imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

The MAX6033 ultra-high-precision series voltage refer-

ence features a low 7ppm/°C (max) temperature coeffi-

cient and a low dropout voltage (200mV, max). Low temperature drift and low noise make the MAX6033

This device uses bandgap technology for low-noise per-

formance and excellent accuracy. Laser-trimmed, highstability, thin-film resistors, and postpackage trimming

quarantee excellent initial accuracy (±0.04%, max). The

MAX6033 consumes only 40µA of supply current and sources up to 15mA. Series mode references save sys-

tem power and use minimal external components com-

The MAX6033 is available in the miniature 6-pin SOT23 package and is offered over the automotive tempera-

High-Accuracy Industrial and Process Control

Typical Operating Circuit appears at end of data sheet.

ideal for use with high-resolution ADCs or DACs.

pared to two-terminal shunt references.

ture range (-40°C to +125°C).

Power Supplies

Hard-Disk Drives

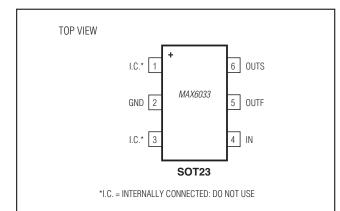
Precision Regulators

A/D and D/A Converters

Hand-Held Instruments

MAX6033

High-Precision, Low-Dropout SOT23 Series Voltage Reference


General Description

Applications

Features

- Tiny 6-Pin SOT23 Package
 - Ultra-Low Temperature Drift: 7ppm/°C (max)
 - ♦ ±0.04% Initial Accuracy
 - Stable with Capacitive Loads
 - Low 16µVP-P Noise (0.1Hz to 10Hz) (2.5V Output)
 - ♦ 15mA Output Source Current
 - Low 200mV Dropout Voltage
 - ◆ Low 40µA Quiescent Current
 - ♦ Wide 2.7V to 12.6V Supply Voltage
 - Excellent Load Regulation: 0.001mV/mA

Pin Configuration

Ordering Information/Selector Guide

PART	OUTPUT VOLTAGE (V)	TEMP COEFF (ppm/°C)	INITIAL ACCURACY (%)	TOP MARK
MAX6033AAUT25-T	2.500	10	0.04	ABDF
MAX6033AAUT25#TG16	2.500	10	0.04	#ACNC
MAX6033BAUT25-T	2.500	15	0.20	AAXL
MAX6033BAUT25#TG16	2.500	15	0.20	#ACND
MAX6033CAUT25-T	2.500	40	0.10	AAXH
MAX6033CAUT25#TG16	2.500	40	0.10	#ACNE
MAX6033AAUT30-T	3.000	10	0.04	ABDG
MAX6033AAUT30#TG16	3.000	10	0.04	#ACNF
MAX6033BAUT30-T	3.000	15	0.20	AAXM
MAX6033BAUT30#TG16	3.000	15	0.20	#ACNG

Ordering Information/Selector Guide continued on last page.

#Denotes a RoHS-compliant device that may include lead(Pb) that is exempt under the RoHS requirements. T = Tape and reel.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX6033 Ultra-High-Precision SOT23 Series Voltage Reference

ABSOLUTE MAXIMUM RATINGS

IN to GND0.3V to +13V OUTF, OUTS to GND0.3V to +6V	Maximum Junction Temperature+150°C Lead Temperature (soldering, 10s)+300°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	Soldering Temperature (reflow)
6-Pin SOT23 (derate 9.1mW/°C above +70°C)727mW	RoHS-Compliant Packages+245°C
Operating Temperature Range40°C to +125°C	Packages Containing Lead(Pb)+240°C
Storage Temperature Range65°C to +150°C	· · /

