

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX5978 hot-swap controller provides complete protection for systems with a supply voltage from 0 to 16V. The device includes four programmable LED outputs.

The IC provides two programmable levels of overcurrent circuit-breaker protection: a fast-trip threshold for a fast turn-off, and a lower slow-trip threshold for a delayed turn-off. The maximum overcurrent circuitbreaker threshold range is set with a trilevel logic input (IRNG), or by programming through the I²C interface.

The IC is an advanced hot-swap controller that monitors voltage and current with an internal 10-bit ADC, which is continuously multiplexed to convert the output voltage and current at 10ksps. Each 10-bit sample is stored in an internal circular buffer so that 50 past samples of each signal can be read back through the I²C interface at any time or after a fault condition.

The device includes five user-programmable digital comparators to implement overcurrent warning and two levels of overvoltage/undervoltage detection. When measured values violate the programmable limits, an external ALERT output is asserted. In addition to the ALERT signal, the IC can be programmed to deassert the powergood signal and/or turn off the external MOSFET.

The IC features four I/Os that can be independently configured as general-purpose input/outputs (GPIOs) or as open-drain LED drivers with programmable blinking. These four I/Os can be configured for any mix of LED driver or GPIO function.

The device is available in a 32-pin thin QFN-EP package and operates over the -40°C to +85°C extended temperature range.

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5978ETJ+	-40°C to +85°C	32 TQFN-EP*

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Features

- ♦ Hot-Swap Controller Operates from 0 to 16V
- ◆ 10-Bit ADC Monitors Load Voltage and Current
- ♦ Circular Buffers Store 5ms of Current and Voltage Measurements
- ♦ Internal Charge Pump Generates n-Channel **MOSFET Gate Drive**
- ♦ Internal 500mA Gate Pulldown Current for Fast Shutdown
- ♦ VariableSpeed/Bilevel™ Circuit-Breaker **Protection**
- ♦ Precision-Voltage Enable Input
- Alert Output Indicates Fault and Warning **Conditions**
- Open-Drain Power-Good Output with **Programmable Polarity**
- ♦ Open-Drain Fault Output
- ♦ Four Open-Drain General-Purpose Outputs Sink 25mA to Directly Drive LEDs
- **♦ Programmable LED Flashing Function**
- **♦ Latched-Off Fault Management**
- ♦ 400kHz I²C Interface
- ♦ Small, 5mm x 5mm, 32-Pin TQFN-EP Package

Applications

Blade Servers

DC Power Metering

Disk Drives/DASD/Storage Systems

Soft-Switch for ASICs, FPGAs, and

Microcontrollers

Network Switches/Routers

VariableSpeed/Bilevel is a trademark of Maxim Integrated Products, Inc.

^{*}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

IN, SENSE, MON, GATE to AGND	
PG, ON, ALERT, FAULT, SDA, SCL	
REG, DREG, IRNG, MODE, PROT, A	_
REG to DREGHWEN, POL to AGND	
GATE to MON	0.3V to +6V
GND, DGND to AGNDSDA, ALERT Current	
LED_ Current	
GATE, MON, GND Current	750mA

All Other Pins Input/Output Current	20mA
Continuous Power Dissipation (T _A = +70°C)*	
32-Pin TQFN (derate 34.5mW/°C above +70°C)	. 2759mW*
Junction-to-Ambient Thermal Resistance (θ_{JA}) (Note 1).	+29°C/W
Operating Temperature Range40°C	C to +85°C
Junction Temperature	+150°C
Storage Temperature Range65°C	to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 2.7V \text{ to } 16V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{IN} = 3.3V \text{ and } T_A = +25^{\circ}\text{C.})$ (Note 2)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	
Supply Input Voltage Range	VIN			2.7		16	V	
Hot-Swap Voltage Range				0		16	V	
Supply Current	IIN				2.5	4	mA	
Internal LDO Output Voltage	REG	IREG = 0 to	5mA, V _{IN} = 2.7V to 16V	2.49	2.53	2.6	V	
Undervoltage Lockout	UVLO	V _{IN} rising				2.6	V	
Undervoltage-Lockout Hysteresis	UVLOHYS				100		mV	
CURRENT-MONITORING FUI	NCTION			•				
MON, SENSE Input Voltage Range				0		16	V	
SENSE Input Current		VSENSE, VM	ON = 16V		32	75	μΑ	
MON Input Current		VSENSE, VM	ON = 16V		180	280	μΑ	
Comment Meanward LCD		25mV range			24.34			
Current Measurement LSB Voltage		50mV range			48.39		μV	
Voltage		100mV rang	е		96.77			
		VMON = 0V	VSENSE - VMON = 5mV	-6.57		+6.22		
Current Measurement Error		VIVION = UV	VSENSE - VMON = 20mV	-6.71		+6.82	 %FS	
(25mV Range)		V _{MON} =	VSENSE - VMON = 5mV	-9.71		+8.92	/013	
		2.5V to 16V	VSENSE - VMON = 20mV	-10.24		+9.36	1	
		VMON = 0V	VSENSE - VMON = 10mV	-4.24		+3.78		
Current Measurement Error	easurement Error		VSENSE - VMON = 40mV	-4.53		+5.36	0/ EQ	
(50mV Range)		V _{MON} =	VSENSE - VMON = 10mV	-4.50		+4.00	- %FS	
		2.5V to 16V	VSENSE - VMON = 40mV	-4.20		+4.50		

^{*}As per JEDEC51 Standard (Multilayer Board).

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = 2.7 \text{V to } 16 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{IN} = 3.3 \text{V}$ and $T_A = +25 ^{\circ}\text{C}.)$ (Note 2)

