

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX6023 is a family of low-dropout, micropower voltage references in a 5-bump, chip-scale package (UCSP™). The MAX6023 series-mode (three-terminal) references, which operate with input voltages from 2.5V to 12.6V (1.25V and 2.048V options) or (VOUT + 0.2V) to 12.6V (all other voltage options), are available with output voltage options of 1.25V, 2.048V, 2.5V, 3.0V, 4.096V, 4.5V, and 5.0V. These devices are guaranteed an initial accuracy of ±0.2% and 30ppm/°C temperature drift over the -40°C to +85°C extended temperature

UCSPs offer the benefit of moving to smaller footprint and lower profile devices, significantly smaller than even SC70 or SOT23 plastic surface-mount packages. The significantly lower profile (compared to plastic SMD packages) of the UCSP makes the device ideal for height-critical applications. Miniature UCSP packages also enable device placement close to sources and allow more flexibility in a complex or large design layout.

The MAX6023 voltage references use only 27µA of supply current. And unlike shunt-mode (two-terminal) references, the supply current of the MAX6023 family varies only 0.8µA/V with supply-voltage changes, translating to longer battery life. Additionally, these internally compensated devices do not require an external compensation capacitor and are stable up to 2.2nF of load capacitance. The low-dropout voltage and the low supply current make these devices ideal for battery-operated systems.

Applications

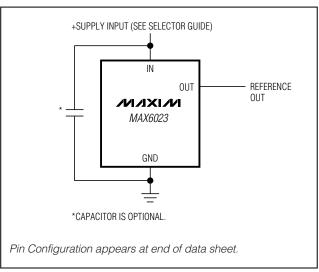
Hand-Held Equipment **Data Acquisition Systems** Industrial and Process Control Systems Battery-Operated Equipment Hard-Disk Drives

Selector Guide

PART	V _{OUT} (V)	INPUT VOLTAGE (V)
MAX6023EBT12	1.250	2.5V to 12.6
MAX6023EBT21	2.048	2.5V to 12.6
MAX6023EBT25	2.500	(V _{OUT} + 200mV) to 12.6
MAX6023EBT30	3.000	(V _{OUT} + 200mV) to 12.6
MAX6023EBT41	4.096	(V _{OUT} + 200mV) to 12.6
MAX6023EBT45	4.500	(V _{OUT} + 200mV) to 12.6
MAX6023EBT50	5.000	(V _{OUT} + 200mV) to 12.6

UCSP is a trademark of Maxim Integrated Products, Inc.

Features


- ♦ 5-Bump UCSP Package (1.0mm × 1.5mm × 0.3mm)
- ♦ No Output Capacitor Needed
- ♦ ±0.2% (max) Initial Accuracy
- ♦ 30ppm/°C (max) Temperature Coefficient
- ♦ 35µA (max) Quiescent Supply Current
- ♦ 0.8µA/V (max) Supply Current Variation with VIN
- ♦ 100mV Dropout at 500µA Load Current
- ♦ Line Regulation: 160µV/V (max)
- ♦ Output Voltage Options: 1.25V, 2.048V, 2.5V, 3.0V, 4.096V, 4.5V, 5.0V

Ordering Information

PART	TEMP RANGE	BUMP- PACKAGE	TOP MARK
MAX6023EBT12-T	-40°C to +85°C	5 UCSP*-5	AAO
MAX6023EBT21-T	-40°C to +85°C	5 UCSP-5	AAT
MAX6023EBT25-T	-40°C to +85°C	5 UCSP-5	AAP
MAX6023EBT30-T	-40°C to +85°C	5 UCSP-5	AAS
MAX6023EBT41-T	-40°C to +85°C	5 UCSP-5	AAQ
MAX6023EBT45-T	-40°C to +85°C	5 UCSP-5	AAR
MAX6023EBT50-T	-40°C to +85°C	5 UCSP-5	AAU

*UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and environment. See the UCSP Reliability Notice in the UCSP Reliability section of this data sheet for more information.