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-VOUT = 2.500V

 $(V_{IN} = 5V, C_{OUT} = 0.1\mu$ F, $I_{OUT} = 0A, T_A = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
			MAX6033A	2.4990	2.5000	2.5010	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6033B	2.4950	2.5000	2.5050	V
			MAX6033C	2.4975	2.5000	2.5025	
			MAX6033A	-0.04		+0.04	
Output-Voltage Accuracy		T _A = +25°C	MAX6033B	-0.2		+0.2	%
			MAX6033C	-0.1		+0.1	
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.5	7	
		MAXOUSSA	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		2.5	10	
Output Voltage Temperature	TCVOUT	MAX6033B	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	10	ppm/°C
Coefficient	10,001	MAX0033B	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		7	15	ppin/ C
		MAX6033C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	
		MAX6033C	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		10	40	
Input Voltage Range	VIN	Inferred from line reg	ulation specification	2.7		12.6	V
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$2.7V \le V_{\rm IN} \le 12.6V$	$T_A = +25^{\circ}C$		3	25	μV/V
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			50	μν/ν
Load Regulation	$\Delta V_{OUT}/$	$-100\mu A \le I_{OUT} \le$	$T_A = +25^{\circ}C$		0.001	0.05	mV/mA
Load negulation	ΔI_{OUT}	15mA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			0.1	IIIV/IIIA
		V _{OUT} = 0.1%, I _{OUT} = 1mA			0.02	0.2	
Dropout Voltage (Note 2)	VDO	V _{OUT} = 0.1%,	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		0.3	0.4	V
		I _{OUT} = 10mA	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			0.5	
		$T_A = +25^{\circ}C$			40	60	
Quiescent Supply Current	lin	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				75	μA
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$				85	
		Vout = 0V			90		
Output Short-Circuit Current	ISC	Vout = Vin			-2		mA
0 · · · · · · · · · · · · · · · · · · ·		$0.1\text{Hz} \le f \le 10\text{Hz}$			16		μVp-p
Output-Voltage Noise	en	10 Hz $\leq f \leq 1$ kHz			12		μVRMS
Turn-On Settling Time	ton	V_{OUT} settles to ±0.01% of final value			500		μs
Temperature Hysteresis		(Note 3)			150		ppm
Long-Term Stability		Δt = 1000hr			40		ppm

Ultra-High-Precision SOT23 Series Voltage Reference

ELECTRICAL CHARACTERISTICS—VOUT = 3.000V

 $(V_{IN} = 5V, C_{OUT} = 0.1\mu$ F, $I_{OUT} = 0$ A, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
			MAX6033A	2.9988	3.0000	3.0012	
Output Voltage	Vout	T _A = +25°C	MAX6033B	2.9940	3.0000	3.0060	V
			MAX6033C	2.9970	3.0000	3.0030	
			MAX6033A	-0.04		+0.04	
Output-Voltage Accuracy		T _A = +25°C	MAX6033B	-0.2		+0.2	%
			MAX6033C	-0.1		+0.1	
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.5	7	
		MAX6033A	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		2.5	10	
Output-Voltage Temperature	TOV		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	10	
Coefficient	TCVOUT	MAX6033B	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		7	15	ppm/°(
		MAX6033C	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	
			$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		10	40	
Input Voltage Range	VIN	Inferred from line regu	lation specification	3.2		12.6	V
	$\Delta V_{OUT}/\Delta V_{IN}$	$3.2V \le V_{IN} \le 12.6V$	$T_A = +25^{\circ}C$		4	30	
Line Regulation			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			60	μV/V
Lood Degulation	ΔV _{OUT} /	ΔV _{OUT} / -100μA ≤ I _{OUT} ≤	$T_A = +25^{\circ}C$		0.002	0.06	mV/m/
Load Regulation	ΔI_{OUT}	15mA	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			0.12	THV/TH/
Drepout Valtage (Nate 2)		A) (I _{OUT} = 1mA		0.02	0.2	V
Dropout Voltage (Note 2)	VDO	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.2	0.4	
		$T_A = +25^{\circ}C$			40	60	
Quiescent Supply Current	lin	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				75	μA
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				85	
Output Chart Circuit Current		V _{OUT} = 0V			90		
Output Short-Circuit Current	ISC	V _{OUT} = V _{IN}			-2		mA
Outout Valtage Naisa		$0.1Hz \le f \le 10Hz$			24		μVp-p
Output-Voltage Noise	en	10Hz ≤ f ≤ 1kHz			15		μVRMS
Turn-On Settling Time	ton	V _{OUT} settles to ±0.01	% of final value		600		μs
Temperature Hysteresis		(Note 3)			150		ppm
Long-Term Stability		$\Delta t = 1000 hr$			40		ppm

ELECTRICAL CHARACTERISTICS—VOUT = 4.096V

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	МАХ	UNITS
			MAX6033A	4.0943	4.0960	4.0977	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6033B	4.0878	4.0960	4.1042	V
			MAX6033C	4.0919	4.0960	4.1001	
			MAX6033A	-0.04		+0.04	
Output-Voltage Accuracy		$T_A = +25^{\circ}C$	MAX6033B	-0.2		+0.2	%
			MAX6033C	-0.1		+0.1	