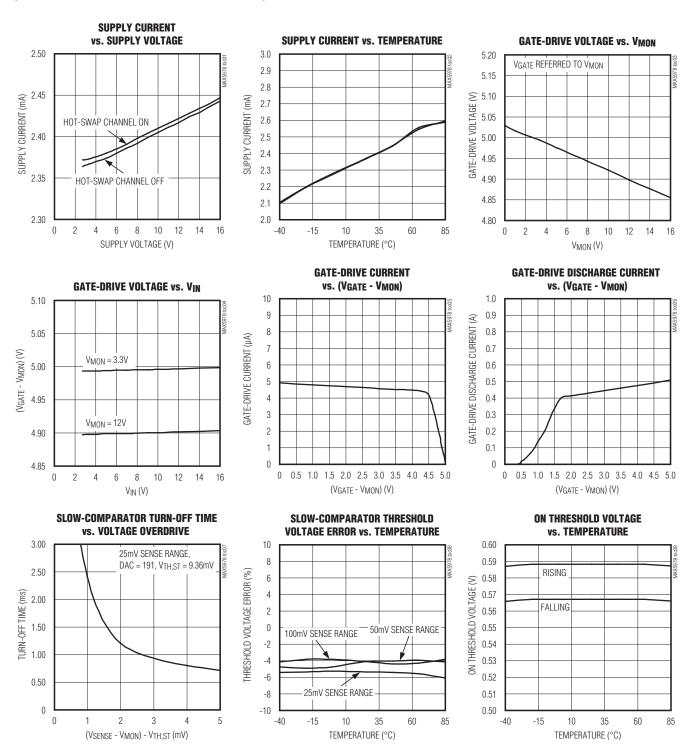
· 		Ţ.						
PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	
		VMON = 0V	VSENSE - VMON = 20mV	-2.70		+2.43		
Current Measurement Error		VIVION = UV	VSENSE - VMON = 80mV	-3.63		+4.56	0/ FC	
(100mV Range)		VMON =	VSENSE - VMON = 20mV	-3.14		+3.19	%FS	
		2.5V to 16V	VSENSE - VMON = 80mV	-3.80		+3.93		
		\/	Circuit breaker, DAC = 102	-2.106		+0.888		
Fast Current-Limit Threshold		VMON = 0V	Circuit breaker, DAC = 255	-2.986		+0.641	\/	
Error (25mV Range)		VMON =	Circuit breaker, DAC = 102	-3.000		+1.000	mV	
		2.5V to 16V	Circuit breaker, DAC = 255	-3.500		+1.500		
		0)/	Circuit breaker, DAC = 102	-3.1188		+0.926		
Fast Current-Limit Threshold		VMON = 0V	Circuit breaker, DAC = 255	-4.873		+0.3421	\/	
Error (50mV Range)		VMON =	Circuit breaker, DAC = 102	-3.2668		+0.9228	mV	
		2.5V to 16V	Circuit breaker, DAC = 255	-4.7		+1.0212		
		.,	Circuit breaker, DAC = 102	-4.7987		+1.1812		
Fast Current-Limit Threshold		VMON = 0V	Circuit breaker, DAC = 255	-8.9236		+0.202		
Error (100mV Range)		VMON =	Circuit breaker, DAC = 102	-4.9991		+0.6374	mV	
		2.5V to 16V		-8.262		+1		
			Circuit breaker, DAC = 102	-1.7965		+1.5496		
Slow Current-Limit Threshold		$V_{MON} = 0V$	Circuit breaker, DAC = 255	-1.86		+1.5916	mV	
Error (25mV Range)		VMON =	Circuit breaker, DAC = 102	-2.149		+1.9868		
		2.5V to 16V	Circuit breaker, DAC = 255	-2.2285		+1.9982		
			Circuit breaker, DAC = 102	-2.3992		+1.8723	mV	
Slow Current-Limit Threshold		VMON = 0V	Circuit breaker, DAC = 255	-2.5146		+2.1711		
Error (50mV Range)			Circuit breaker, DAC = 102	-2.4716		+2.181		
, ,		2.5V to 16V	Circuit breaker, DAC = 255	-2.7421		+2.1152		
			Circuit breaker, DAC = 102	-3.3412		+2.989	mV	
Slow Current-Limit Threshold		VMON = 0V	Circuit breaker, DAC = 255	-3.8762		+3.6789		
Error (100mV Range)		V _{MON} =	Circuit breaker, DAC = 102	-3.2084		+2.7798		
,		2.5V to 16V	Circuit breaker, DAC = 255	-3.8424		+2.6483		
Fast Circuit-Breaker Response Time	tFCB		10% of current-sense range		2		μs	
		Overdrive -	4% of current-sense range		2.4			
Slow Current-Limit Response	toon		8% of current-sense range				mo	
Time	tscb						ms	
THREE-STATE INPUTS		Overdrive =	16% of current-sense range		8.0			
A1, A0, IRNG, MODE, PROT Low Current	IN_LOW	Input voltage = 0.4V		-40			μΑ	
A1, A0, IRNG, MODE, PROT High Current	lin_High	Input voltage = VREG - 0.2V				40	μΑ	
A1, A0, IRNG, MODE, PROT Open Current	IFLOAT	Maximum so	ource/sink current for open	-4		+4	μΑ	
A1, A0, IRNG, MODE, PROT Low Voltage		Relative to A	AGND			0.4	V	
-								

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = 2.7 \text{V to } 16 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{IN} = 3.3 \text{V}$ and $T_A = +25 ^{\circ}\text{C}$.) (Note 2)

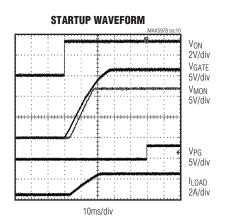
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
A1, A0, IRNG, MODE, PROT High Voltage		Relative to V _{REG}	-0.24			V
TWO-STATE INPUTS						
HWEN, POL Input Logic Low Voltage					0.4	V
HWEN, POL Input Logic High Voltage			VREG - 0.4			V
HWEN, POL Input Current			-1		+1	μΑ
ON Input Voltage	Von		0.582	0.592	0.602	V
ON Input Hysteresis	Vonhys			4		%
ON Input Current			-100		+100	nA
TIMING						
				50		
MON-to-PG Delay		Register configurable (see Tables 30a and		100		ms
WON-to-i a Delay		30b)		200		1115
				400		
CHARGE PUMP (GATE)						
Charge-Pump Output Voltage		Relative to VMON, IGATE = 0V	4.5	5.3	5.5	V
Charge-Pump Output Source Current			4	5	6	μΑ
GATE Discharge Current		VGATE - VMON = 2V		500		mA
OUTPUT (FAULT, PG, ALERT	Γ)					
Output-Voltage Low		ISINK = 3.2mA			0.2	V
Output Leakage Current					1	μΑ
LED INPUT/OUTPUT						
LED_ Input Threshold Low Level	VIL				0.4	V
LED_ Input Threshold High Level	VIH		1.4			V
LED_ Output Low	Voн	I _{LED_} = 25mA			0.7	V
LED_ Input Leakage Current (Open Drain)	IGPIO_IX	V _{LED} = 16V	-1		+1	μΑ
LED_ Weak Pullup Current	IPU_WEAK	VLED_ = VIN - 0.65V	2			μA
ADC PERFORMANCE						'
Resolution				10		Bits
Maximum Integral Nonlinearity	INL			1		LSB
ADC Total Monitoring Cycle Time			95	100	110	μs

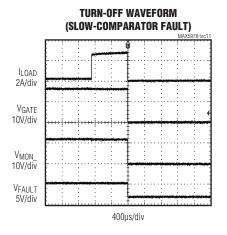
ELECTRICAL CHARACTERISTICS (continued)

