparator threshold DAC setting						
Register Title:	Register Title:		dac_ch0 dac_ch1					
Register Addr	resses:	0x2E	0x2F					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
DAC[7]	DAC[6]	DAC[5]	DAC[4]	DAC[3]	DAC[2]	DAC[1]	DAC[0]	0xBF
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 8. dac_chx Register Format

MAX5970

Digital Current Monitoring

The two current-sense signals are sampled by the internal 10-bit 10ksps ADC, and the most recent results are stored in registers for retrieval through the I²C interface. The current conversion values are 10 bits wide, with the eight high-order bits written to one 8-bit register and the two low-order bits written to the next higher 8-bit register address (Tables 9 and 10). This allows use of just the high-order byte in applications where 10-bit precision is not required. This split 8-bit/2-bit storage scheme is used throughout the MAX5970 for all 10-bit ADC conversion results and 10-bit digital comparator thresholds.

Table 9. ADC Current Conversion Results Register Format (High-Order Bits)

Description:		Most recent c	urrent conversi	on result, high-	order bits [9:2]			
Register Title		adc_ch0_cs_r	msb adc_ch	1_cs_msb				
Register Add	Register Addresses: 0x00		0x04					
R	R	R	R	R	R	R	R	RESET VALUE
inew_9	inew_8	inew_7	inew_6	inew_5	inew_4	inew_3	inew_2	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 10. ADC Current Conversion Results Register Format (Low-Order Bits)

Description:		Most recent cu	rrent convers	ion result, low-c	order bits [0:1]					
Register Title	Э:	adc_ch0_cs_ ls	sb adc_cl	adc_ch1_cs_lsb						
Register Add	Register Addresses: 0x01		0x05							
R	R	R	R	R	R	R	R	RESET VALUE		
						inew_1	inew_0	0x00		
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			

Once the PG_ output is asserted, the most recent current samples are continuously compared to the programmable overcurrent warning register values. If the measured current value exceeds the warning level, the ALERT output is asserted. The MAX5970 response to this digital comparator is not altered by the setting of the PROT input (Tables 11 and 12).

> Minimum and Maximum Value Detection for Current Measurement Values

All current measurement values from the ADC are continuously compared with the contents of minimum-

and maximum-value registers, and if the most recent measurement exceeds the stored maximum or is less than the stored minimum, the corresponding register is updated with the new value. These peak detection registers are read accessible through the I²C interface (Tables 13–16). The minimum-value registers are reset to 0x3FF, and the maximum-value registers are reset to 0x000. These reset values are loaded upon startup of a channel or at any time as commanded by register peak_log_rst (Table 36).

Table 11. Overcurrent Warning Threshold Register Format (High-Order Bits)

Description:		Overcurrent w	varning thresho	ld high-order b	its [9:2]			
Register Title	:	oi_ch0_msb	oi_ch1_	_msb				
Register Add	Register Addresses: 0x22		0x2C					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
oi_9	oi_8	oi_7	oi_6	oi_5	oi_4	oi_3	oi_2	0xFF
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Table 12. Overcurrent Warning Threshold Register Format (Low-Order Bits)

Description:		Overcurrent w	arning thresho	ld low-order bi	its [1:0]			
Register Title	:	oi_ch0_ lsb	oi_ch1	_lsb				
Register Add	resses:	0x23	0x2D					
R	R	R	R	R	R	R/W	R/W	RESET VALUE
						oi_1	oi_0	0x03
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Table 13. ADC Minimum Current Conversion Register Format (High-Order Bits)

Description:		Minimum curr	ent conversion	result high-ord	er bits [9:2]			
Register Title		min_ch0_cs_n	nsb min_ch	1_cs_msb				
Register Add	Register Addresses: 0x08		0x10					
R	R	R	R	R	R	R	R	RESET VALUE
imin_9	imin_8	imin_7	imin_6	imin_5	imin_4	imin_3	imin_2	0xFF
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-

Table 14. ADC Minimum Current Conversion Register Format (Low-Order Bits)

Description:		Minimum current	conversio	n result low-orde	er bits [1:0]			
Register Title	:	min_ch0_cs_ lsb	min_c	h1_cs_ lsb				
Register Add	resses:	0x09	0x11					
R	R	R	R	R	R	R	R	RESET VALUE
						imin_1	imin_0	0x03
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Table 15. ADC Maximum Current Conversion Register Format (High-Order Bits)

Description: Register Title:		Maximum curi max_ch0_cs_		n result high-ord	der bits [9:2]			
u u	Register Addresses: 0x0A		0x12					
R	R	R	R	R	R	R	R	RESET VALUE
imax_9	imax_8	imax_7	imax_6	imax_5	imax_4	imax_3	imax_2	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Table 16. ADC Maximum Current Conversion Register Format (Low-Order Bits)

Description:		Maximum curre	ent conversior	n result low-orde	er bits [1:0]			
Register Title	e:	max_ch0_cs_ l	sb max_cl	h1_cs_ lsb				
Register Add	egister Addresses: 0x0B		0x13					
R	R	R	R	R	R	R	R	RESET VALUE
						imax_1	imax_0	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-

Digital Voltage Monitoring and Power-Good Outputs

The voltage at the load (MON_ inputs) is sampled by the internal ADC. The MON_ full-scale voltage for each

channel can be set to 16V, 8V, 4V, or 2V by writing to register mon_range. The default range is 16V (Tables 17 and 18).