Ultra-High-Precision SOT23 Series Voltage Reference

ELECTRICAL CHARACTERISTICS—VOUT = 4.096V (continued)

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.5	7	
		MAX6033A	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		2.5	10	
Output-Voltage Temperature	TOVALT	MAX6033B	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	10	/^
Coefficient	TCVOUT	IVIAX0033D	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		7	15	ppm/°C
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	
		MAX6033C	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		10	40	
Input-Voltage Range	VIN	Inferred from line reg	julation specification	4.3		12.6	V
Line Regulation	$\Delta V_{OUT}/$	4.3V ≤ V _{IN} ≤ 12.6V	$T_A = +25^{\circ}C$		6	30	
	ΔV_{IN}	$4.3V \leq V N \leq 12.0V$	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			60	μV/V
Load Regulation	$\Delta V_{OUT} / \Delta I_{OUT}$	-100µA ≤ I _{OUT} ≤ 15mA	$T_A = +25^{\circ}C$		0.002	0.08	mV/mA
			$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			0.15	
		$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 1mA		0.02	0.2	- V
Dropout Voltage (Note 2)	VDO		I _{OUT} = 10mA		0.2	0.4	
		$T_A = +25^{\circ}C$			40	60	
Quiescent Supply Current	l _{IN}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				75	μA
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$	C			85	
Output Short Circuit Current	nt las	V _{OUT} = 0V			90		mA
Output Short-Circuit Current	ISC	V _{OUT} = V _{IN}			-2		ША
Output Voltage Naisa		$0.1Hz \le f \le 10Hz$			32		μV _{P-P}
Output-Voltage Noise	en	$10Hz \le f \le 1kHz$			22		μV_{RMS}
Turn-On Settling Time	ton	V _{OUT} settles to ±0.01% of final value			800		μs
Temperature Hysteresis		(Note 3)			150		ppm
Long-Term Stability		$\Delta t = 1000 hr$			40		ppm

ELECTRICAL CHARACTERISTICS—VOUT = 5.000V

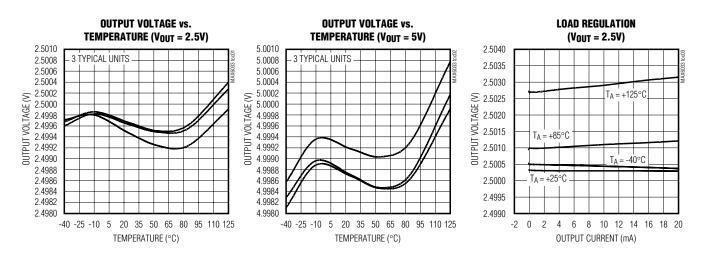
 $(V_{IN} = 5.5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS		
Output Voltage					MAX6033A	4.9980	5.000	5.0020	
	Vout	$T_A = +25^{\circ}C$	MAX6033B	4.9900	5.000	5.0100	V		
			MAX6033C	4.9950	5.000	5.0050			
Output-Voltage Accuracy			MAX6033A	-0.04		+0.04			
		T _A = +25°C	MAX6033B	-0.2		+0.2	%		
			MAX6033C	-0.1		+0.1			
		MAX6033A	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.5	7			
			$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		2.5	10			
Output-Voltage Temperature	TOVAUT	MAYEO22D	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	10	ppm/°C		
Coefficient	TCVOUT	MAX6033B	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		7	15			
		MAYCODDO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20			
		MAX6033C	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$		10	40			
Input Voltage Range	VIN	Inferred from line reg	gulation specification	5.2		12.6	V		

Ultra-High-Precision SOT23 Series Voltage Reference

ELECTRICAL CHARACTERISTICS—VOUT = 5.000V (continued)