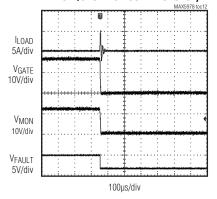

 $(V_{IN} = 2.7 \text{V to } 16 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{IN} = 3.3 \text{V}$ and $T_A = +25 ^{\circ}\text{C}$.) (Note 2)

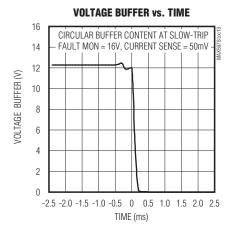
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		16V range	15.23	15.49	15.69	
MON LSB Voltage MON Code 000H to 001H Transition Voltage 2C INTERFACE Serial-Clock Frequency Bus Free Time Between BTOP and START Conditions START Condition Setup Time BTART Condition Hold Time BTOP Condition Setup Time Clock High Period Clock Low Period Data Setup Time Data Hold Time Dutput Fall Time Pulse Width of Spike Suppressed		8V range	7.655	7.743	7.811	mV
MON LSB voltage		4V range	3.811	3.875	3.933	TIIV
		2V range	1.899	1.934	1.966	
		16V range	10	25	41	
MON Code 000H to 001H		8V range	4.7	12	21	mV
Transition Voltage		4V range	2	6	12	TIIV
		2V range	0.5	3	5.5	
I ² C INTERFACE			·			
Serial-Clock Frequency	fscl				400	kHz
Bus Free Time Between STOP and START Conditions	tBUF		1.3			μs
START Condition Setup Time	tsu:sta		0.6			μs
START Condition Hold Time	tHD:STA		0.6			μs
STOP Condition Setup Time	tsu:sto		0.6			μs
Clock High Period	tHIGH		0.6			μs
Clock Low Period	tLOW		1.3			μs
Data Setup Time	tsu:dat		100			ns
Data Hald Time		Transmit	100			
Data Hold Time	thd:dat	Receive	300		900	ns
Output Fall Time	tor	C _{BUS} = 10pF to 400pF			250	ns
Pulse Width of Spike Suppressed	tsp			50		ns
SDA, SCL Input High Voltage	VIH		1.8			V
SDA, SCL Input Low Voltage	VIL				0.8	V
SDA, SCL Input Hysteresis	VHYST			0.22		V
SDA, SCL Input Current			-1		+1	μΑ
SDA, SCL Input Capacitance				15		pF
SDA Output Voltage	Vol	ISINK = 4mA			0.4	V

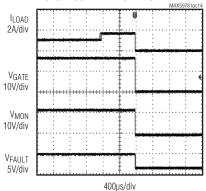
Note 2: All devices 100% production tested at $T_A = +25$ °C. Limits over the temperature range are guaranteed by design.

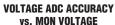

Typical Operating Characteristics

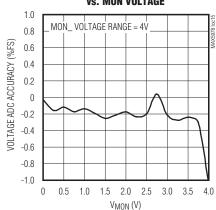

 $(V_{IN} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$


Typical Operating Characteristics (continued)

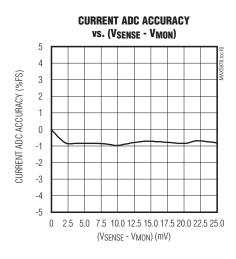

 $(V_{IN} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

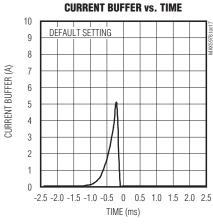


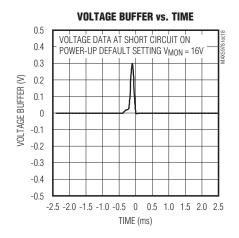

TURN-OFF WAVEFORM (FAST-COMPARATOR FAULT/SHORT-CIRCUIT RESPONSE)

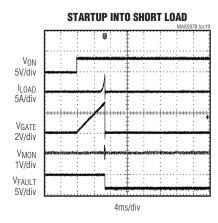


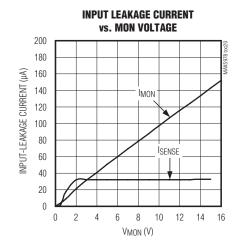
SLOW-COMPARATOR FAULT EVENT

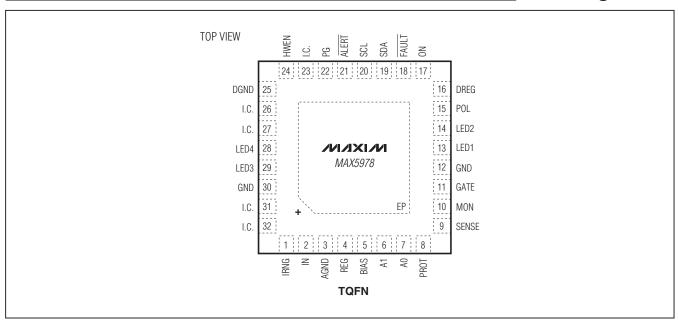




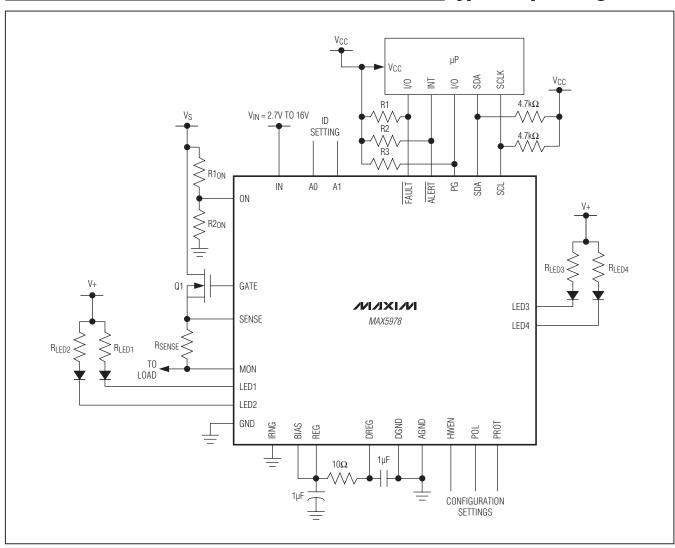



Typical Operating Characteristics (continued)

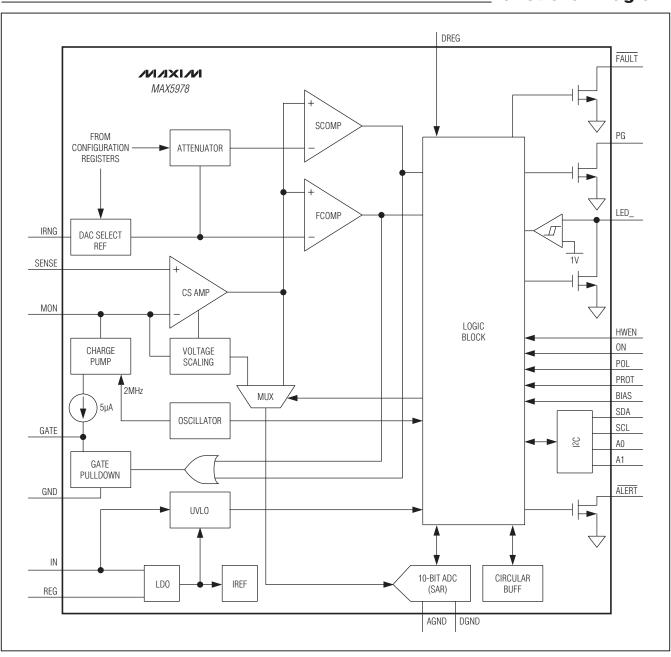

 $(V_{IN} = 3.3V, T_A = +25$ °C, unless otherwise noted.)