Typical Operating Circuit

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	Continuous Power Dissipation (T _A = +70°C)
IN0.3V to +13.5V	5-Bump UCSP (derate 3.4mW/°C above +70°C)273mW
OUT0.3V to (V _{IN} + 0.3V)	Operating Temperature Range40°C to +85°C
Output Short Circuit to GND or IN (V _{IN} < 6V)Continuous	Storage Temperature Range65°C to +150°C
Output Short Circuit to GND or IN (V _{IN} ≥ 6V)60s	Bump Temperature (soldering, 10s)+300°C

Note 1: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board-level solder attach and rework. This limit permits only the use of solder profiles recommended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-MAX6023EBT12 (V_{OUT} = 1.250V)

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT	1		•			1
Output Voltage	Vout	T _A = +25°C	1.247	1.250	1.253	V
Initial Voltage Accuracy		T _A = +25°C	-0.24		+0.24	%
Output Voltage Temperature Coefficient		(Note 3)		10	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$2.5V \le V_{IN} \le 12.6V$		10	80	μV/V
Land Danidation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 400μA		0.4	1.0	
Load Regulation	Δ l $_{OUT}$	-400μA ≤ I _{OUT} ≤ 0		0.5	1.1	μV/μΑ
Chart Circuit Current	laa	Short to GND		4		mA
Short-Circuit Current	I _{SC}	Short to IN		10		
Temperature Hysteresis		(Note 4)		90		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C		30		ppm/ 1000hr
DYNAMIC CHARACTERISTICS	1		"			1
Niciae Veltage		f = 0.1Hz to 10Hz		25		μVр-р
Noise Voltage	eout	f = 10Hz to 10kHz		65		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / Δl _{OUT}	V _{IN} = +5V ±100mV, f = 120Hz		86		dB
Turn-On Settling Time	t _R	To V _{OUT} within 0.1% of final value, C _{OUT} = 50pF		30		μs
Capacitive-Load Stability Range	Cout	(Note 3)	0		2.2	nF
INPUT			•			
Supply-Voltage Range	VIN	Guaranteed by line-regulation test	2.5		12.6	V
Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	ΔΙΙΝ/ΔVΙΝ	2.5V ≤ V _{IN} ≤ 12.6V		0.8	2.0	μA/V

ELECTRICAL CHARACTERISTICS-MAX6023EBT21 (Vout = 2.048V)

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.$) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ОUТРUТ	•		<u> </u>			
Output Voltage	Vout	T _A = +25°C	2.044	2.048	2.052	V
Initial Voltage Accuracy		T _A = +25°C	-0.20		+0.20	%
Output Voltage Temperature Coefficient		(Note 3)		10	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$2.5V \le V_{IN} \le 12.6V$		20	100	μV/V
Lood Dogwlation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 500μA		0.5	1.4	/ / ^
Load Regulation	Δ lout	-500μA ≤ I _{OUT} ≤ 0		0.3	0.70	μV/μΑ
Chart Circuit Comment	la a	Short to GND		4		т Л
Short-Circuit Current	Isc	Short to IN		10		mA
Temperature Hysteresis		(Note 4)		90		ppm
Long-Term Stability	$\Delta V_{OUT}/$ time	1000hr at T _A = +25°C		50		ppm/ 1000hr
DYNAMIC CHARACTERISTICS	•		'			
Noise Valtage	0.01.17	f = 0.1Hz to 10Hz		40		µVр-р
Noise Voltage	eout	f = 10Hz to $10kHz$		105		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / Δl _{OUT}	V _{IN} = +5V ±100mV, f = 120Hz		82		dB
Turn-On Settling Time	t _R	To V _{OUT} within 0.1% of final value, C _{OUT} = 50pF		85		μs
Capacitive-Load Stability Range	Cout	(Note 3)	0		2.2	nF
INPUT	•		•			
Supply-Voltage Range	V _{IN}	Guaranteed by line-regulation test	2.5		12.6	V
Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	ΔΙΙΝ/ΔVΙΝ	2.5V ≤ V _{IN} ≤ 12.6V		0.8	2.0	μA/V

ELECTRICAL CHARACTERISTICS-MAX6023EBT25 (VOUT = 2.500V)