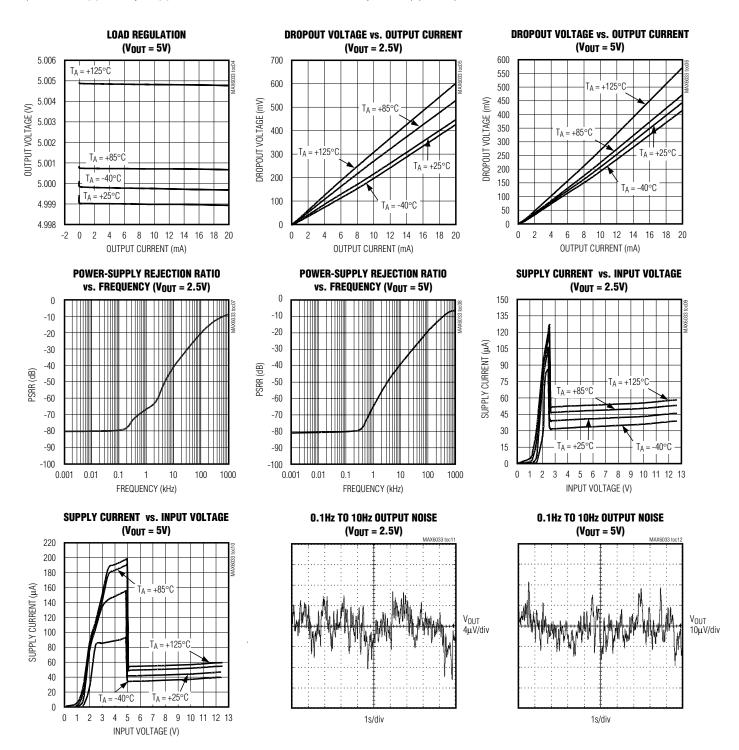
(VIN = 5.5V, C_{OUT} = 0.1µF, I_{OUT} = 0A, T_A = T_{MIN} to T_{MAX}, unless otherwise specified. Typical values are at T_A = +25°C.) (Note 1)


PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
Line Degulation	ΔVουτ/	$5.2V \le V_{IN} \le 12.6V$	$T_A = +25^{\circ}C$		7	50	
Line Regulation	$\Delta V_{\rm IN}$	$5.2V \leq V N \leq 12.0V$	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			100	μV/V
Lood Dogulation	$\Delta V_{OUT}/$	-100µA ≤ I _{OUT}	$T_A = +25^{\circ}C$		0.003	0.1	mV/mA
Load Regulation	ΔI_{OUT}	≤ 15mA	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			0.2	mv/mA
Dropout Voltage (Note 2)			I _{OUT} = 1mA		0.02	0.2	V
	VDO	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.2	0.4	v
		$T_A = +25^{\circ}C$			40	60	
Quiescent Supply Current	l _{IN}	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$				75	μΑ
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$)			85	
Output Short Circuit Ourropt	laa	V _{OUT} = 0V			90		~^^
Output Short-Circuit Current	Isc	V _{OUT} = V _{IN}			-2		mA
Output Valtage Naise	0	$0.1Hz \le f \le 10Hz$			40		μV _{P-P}
Output-Voltage Noise	en	10Hz ≤ f ≤ 1kHz			26		μV _{RMS}
Turn-On Settling Time	ton	V_{OUT} settles to ±0.01% of final value			1000		μs
Temperature Hysteresis		(Note 3)			150		ppm
Long-Term Stability		$\Delta t = 1000 hr$			40		ppm

Note 1: MAX6033 is 100% production tested at T_A = +25°C and is guaranteed by design for T_A = T_{MIN} to T_{MAX} as specified.
Note 2: Dropout Voltage is the minimum input voltage at which V_{OUT} changes ≤ 0.1% from V_{OUT} at V_{IN} = 5V (V_{IN} = 5.5V for V_{OUT} = 5V).

Note 3: Temperature Hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN}.

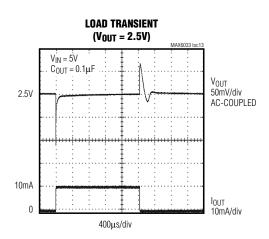
Typical Operating Characteristics

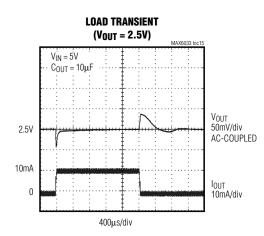

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = +25^{\circ}C, unless otherwise specified.)$ (Note 4)

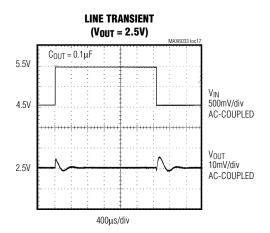
MAX6033 Ultra-High-Precision SOT23 Series Voltage Reference

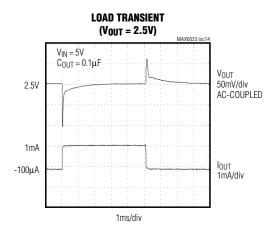
Typical Operating Characteristics (continued)