Pin Configuration


Pin Description

PIN	NAME	FUNCTION
1	IRNG	Three-State Current-Sense Range Selection Input. Set the circuit-breaker threshold range by connecting to DGND, DREG, or leave unconnected.
2	IN	Power-Supply Input. Connect to a voltage from 2.7V to 16V. Bypass IN to AGND with a 1µF ceramic capacitor.
3	AGND	Analog Ground. Connect all GND and DGND to AGND externally using a star connection.
4	REG	Internal Regulator Output. Bypass REG to ground with a 1µF ceramic capacitor. Connect only to DREG and logic-input pullup resistors. Do not use to power external circuitry.
5	BIAS	BIAS Input. Connect BIAS to REG.
6	A1	Three-State I ² C Address Input 1
7	A0	Three-State I ² C Address Input 0
8	PROT	Protection Behavior Input. Three-state input sets one of three different response options for undervoltage and overvoltage events.
9	SENSE	Current-Sense Input. Connect SENSE to the source of an external MOSFET and to one end of RSENSE.
10	MON	Voltage-Monitoring Input
11	GATE	Gate-Drive Output. Connect to the gate of an external n-channel MOSFET.
12	GND	Gate-Discharge Current Ground Return. Connect all GND and DGND to AGND externally using a star connection.
13	LED1	LED1 Driver
14	LED2	LED2 Driver


Pin Description (continued)

PIN	NAME	FUNCTION
15	POL	Polarity Select Input. Connect POL to DREG for an active-high power-good (PG) output, or connect POL to GND for active-low PG output.
16	DREG	Logic Power-Supply Input. Connect to REG externally through a 10Ω resistor and bypass to DGND with a 1µF ceramic capacitor.
17	ON	Precision Turn-On Input
18	FAULT	Active-Low Open-Drain Fault Output. FAULT asserts low if an overcurrent event occurs.
19	SDA	I ² C Serial Data Input/Output
20	SCL	I ² C Serial Clock Input
21	ALERT	Open-Drain Alert Output. ALERT goes low during a fault to notify the system of an impending failure.
22	PG	Open-Drain Power-Good Output
23, 26, 27, 31, 32	I.C.	Internally Connected. Connect to ground.
24	HWEN	Hardware Enable Input. Connect to REG or DGND. State is read upon power-up as V _{IN} crosses the UVLO threshold and sets enable register bits with this value. After UVLO, this input becomes inactive until power is cycled.
25	DGND	Digital Ground. Connect all GND and DGND to AGND externally using a star connection.
28	LED4	LED Driver 4
29	LED3	LED Driver 3
30	GND	Ground
_	EP	Exposed Pad. EP is internally grounded. Connect EP to the ground plane using a star connection.

Typical Operating Circuit

Functional Diagram

Detailed Description

The MAX5978 includes a set of registers that are accessed through the I²C interface. Some of the registers are read only and some of the registers are read and write registers that can be updated to configure the device for a specific operation. See Tables 1a and 1b for the register maps.

Hot-Swap Channel On-Off Control

Depending on the configuration of the EN1 and EN2 bits, when VIN is above the VUVLO threshold and the ON input reaches its internal threshold, the device turns on the external n-channel MOSFET for the hot-swap channel, allowing power to flow to the load. The channel is enabled depending on the output of a majority function.

EN1, EN2, and ON are the inputs to the majority function and the channel is enabled when two or more of these inputs are 1:

(Channel enabled) = $(EN1 \times EN2) + (EN1 \times ON) + (EN2 \times ON)$

Inputs ON and EN2 can be set externally; the initial state of the EN2 bit in register chxen is set by the state of the HWEN input when VIN rises above VUVLO. The ON input connects to an internal precision analog comparators with a 0.6V threshold. Whenever VON is above 0.6V, the ON bit in register status1[0] is set to 1. Inputs EN1 and EN2 can be set using the I²C interface; the EN1 bit has a default value of 0. This makes it possible to enable or disable the hot-swap channel with or without using the I²C interface (see Tables 2, 3a, and 3b).

Table 1a. Register Address Map (Channel Specific)

REGISTER NAME	DESCRIPTION	REGISTER NUMBER	RESET VALUE	READ/ WRITE
adc_cs_msb	High 8 bits ([9:2]) of latest current-signal ADC result	0x00	0x00	R
adc_cs_lsb	Low 2 bits ([1:0]) of latest current-signal ADC result	0x01	0x00	R
adc_mon_msb	High 8 bits ([9:2]) of latest voltage-signal ADC result	0x02	0x00	R
adc_mon_lsb	Low 2 bits ([1:0]) of latest voltage-signal ADC result	0x03	0x00	R
min_cs_msb	High 8 bits ([9:2]) of current-signal minimum value	0x08	0xFF	R
min_cs_lsb	Low 2 bits ([1:0]) of current-signal minimum value	0x09	0x03	R
max_cs_msb	High 8 bits ([9:2]) of current-signal maximum value	0x0A	0x00	R
max_cs_lsb	Low 2 bits ([1:0]) of current-signal maximum value	0x0B	0x00	R
min_mon_msb	High 8 bits ([9:2]) of voltage-signal minimum value	0x0C	0xFF	R
min_mon_lsb	Low 2 bits ([1:0]) of voltage-signal minimum value	0x0D	0x03	R
max_mon_msb	High 8 bits ([9:2]) of voltage-signal maximum value	0x0E	0x00	R
max_mon_lsb	Low 2 bits ([1:0]) of voltage-signal maximum value	0x0F	0x00	R
uv1th_msb	High 8 bits ([9:2]) of undervoltage warning (UV1) threshold	0x1A	0x00	R/W
uv1th_lsb	Low 2 bits ([1:0]) of undervoltage warning (UV1) threshold	0x1B	0x00	R/W
uv2th_msb	High 8 bits ([9:2]) of undervoltage critical (UV2) threshold	0x1C	0x00	R/W
uv2th_lsb	Low 2 bits ([1:0]) of undervoltage critical (UV2) threshold	0x1D	0x00	R/W
ov1thr_msb	High 8 bits ([9:2]) of overvoltage warning (OV1) threshold	0x1E	0xFF	R/W
ov1thr_lsb	Low 2 bits ([1:0]) of overvoltage warning (OV1) threshold	0x1F	0x03	R/W
ov2thr_msb	High 8 bits ([9:2]) of overvoltage critical (OV2) threshold	0x20	0xFF	R/W
ov2thr_lsb	Low 2 bits ([1:0]) of overvoltage critical (OV2) threshold	0x21	0x03	R/W
oithr_msb	High 8 bits ([9:2]) of overcurrent warning threshold	0x22	0xFF	R/W
oithr_lsb	Low 2 bits ([1:0]) of overcurrent warning threshold	0x23	0x03	R/W
dac_fast	Fast-comparator threshold DAC setting	0x2E	0xBF	R/W
cbuf_ba_v	Base address for block read of 50-sample voltage-signal data buffer	0x46	_	R
cbuf_ba_i	Base address for block read of 50-sample current-signal data buffer	0x47	_	R