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT	•					•
Output Voltage	Vout	T _A = +25°C	2.495	2.5	2.505	V
Initial Voltage Accuracy		T _A = +25°C	-0.20		+0.20	%
Output Voltage Temperature Coefficient		(Note 3)		10	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		25	140	μV/V
Lood Doculation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 500μA		0.5	1.4	\ / / ^
Load Regulation	Δ lout	-500μA ≤ I _{OUT} ≤ 0		0.3	0.8	μV/μΑ
Short-Circuit Current	la-a	Short to GND		4		mA
Short-Circuit Current	I _{SC}	Short to IN		10		MA
Dropout Voltage	(VIN - VOUT)	$I_{OUT} = 500\mu A \text{ (Note 5)}$		100	200	mV
Temperature Hysteresis		(Note 4)		90		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at $T_A = +25^{\circ}C$		50		ppm/ 1000hr
DYNAMIC CHARACTERISTICS			<u> </u>			
Nicion Voltono		f = 0.1Hz to 10Hz		60		µVр-р
Noise Voltage	eout	f = 10Hz to $10kHz$		125		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / Δl _{OUT}	V _{IN} = +5V ±100mV, f = 120Hz		82		dB
Turn-On Settling Time	t _R	To V _{OUT} within 0.1% of final value, C _{OUT} = 50pF		85		μs
Capacitive-Load Stability Range	Cout	(Note 3)	0		2.2	nF
INPUT						
Supply-Voltage Range	VIN	Guaranteed by line-regulation test	V _{OUT} + 0.2		12.6	V
Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	ΔΙΙΝ/ΔVΙΝ	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.0	μΑ/V

4 ______ M/XI/M

ELECTRICAL CHARACTERISTICS-MAX6023EBT30 (Vout = 3.000V)

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout	T _A = +25°C	2.994	3.000	3.006	V
Initial Voltage Accuracy		T _A = +25°C	-0.20		+0.20	%
Output Voltage Temperature Coefficient		(Note 3)		10	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		40	140	μV/V
Load Degulation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 500μA		0.7	1.5	\//^
Load Regulation	Δ lout	-500μA ≤ I _{OUT} ≤ 0		0.4	0.8	μV/μΑ
Dropout Voltage	(V _{IN} - V _{OUT})	I _{OUT} = 500μA (Note 5)		100	200	mV
Chart Circuit Current	1	Short to GND		4		A
Short-Circuit Current	I _{SC}	Short to IN		10		mA
Temperature Hysteresis		(Note 4)		90		ppm
Long-Term Stability	$\Delta V_{OUT}/$ time	1000hr at $T_A = +25^{\circ}C$		50		ppm/ 1000hr
DYNAMIC CHARACTERISTICS			•			•
Ni-i W-lk	_	f = 0.1Hz to 10Hz		75		µVр-р
Noise Voltage	eout	f = 10Hz to 10kHz		150		μVRMS
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	V _{IN} = +5V ±100mV, f = 120Hz		82		dB
Turn-On Settling Time	t _R	To V _{OUT} within 0.1% of final value, C _{OUT} = 50pF		85		μs
Capacitive-Load Stability Range	Cout	(Note 3)	0		2.2	nF
INPUT						
Supply-Voltage Range	VIN	Guaranteed by line-regulation test	V _{OUT} + 0.2		12.6	V
Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.0	μΑ/V

ELECTRICAL CHARACTERISTICS-MAX6023EBT41 (Vout = 4.096V)

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT						
Output Voltage	Vout	T _A = +25°C	4.088	4.096	4.104	V
Initial Voltage Accuracy		T _A = +25°C	-0.20		+0.20	%
Output Voltage Temperature Coefficient		(Note 3)		10	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		50	160	μV/V
1 IB 1::	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 500μA		1.0	1.8	\// A
ad Regulation	Δ lout	-500μA ≤ I _{OUT} ≤ 0		0.3	0.9	μV/μΑ
Dropout Voltage	(V _{IN} - V _{OUT})	I _{OUT} = 500μA (Note 5)		100	200	mV
	·	Short to GND		4		A
Short-Circuit Current	I _{SC}	Short to IN		10		mA
Temperature Hysteresis		(Note 4)		90		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C		50		ppm/ 1000hr
DYNAMIC CHARACTERISTICS						
NI-: V-II		f = 0.1Hz to 10Hz		100		µVр-р
Noise Voltage	eout	f = 10Hz to 10kHz		200		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	V _{IN} = +5V ±100mV, f = 120Hz		77		dB
Turn-On Settling Time	t _R	To V _{OUT} within 0.1% of final value, C _{OUT} = 50pF		160		μs
Capacitive-Load Stability Range	Cout	(Note 3)	0		2.2	nF
INPUT						
Supply-Voltage Range	VIN	Guaranteed by line-regulation test	V _{OUT} + 0.2		12.6	V
Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.0	μA/V

6 ______ /N/XI/M

ELECTRICAL CHARACTERISTICS-MAX6023EBT45 (VOUT = 4.500V)

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 2)