Table 17. ADC Voltage Monitor Settings Register Format

Description:		ADC voltage	monitor full-sca	ale range setting	gs (for MON_ in	puts)		
Register Title:		mon_range	mon_range					
Register Addresses: 0x18								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
—	—	_		MON2_rng1	MON2_rng0	MON1_rng1	MON1_rng0	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 18. ADC Full-Scale Voltage Setting

MONx_rng1	MONx_rng0	ADC FULL-SCALE VOLTAGE (V)
0	0	16
0	1	8
1	0	4
1	1	2

The most recent voltage conversion results can be read from the adc_chx_mon_msb and adc_chx_mon_lsb registers (see Tables 19 and 20).

Table 19. ADC Voltage Conversion Result Register Format (High-Order Bits)

Description:		Most recent voltage conversion result, high-order bits [9:2]						
Register Title:	e: adc_ch0_mon_msb adc_ch1_mon_msb							
Register Addresses: 0x02			0x0	6				
R	R	R	R	R	R	R	R	RESET VALUE
vnew_9	vnew_8	vnew_7 vnew_6		vnew_5	vnew_4	vnew_3	vnew_2	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-

Table 20. ADC Voltage Conversion Result Register Format (Low-Order Bits)

Description:		Most recent v	oltage conve	sion result, low-o	order bits [1:0]			
Register Title	9:	adc_ch0_mor	n_lsb ad	c_ch1_mon_lsb				
Register Add	Register Addresses:		0x	77				
R	R	R	R	R	R	R	R	RESET VALUE
						vnew_1	vnew_0	0x00
bit 7	bit 7 bit 6 bit 5 b		bit 4	bit 3	bit 2	bit 1	bit 0	

Digital Undervoltage and Overvoltage Detection Thresholds

undervoltage (UV) levels (see Tables 21–24) and two overvoltage (OV) levels (see Tables 25–28).

The most recent voltage values are continuously compared to four programmable limits, comprising two

Table 21. Undervoltage Warning Threshold Register Format (High-Order Bits)

Description:		Undervoltage warning threshold high-order bits [9:2]						
Register Title	:	uv1th_ch0_msb uv1th_ch1_msb						
Register Addresses:		0xA1	0x1E					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
uv1_9	uv1_8	uv1_7	uv1_6	uv1_5	uv1_4	uv1_3	uv1_2	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_

Table 22. Undervoltage Warning Threshold Register Format (Low-Order Bits)

Description: Undervoltage warning threshold low-order bits [1:0]								
Register Titles: uv1th_ch0_lsb		uv1th_	ch1_lsb					
Register Addresses:		0x1B	0x1F					
R	R	R	R	R	R	R/W	R/W	RESET VALUE
						uv1_1	uv1_0	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 23. Undervoltage Critical Threshold Register Format (High-Order Bits)

Description:Undervoltage criticaRegister Title:uv2th_ch0_msb				ld high-order b ch1_msb	its [9:2]			
Register Addresses:		0x1C	0x26	-				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
uv2_9	uv2_8	uv2_7	uv2_6	uv2_5	uv2_4	uv2_3	uv2_2	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 24. Undervoltage Critical Threshold Register Format (Low-Order Bits)

Description:		Undervoltage critical threshold low-order bits [1:0]						
Register Title: uv2th_ch0_lsb		o uv2th_o	ch1_lsb					
Register Addresses:		0x1D	0x27					
R	R	R	R	R	R	R/W	R/W	RESET VALUE
						uv2_1	uv2_0	0x00
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 25. Overvoltage Warning Threshold Register Format (High-Order Bits)

Description:	escription: Overvoltage warning threshold high-order bits [9:2]							
Register Title: ov1thr_ch0_ms			isb ov1thr_	ch1_msb				
Register Addresses:		0x1E	0x28					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
ov1_9	ov1_8	ov1_7	ov1_6	ov1_5	ov1_4	ov1_3	ov1_2	0xFF
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	

Table 26. Overvoltage Warning Threshold Register Format (Low-Order Bits)

Description:		Overvoltage warning threshold low-order bits [1:0]								
Register Title: ov1thr_ch0_lsb			b ov1thr	ov1thr_ch1_lsb						
Register Addresses:		0x1F	0x29							
R	R	R	R	R	R	R/W	R/W	RESET VALUE		
						ov1_1	ov1_0	0x03		
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-		

Table 27. Overvoltage Critical Threshold Register Format (High-Order Bits)

Description:		Overvoltage critical threshold high-order bits [9:2]						
Register Title		ov2thr_ch0_msb ov2thr_ch1_msb						
Register Addresses: 0x20		0x20	0x2A					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RESET VALUE
ov2_9	ov2_8	ov2_7	ov2_6	ov2_5	ov2_4	ov2_3	ov2_2	0xFF
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	-

Table 28. Overvoltage Critical Threshold Register Format (Low-Order Bits)

Description:	Description: Overvoltage critical threshold low-order bits [1:0]									
Register Title: ov2thr_ch0_lsb			o ov2thr_	ov2thr_ch1_lsb						
Register Addresses:		0x21	0x2B							
R	R	R	R	R	R	R/W	R/W	RESET VALUE		
						ov2_1	ov2_0	0x03		
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	_		