Table 1b. Register Address Map (General)

REGISTER NAME	DESCRIPTION	ADDRESS (HEX CODE)	RESET VALUE	READ/ WRITE
mon_range	MON input range setting	0x18	0x00	R/W
cbuf_chx_store	Selective enabling of circular buffer	0x19	0x0F	R/W
ifast2slow	Current threshold fast-to-slow ratio setting	0x30	0x0F	R/W
status0	Slow-trip and fast-trip comparators status register	0x31	0x00	R
status1	PROT, MODE, and ON inputs status register	0x32	_	R
status2	Fast-trip threshold maximum range setting bits, from IRNG three-state input	0x33	_	R/W
status3	LATCH, POL, ALERT, and PG status register	0x34	_	R
fault0	Status register for undervoltage detection (warning or critical)	0x35	0x00	R/C
fault1	Status register for overvoltage detection (warning or critical)	0x36	0x00	R/C
fault2	Status register for overcurrent detection (warning)	0x37	0x00	R/C
pgdly	Delay setting between MON measurement and PG assertion	0x38	0x00	R/W
fokey	Load register with 0xA5 to enable force-on function	0x39	0x00	R/W
foset	Register that enables force-on function	0x3A	0x00	R/W
chxen	Channel enable bits	0x3B	_	R/W
dgl_i	OC deglitch enable bits	0x3C	0x00	R/W
dgl_uv	UV deglitch enable bits	0x3D	0x00	R/W
dgl_ov	OV deglitch enable bits	0x3E	0x00	R/W
cbufrd_hibyonly	Circular buffers readout mode: 8 bit or 10 bit	0x3F	0x0F	R/W
cbuf_dly_stop	Circular buffer stop delay; number of samples recorded to the circular buffer after channel shutdown	0x40	0x19	R/W
peak_log_rst	Reset control bits for peak-detection registers	0x41	0x00	R/W
peak_log_hold	Hold control bits for peak-detection registers	0x42	0x00	R/W
LED_flash	LED flash/GPIO enable register	0x43	0x0F	R/W
LED_ph_pu	LED phase/weak pullup enable register	0x44	0x00	R/W
LED_state	LED pins voltage state register (LED pins set open)	0x45	_	R

Table 2. chxen Register Format

Description:		Channel en	able bits					
Resister Title:		chxen						
Register Addı	ress:	0x3B						
								RESET
R	R	R	R	R/W	R/W	R/W	R/W	VALUE
_	_	_	_	Unused	Unused	EN2	EN1	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 3a. Register Function

REGISTER ADDRESS	BIT RANGE	DESCRIPTION
		ON input state
		1 = ON above 600mV channel enable threshold
	[1:0]	0 = ON below 600mV channel enable threshold
		Bit 0: ON input state
		Bit 1: unused
0x32	[4]	Unused
		Voltage critical behavior (PROT input)
		00 = Assert ALERT upon UV/OV critical (same as UV/OV warning behavior)
	[7:6]	01 = Assert ALERT and deassert PG upon UV/OV critical
		10 = Assert ALERT, deassert PG, and shut down channel upon UV/OV critical
		11 = (Not possible)

Table 3b. status1 Register Format

Description:		Fault-dete	Fault-detection behavior (three-state PROT input) and ON input status register							
Resister Title:		status1	status1							
Register Addr	ess:	0x32								
								RESET		
R	R	R	R	R	R	R	R	VALUE		
prot[1]	prot[0]		Unused	_	_	Unused	ON			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_		

Figure 1 shows the detailed logic operation of the hotswap enable signals EN1, EN2, and ON, as well as the effect of various fault conditions.

An input undervoltage threshold control for enabling the hot-swap channel can be implemented by placing a resistive divider between the drain of the hot-swap MOSFET and ground, with the midpoint connected to ON. The turn-on threshold voltage for the channel is then:

$$VEN = 0.6V \times (R1 + R2)/R2$$

The maximum rating for the ON input is 6V; do not exceed this value.

Startup

When all conditions for channel turn-on are met, the external n-channel MOSFET switch is fully enhanced with a typical gate-to-source voltage of 5V to ensure a low drain-to-source resistance. The charge pump at the GATE driver sources 5µA to control the output voltage turn-on voltage slew rate. An external capacitor can be added from GATE to GND to further reduce the

voltage slew rate. Placing a $1k\Omega$ resistor in series with this capacitance prevents the added capacitance from increasing the gate turn-off time. Total inrush current is the load current summed with the product of the gate-voltage slew rate dV/dt and the load capacitance.

To determine the output dV/dt during startup, divide the GATE pullup current IG(UP) by the gate-to-ground capacitance. The voltage at the source of the external MOSFET follows the gate voltage, so the load dV/dt is the same as the gate dV/dt. Inrush current is the product of the dV/dt and the load capacitance. The time to start up tSU is the hot-swap voltage VS divided by the output dV/dt.