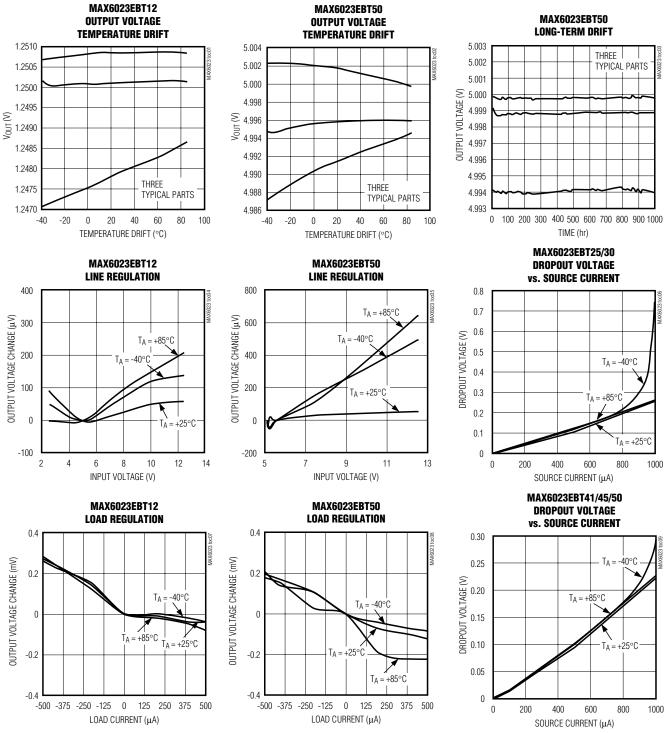
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ОИТРИТ						
Output Voltage	Vout	T _A = +25°C	4.491	4.500	4.509	V
Initial Voltage Accuracy		T _A = +25°C	-0.20		+0.20	%
Output Voltage Temperature Coefficient		(Note 3)		10	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		50	160	μV/V
Load Decidation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 500μA		1.0	2.0	\//
Load Regulation	Δ lout	-500μA ≤ I _{OUT} ≤ 0		0.3	1.0	μV/μΑ
Dropout Voltage	(V _{IN} - V _{OUT})	I _{OUT} = 500μA (Note 5)		100	200	mV
Chart Circuit Current	1	Short to GND		4		m 1
Short-Circuit Current	I _{SC}	Short to IN		10		mA
Temperature Hysteresis		(Note 4)		90		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at $T_A = +25^{\circ}C$		50		ppm/ 1000hr
DYNAMIC CHARACTERISTICS						
Naisa Valtaga	0.5	f = 0.1Hz to 10Hz		110		µVр-р
Noise Voltage	eout	f = 10Hz to 10kHz		215		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	V _{IN} = +5V ±100mV, f = 120Hz		82		dB
Turn-On Settling Time	t _R	To V _{OUT} within 0.1% of final value, C _{OUT} = 50pF		85		μs
Capacitive-Load Stability Range	Cout	(Note 3)	0		2.2	nF
INPUT	· ·		<u> </u>			1
Supply-Voltage Range	V _{IN}	Guaranteed by line-regulation test	V _{OUT} + 0.2		12.6	V
Quiescent Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.0	μΑ/V

ELECTRICAL CHARACTERISTICS-MAX6023EBT50 (VOUT = 5.000V)

 $(V_{IN} = +5.5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 2)

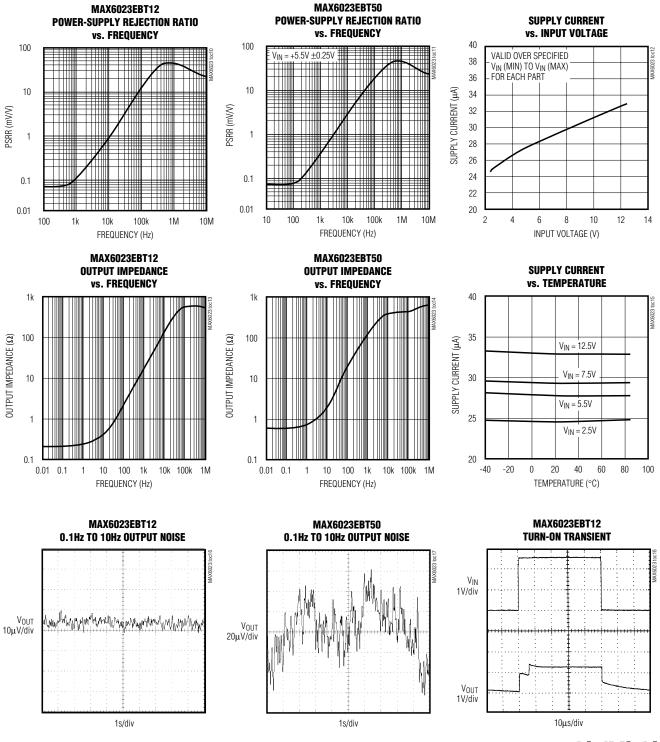
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	Vout	T _A = +25°C	4.990	5.0	5.010	V
Initial Voltage Accuracy		$T_A = +25^{\circ}C$	-0.20		+0.20	%
Output Voltage Temperature Coefficient		(Note 3)		10	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		50	160	μV/V
Load Regulation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 500μA		1.2	2.2	μV/μΑ
Load negulation	Δ lout	-500μA ≤ I _{OUT} ≤ 0		0.3	1.1	μν/μΑ
Dropout Voltage	(V _{IN} - V _{OUT})	I _{OUT} = 500μA (Note 5)		100	200	mV
Short-Circuit Current	laa	Short to GND		4		mA
Short-Circuit Current	I _{SC}	Short to IN		10		MA
Temperature Hysteresis		(Note 4)		90		ppm
Long-Term Stability	$\Delta V_{OUT}/$ time	1000hr at $T_A = +25^{\circ}C$		50		ppm/ 1000hr
DYNAMIC CHARACTERISTICS						
Noise Voltage	0.01.17	f = 0.1Hz to 10Hz		120		µVp-р
Noise Voltage	eout	f = 10Hz to 10kHz		240		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	$V_{IN} = +5V \pm 100$ mV, $f = 120$ Hz		72		dB
Turn-On Settling Time	t _R	To V _{OUT} within 0.1% of final value, C _{OUT} = 50pF		220		μs
Capacitive-Load Stability Range	Cout	(Note 3)	0		2.2	nF
INPUT						
Supply-Voltage Range	VIN	Guaranteed by line-regulation test	V _{OUT} + 0.2		12.6	V
Quiescent Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	$2.5V \le V_{IN} \le 12.6V$		0.9	2.0	μA/V

Note 2: Devices are 100% production tested at $T_A = +25^{\circ}C$ and are guaranteed by design from $T_A = T_{MIN}$ to T_{MAX} .

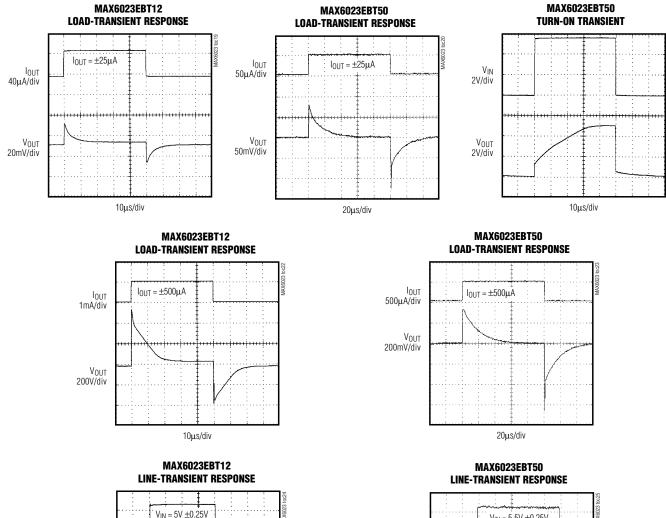

Note 3: Guaranteed by design.

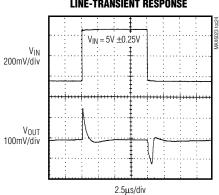
Note 4: Temperature hysteresis is defined as the change in T_A = +25°C output voltage before and after temperature cycling of the device from T_A = T_{MIN} to T_{MAX}.

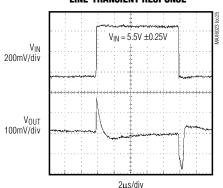
Note 5: Dropout voltage is the minimum input voltage at which V_{OUT} changes ≤ 0.2% from V_{OUT} at V_{IN} = +5.0V (V_{IN} = +5.5V for MAX6023EBT50).