Be sure to choose an external MOSFET that can handle the power dissipated during startup. The inrush current is roughly constant during startup and the voltage drop across the MOSFET (drain to source) decreases linearly as the load capacitance charges. The resulting power dissipation is, therefore, roughly equivalent to a single pulse of magnitude (Vs x inrush current)/2 and

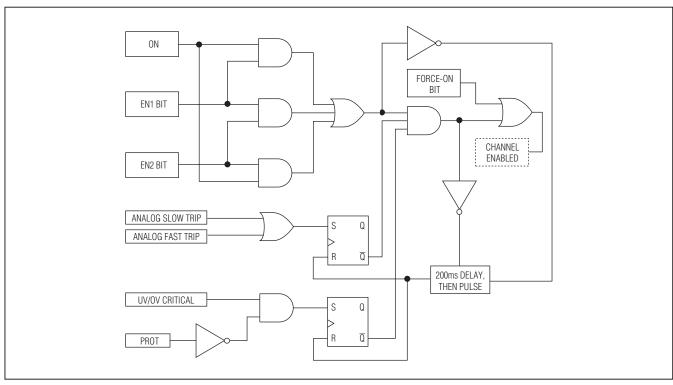


Figure 1. Channel On-Off Control Logic Functional Schematic

duration tsu. Refer to the thermal resistance charts in the MOSFET data sheet to determine the junction temperature rise during startup, and ensure that this does not exceed the maximum junction temperature for worstcase ambient conditions.

Circuit-Breaker Protection

As the channel is turned on and during normal operation, two analog comparators are used to detect an overcurrent condition by sensing the voltage across an external resistor connected between SENSE and MON. If the voltage across the sense resistor is less than the slow-trip and fast-trip circuit-breaker thresholds, the GATE output remains high. If either of the thresholds is exceeded due to an overcurrent condition, the gate of the MOSFET is pulled down to MON by an internal 500mA current source.

The higher of the two comparator thresholds, the fast trip, is set by an internal 8-bit DAC (see Table 7), within one of three configurable full-scale current-sense

ranges: 25mV, 50mV, or 100mV (see Tables 6a and 6b). The 8-bit fast-trip threshold DAC can be programmed from 40% to 100% of the selected full-scale current-sense range. The slow-trip threshold follows the fast-trip threshold as one of four programmable ratios, set by the ifast2slow register (see Tables 4a and 4b).

The fast-trip threshold is always higher than the slow-trip threshold, and the fast-trip comparator responds very quickly to protect the system against sudden, severe overcurrent events. The slower response of the slow-trip comparator varies depending upon the amount of overdrive beyond the slow-trip threshold. If the overdrive is small and short lived, the comparator will not shut down the affected channel. As the overcurrent event increases in magnitude, the response time of the slow-trip comparator decreases. This scheme provides good noise rejection and spurious overcurrent transients near the slow-trip threshold, while aggressively protecting the system against larger overcurrent events that occur as a result of a load fault.

Table 4a. ifast2slow Register Format

Description:		Current thr	Current threshold fast-to-slow setting bits						
Resister Title:		ifast2slow							
Register Add	ress:	0x30							
								RESET	
R	R	R	R	R/W	R/W	R/W	R/W	VALUE	
_	_	_	_	Unused	Unused	FS1	FS0	0x0F	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_	

Table 4b. Setting Fast-Trip to Slow-Trip Threshold Ratio

	•	
FS1	FS0	FAST-TRIP TO SLOW-TRIP RATIO (%)
0	0	125
0	1	150
1	0	175
1	1	200

Setting Circuit-Breaker Thresholds

To select and set the device slow-trip and fast-trip comparator thresholds, use the following procedure:

- 1) Select one of four ratios between the fast-trip threshold and the slow-trip threshold: 200%, 175%, 150%, or 125%. A system that experiences brief but large transient load currents should use a higher ratio, whereas a system that operates continuously at higher average load currents might benefit from a smaller ratio to ensure adequate protection. The ratio is set by writing to the ifast2slow register. (The default setting on power-up is 200%.)
- 2) Determine the slow-trip threshold VTH,ST based on the anticipated maximum continuous load current during normal operation, and the value of the current-sense resistor. The slow-trip threshold should include some margin (possibly 20%) above the maximum load current to prevent spurious circuit-breaker shutdown and to accommodate passive component tolerances:

VTH.ST = RSENSE x ILOAD.MAX x 120%

3) Calculate the necessary fast-trip threshold V_{TH,FT} based on the ratio set in step 1:

VTH,FT = VTH,ST x (ifast2slow ratio)

4) Select one of the three maximum current-sense ranges: 25mV, 50mV, or 100mV. The current-sense

- range is initially set upon power-up by the state of the IRNG input, but can be altered at any time by writing to the status2 register. For maximum accuracy and best measurement resolution, select the lowest current-sense range that is larger than the VTH,FT value calculated in step 3.
- 5) Program the fast-trip and slow-trip thresholds by writing an 8-bit value to the dac_fast register. This 8-bit value is determined from the desired V_{TH,ST} value that was calculated in step 2, the threshold ratio from step 1, and the current-sense range from step 4:

DAC = VTH,ST x 255 x (ifast2slow ratio)/ (IRNG current-sense range)

The device provides a great deal of system flexibility because the current-sense range, DAC setting, and threshold ratio can be changed "on the fly" for systems that must protect a wide range of interchangeable load devices, or for systems that control the allocation of power to smart loads. Table 5 shows the specified ranges for the fast-trip and slow-trip thresholds for all combinations of current-sense range and threshold ratio.

When an overcurrent event causes the <u>device</u> to shut down the power channel, the open-drain FAULT output alerts the system. Figure 2 shows the operation and fault-management flowchart.

Table 5. Specified Current-Sense and Circuit-Breaker Threshold Ranges

IRNG INPUT	/DEFAILT - FILL TH		GAIN (2 BIT) (VFAST/ VSLOW) ifast2slow (DEFAULT = 11)	SLOW-TRIP THRESHOLD RANGE (mV)	
			00 (125%)	8.00 to 20.00	
Low	10 to 25	10 to 25	01 (150%)	6.67 to 16.67	
LOW	10 10 25	10 10 25	10 (175%)	5.71 to 14.29	
			11 (200%)	5.00 to 12.50	
			00 (125%)	16.00 to 40.00	
Lliede	20 to 50	00 to 50	01 (150%)	13.33 to 33.33	
High	20 to 50	20 to 50	10 (175%)	11.48 to 28.57	
			11 (200%)	10.00 to 25.00	
			00 (125%)	32.00 to 80.00	
Linggangeted	40 to 100	40 to 100	01 (150%)	26.67 to 66.67	
Unconnected	40 to 100	40 to 100	10 (175%)	22.86 to 57.14	
			11 (200%)	20.00 to 50.00	

Table 6a. IRNG Input Status Register Format

Description: Fast-trip threshold maximum range-setting bits, from IRNG three-state input

Resister Title: status2
Register Address: 0x33

R	R	R	R	R/W	R/W	R/W	R/W	RESET VALUE
_	_	_	_	Unused	Unused	IRNG1	IRNG0	_
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 6b. Setting Current-Sense Range

IRNG PIN STATE	IRNG PIN STATE IRNG1		MAXIMUM CURRENT-SENSE SIGNAL (mV)		
Low	1	0	25		
High	0	1	50		
Open	0	0	100		

Table 7. dac_ch_ Register Format

Description: Fast-comparator threshold DAC setting

Register Title: dac_fast Register Addresses: 0x2E

R/W	RESET VALUE							
DAC[7]	DAC[6]	DAC[5]	DAC[4]	DAC[3]	DAC[2]	DAC[1]	DAC[0]	0xBF
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Figure 2. Operation and Fault-Management Flowchart for Hot-Swap Channel

Digital Current Monitoring

The current-sense signal is sampled by the internal 10-bit, 10ksps ADC, and the most recent results are stored in registers for retrieval through the I²C interface. The current conversion values are 10 bits wide, with the 8 high-order bits written to one 8-bit register and the 2 low-order bits written to the next-higher 8-bit register address (Tables 8 and 9). This allows use of just the high-order byte in applications where 10-bit precision is not required. This split 8-bit/2-bit storage scheme is used

throughout the device for ADC conversion results and digital comparator thresholds.

Once the PG output is asserted, the current-sense samples are continuously compared to the programmable overcurrent warning register value. If the measured current value exceeds the warning level, the ALERT output is asserted. The device response to this digital comparator is not altered by the setting of the PROT input (Tables 10 and 11).

Table 8. ADC Current-Conversion Results Register Format (High-Order Bits)

Description:		Most recent current-conversion result, high-order bits [9:2]							
Register Title:		adc_cs_msb							
Register Addr	esses:	0x00							
								RESET	
R	R	R	R	R	R	R	R	VALUE	
inew_9	inew_8	inew_7	inew_6	inew_5	inew_4	inew_3	inew_2	0x00	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_	

Table 9. ADC Current-Conversion Results Register Format (Low-Order Bits)

Description:		Most recent c	Most recent current-conversion result, low-order bits [0:1]							
Register Title:		adc_cs_ lsb								
Register Addr	egister Addresses: 0x01									
								RESET		
R	R	R	R	R	R	R	R	VALUE		
_	_	_	_	_	_	inew_1	inew_0	0x00		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_		

Table 10. Overcurrent Warning Threshold Register Format (High-Order Bits)

Description:		Overcurrent warning threshold high-order bits [9:2]						
Register Title:		oithr_msb						
Register Add	resses:	0x22						
								RESET
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	VALUE
oi_9	oi_8	oi_7	oi_6	oi_5	oi_4	oi_3	oi_2	0xFF
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 11. Overcurrent Warning Threshold Register Format (Low-Order Bits)

Description:		Overcurrent warning threshold low-order bits [1:0]							
Register Title:		oithr_lsb							
Register Addr	esses:	0x23							
								RESET	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	VALUE	
_	_	_	_	_	_	oi_1	oi_0	0x03	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_	

Minimum and Maximum Value Detection for Current-Measurement Values

Current-sense measurement values from the ADC are continuously compared with the contents of minimum-and maximum-value registers, and if the most recent measurement exceeds the stored maximum, or is less than the stored minimum, the corresponding register

is updated with the new value. These "peak-detection" registers are read/write accessible through the I²C interface (Tables 12–15). The minimum-value registers are reset to 0xFF and the maximum-value registers are reset to 0x00. These reset values are loaded upon startup of the channel or at any time as commanded by register peak_log_rst (Table 35).

Table 12. ADC Minimum Current-Conversion Register Format (High-Order Bits)

Description:		Minimum curr	ent-conversion	n result high-or	der bits [9:2]			
Register Title:		min_cs_msb						
Register Addr	esses:	0x08						
								RESET
R	R	R	R	R	R	R	R	VALUE
imin_9	imin_8	imin_7	imin_6	imin_5	imin_4	imin_3	imin_2	0xFF
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 13. ADC Minimum Current-Conversion Register Format (Low-Order Bits)

Description:		Minimum curr	Minimum current-conversion result low-order bits [1:0]						
Register Title	:	min_cs_ lsb							
Register Add	resses:	0x09							
								RESET	
R	R	R	R	R	R	R	R	VALUE	
_	_	_	_	_	_	imin_1	imin_0	0x03	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_	

Table 14. ADC Maximum Current-Conversion Register Format (High-Order Bits)

Description:		Maximum cur	rent-conversion	n result high-o	rder bits [9:2]					
Register Title:		max_cs_msb	ax_cs_msb							
Register Addre	esses:	0x0A								
								RESET		
R	R	R	R	R	R	R	R	VALUE		
imax_9	imax_8	imax_7	imax_6	imax_5	imax_4	imax_3	imax_2	0x00		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_		

Table 15. ADC Maximum Current-Conversion Register Format (Low-Order Bits)

Description:		Maximum cur	rent-conversio	n result low-ord	der bits [1:0]				
Register Title:		max_cs_lsb							
Register Addre	esses:	0x0B							
								RESET	
R	R	R	R	R	R	R	R	VALUE	
_	_	_	_	_	_	imax_1	imax_0	0x00	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_	

Bit 7

0 to 16V, Hot-Swap Controller with 10-Bit Current, Voltage Monitor, and 4 LED Drivers

Digital Voltage Monitoring and Power-Good Output

The voltage at the load (MON input) is sampled by the internal ADC. The MON full-scale voltage can be set to 16V, 8V, 4V, or 2V by writing to register mon_range. The default range is 16V (Tables 16 and 17).

The most recent voltage-conversion results can be read from the adc_mon_msb and adc_mon_lsb registers (see Tables 18 and 19).

Digital Undervoltage- and Overvoltage-Detection Thresholds

The most recent voltage values are continuously compared to four programmable limits, comprising two undervoltage (UV) levels (see Tables 20 to 23) and two overvoltage (OV) levels (see Tables 24 to 27).

If PG is asserted and the voltage is outside the warning limits, the ALERT output is asserted low. Depending on the status of the prot[] bits in register status1[7:6], the

Bit 1

Bit 0

Table 16. ADC Voltage Monitor Settings Register Format

Description: ADC voltage monitor full-scale range settings (for MON input) Register Title: mon_range Register Addresses: 0x18 RESET R/W R/W R/W R/W R/W R/W R/W R/W **VALUE** Unused Unused MON_rng1 MON_rng0 0x00

Bit 3

Bit 2

Table 17. ADC Full-Scale Voltage Setting

Bit 5

Bit 6

MON_rng1	MON_rng0	ADC FULL-SCALE VOLTAGE (V)
0	0	16
0	1	8
1	0	4
1	1	2

Table 18. ADC Voltage-Conversion Result Register Format (High-Order Bits)

Bit 4

Description: Most recent voltage-conversion result, high-order bits [9:2] Register Title: adc mon msb Register Addresses: 0x02 **RESET** R R **VALUE** R R R R R R vnew_3 0x00 vnew_9 vnew_8 vnew_7 vnew_6 vnew 5 vnew 4 vnew_2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Table 19. ADC Voltage-Conversion Result Register Format (Low-Order Bits)

Description: Most recent voltage-conversion result, low-order bits [1:0] Register Title: adc_mon_lsb Register Addresses: 0x03 RESET R R **VALUE** R R R R R R vnew_1 vnew_0 0x00 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

device can also deassert the PG output or turn off the external MOSFET when the voltage is outside the critical limits (see Figure 3). Table 28 shows the behavior for the three possible states of the PROT input. Note that the PROT input does not affect the device response to the UV or OV warning digital comparators; it only determines the system response to the critical digital comparators (see Tables 3a, 3b, and 28).