Typical Operating Characteristics

 $(V_{IN} = +5V \text{ for MAX6023EBT12/21/25/30/41/45}, V_{IN} = +5.5V \text{ for MAX6023EBT50}; I_{OUT} = 0; T_A = +25^{\circ}C, unless otherwise noted.) (Note 6)$


Typical Operating Characteristics (continued)


 $(V_{IN} = +5V \text{ for MAX6023EBT12/21/25/30/41/45}, V_{IN} = +5.5V \text{ for MAX6023EBT50}; I_{OUT} = 0; T_A = +25^{\circ}C, unless otherwise noted.) (Note 6)$



Typical Operating Characteristics (continued)

 $(V_{IN} = +5V \text{ for MAX6023EBT12/21/25/30/41/45}, V_{IN} = +5.5V \text{ for MAX6023EBT50}; I_{OUT} = 0; T_{A} = +25^{\circ}C, unless otherwise noted.) (Note 6)$

Note 6: Many of the *Typical Operating Characteristics* of the MAX6023 family are extremely similar. The extremes of these characteristics are found in MAX6023EBT12 (1.25V output) and the MAX6023EBT50 (5.0V output). The *Typical Operating Characteristics* of the remainder of the MAX6023 family typically lie between these two extremes and can be estimated based on their output voltage.

Pin Description

ВИМР	NAME	FUNCTION
A1, A3	I.C.	Internally connected. Do not connect to this pin.
A2	GND	Ground
B1	OUT	Reference Output
В3	IN	Input Voltage

Detailed Description

The MAX6023 precision bandgap references use a proprietary curvature correction circuit and laser-trimmed thin-film resistor, resulting in a low temperature coefficient of <30ppm/°C and initial accuracy of better than 0.2%. These devices can sink and source up to 500µA with <200mV of dropout voltage, making them attractive for use in low-voltage applications.

Applications Information

Output/Load Capacitance

The MAX6023 devices do not require an output capacitor for dynamically stable, oscillation-free operation. They are stable for capacitive loads from 0 to 2.2nF. However, in applications where the load or the supply can experience step changes, an output capacitor reduces the amount of overshoot (or undershoot) and improves the circuit's transient response. Many applications do not need an external capacitor and this family offers a significant advantage in these applications when board space is critical.

Supply Current

The no-load supply current of these series-mode references is $35\mu A$ maximum, and is virtually independent of the supply voltage, with only a $0.8\mu A/V$ variation from the supply voltage. Unlike shunt-mode references that must draw the maximum load current at all times, the load current is drawn from the input voltage source only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency can help reduce power dissipation and extend battery life.

When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to 200µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Output Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at $T_A = +25^{\circ}\text{C}$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 90ppm.

Turn-On Time

These devices typically turn on and settle within 0.1% of their final value; 30µs to 220µs depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.

UCSP Information

UCSP Package Consideration

For general UCSP package information and PC layout considerations, refer to the Maxim Application Note: UCSP—A Wafer-Level Chip-Scale Package.

UCSP Reliability

The UCSP represents a unique package that greatly reduces board space compared to other packages. The chip-scale package represents a unique packaging form factor that may not perform as well as a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a chip-scale package.

Performance through operating-life test and moisture resistance remains uncompromised. The wafer-fabrication process primarily determines the performance. Mechanical stress performance is a greater consideration for chip-scale packages. Chip-scale packages are attached through direct solder contact to the user's PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Comprehensive reliability tests have been performed and are available upon request. In conclusion, the UCSP performs reliably through environmental stresses.

Pin Configuration

Chip Information

TOP VIEW
(BUMPS ON BOTTOM)

OUT

B1

A1

I.C.

MAXIM

MAX6023

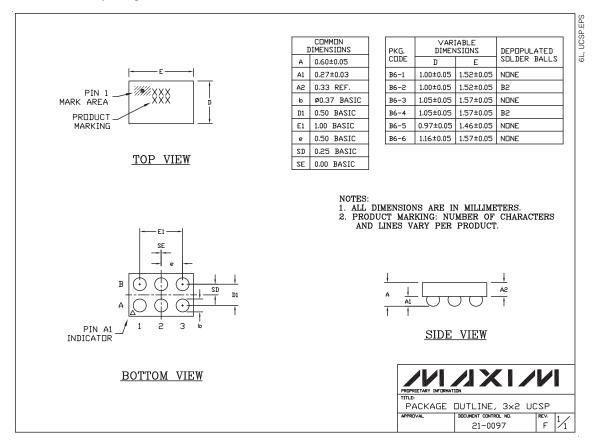
A2

GND

IN

B3

A3


I.C.

UCSP

TRANSISTOR COUNT: 70

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600