In a typical application, the UV1 and OV1 thresholds would be set closer to the nominal output voltage, and the UV2 and OV2 thresholds would be set further from nominal. This provides a "progressive" response to a voltage excursion. However, the thresholds can be configured in any arrangement or combination as desired to suit a given application.

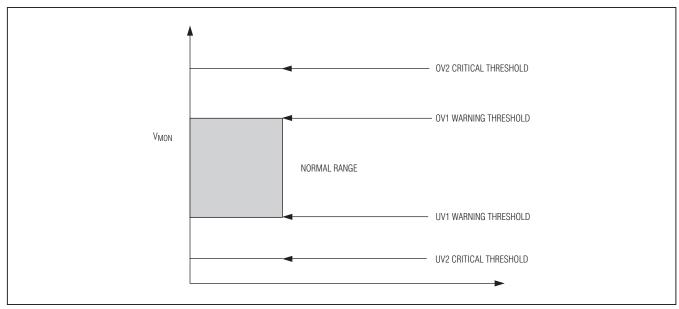


Figure 3. Graphical Representation of Typical UV and OV Thresholds Configuration

Table 20. Undervoltage Warning Threshold Register Format (High-Order Bits)

Description:		Undervoltage	warning thres					
Register Title:		uv1th_msb						
Register Addr	esses:	0x1A						
								RESET
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	VALUE
uv1_9	uv1_8	uv1_7	uv1_6	uv1_5	uv1_4	uv1_3	uv1_2	0x00
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 21. Undervoltage Warning Threshold Register Format (Low-Order Bits)

Description:		Undervoltage warning threshold low-order bits [1:0]						
Register Titles	3:	uv1th_lsb						
Register Addr	esses:	0x1B						
								RESET
R	R	R	R	R	R	R/W	R/W	VALUE
_	_	_	_	_	_	uv1_1	uv1_0	0x00
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 22. Undervoltage Critical Threshold Register Format (High-Order Bits)

Description: Undervoltage critical threshold high-order bits [9:2]

Register Title: uv2th_msb Register Addresses: 0x1C

RESET **VALUE** R/W R/W R/W R/W R/W R/W R/W R/W uv2_9 uv2_8 uv2_7 uv2_6 uv2_5 uv2_4 uv2_3 0x00 uv2_2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Table 23. Undervoltage Critical Threshold Register Format (Low-Order Bits)

Description: Undervoltage critical threshold low-order bits [1:0]

Register Title: uv2th_lsb Register Addresses: 0x1D

RESET R/W R/W **VALUE** R R R R R R uv2_1 uv2_0 0x00 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Table 24. Overvoltage Warning Threshold Register Format (High-Order Bits)

Description: Overvoltage warning threshold high-order bits [9:2]

Register Title: ov1thr_msb Register Addresses: 0x1E

RESET R/W R/W R/W R/W R/W R/W R/W R/W VALUE ov1_9 ov1_8 ov1_7 ov1_6 ov1_5 ov1_4 ov1_3 ov1_2 0xFF Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Table 25. Overvoltage Warning Threshold Register Format (Low-Order Bits)

Description: Overvoltage warning threshold low-order bits [1:0]

Register Title: ov1thr_lsb
Register Addresses: 0x1F

RESET R/W R/W **VALUE** R R R R ov1_1 ov1_0 0x03 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Table 26. Overvoltage Critical Threshold Register Format (High-Order Bits)

Description: Overvoltage critical threshold high-order bits [9:2]

Register Title: ov2thr_msb Register Addresses: 0x20

RESET R/W R/W R/W R/W R/W R/W R/W R/W **VALUE** ov2_9 ov2_8 ov2_7 ov2_6 ov2_5 ov2_4 ov2_3 ov2_2 0xFF Bit 2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0

Table 27. Overvoltage Critical Threshold Register Format (Low-Order Bits)

Description:		Overvoltage	critical thresho	old low-order b				
Register Title	:	ov2thr_lsb						
Register Add	resses:	0x21						
								RESET
R	R	R	R	R	R/W	R/W	R/W	VALUE
_	_	_	_	_	_	ov2_1	ov2_0	0x03
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 28. PROT Input and prot[] Bits

PROT INPUT STATE	prot[1]	prot[0]	UV/OV WARNING ACTION	UV/OV CRITICAL ACTION
Low	0	0	Assert ALERT	Assert ALERT, clear PG, shut down channel
High	0	1	Assert ALERT	Assert ALERT, clear PG
Unconnected	1	0	Assert ALERT	Assert ALERT

Table 29. status3 Register Format

		U						
Description:		Power-good	status register	: POL, ALERT,	and power-g	good bits		
Register Title	e :	status3						
Register Add	dress:	0x34						
								RESET
R	R	R	R/W	R	R	R	R	VALUE
_	_	POL	ALERT	_	_	Unused	pg[0]	_
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 30a. Power-Good Assertion Delay-Time Register Format

Description:		Power-good	assertion dela	y-time register				
Register Title:		pgdly						
Register Addr	ess:	0x38						
								RESET
R	R	R	R	R/W	R/W	R/W	R/W	VALUE
_	_	_	_	Unused	Unused	pgdly1	pgdly0	0x00
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	_

Table 30b. Power-Good Assertion Delay

pgdly1	pgdly0	PG ASSERTION DELAY (ms)
0	0	50
0	1	100
1	0	200
1	1	400

Power-Good Detection and PG Output

The PG output is asserted when the voltage at MON is between the undervoltage and overvoltage critical limits. The status of the power-good signal is maintained in register status3[0]. A value of 1 in the pg[] bit indicates

a power-good condition, regardless of the POL setting, which only affects the PG output pin polarity. The opendrain PG output can be configured for active-high or active-low status indication by the state of the POL input (see Table 29).

The POL input sets the value of status3[5], which is a read-only bit; the state of the POL input can be changed at any time during operation and the polarity of the PG output changes accordingly.

The assertion of the PG output is delayed by a user-selectable time delay of 50ms, 100ms, 200ms, or 400ms (see Tables 30a and 30b).