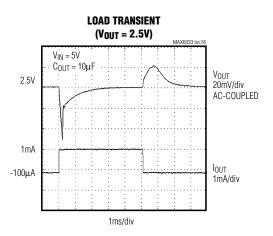
 $(V_{IN} = 5V, C_{OUT} = 0.1\mu F, I_{OUT} = 0A, T_A = +25^{\circ}C, unless otherwise specified.)$ (Note 4)

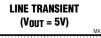


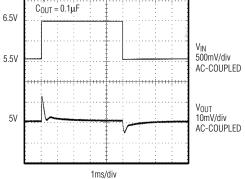

Maxim Integrated

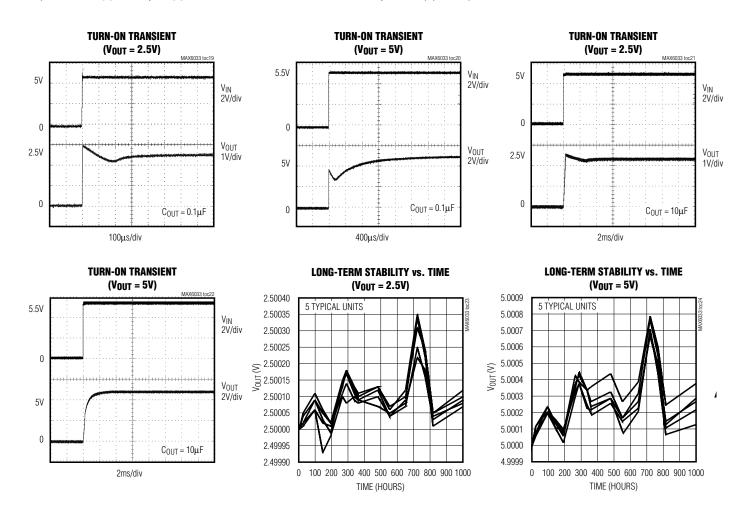

Ultra-High-Precision SOT23 Series Voltage Reference


Typical Operating Characteristics (continued)


 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = +25^{\circ}C$, unless otherwise specified.) (Note 4)







MAX6033 Ultra-High-Precision SOT23 Series Voltage Reference

Typical Operating Characteristics (continued)

 $(V_{IN} = 5V, C_{OUT} = 0.1 \mu F, I_{OUT} = 0A, T_A = +25^{\circ}C$, unless otherwise specified.) (Note 4)

Note 4: Many of the MAX6033 *Typical Operating Characteristics* are similar. The extremes of these characteristics are found in the MAX6033 (2.5V output) and the MAX6033 (5V output). The *Typical Operating Characteristics* of the remainder of the MAX6033 family typically lie between these two extremes and can be estimated based on their output voltages.

Ultra-High-Precision SOT23 Series Voltage Reference

Pin Description

PIN	NAME	FUNCTION
1, 3	I.C.	Internally Connected. Do not connect externally.
2	GND	Ground
4	IN	Positive Power-Supply Input
5	OUTF	Voltage Reference Force Output. Short OUTF to OUTS as close to the device as possible. Bypass OUTF with 0.1μ F (min) capacitor to GND.
6	OUTS	Voltage Reference Sense

Applications Information

Bypassing/Load Capacitance

For the best line-transient performance, decouple the input with a 0.1μ F ceramic capacitor as shown in the *Typical Operating Circuit*. Place the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary.

The MAX6033 family requires a minimum output capacitance of 0.1μ F for stability and is stable with capacitive loads (including the bypass capacitance) of up to 100μ F. In applications where the load or the supply can experience step changes, a larger output capacitor reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Place output capacitors as close to the device as possible.

Supply Current

The quiescent supply current of the MAX6033 series reference is typically 40µA and is virtually independent of the supply voltage. In the MAX6033 family, the load current is drawn from the input only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life.

When the supply voltage is below the minimum-specified input voltage (as during turn-on), the devices can draw up to 150μ A beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Output-Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at $T_A = +25^{\circ}C$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 150ppm.

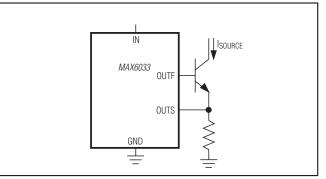


Figure 1. Precision Current Source

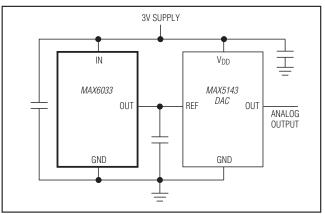


Figure 2. 14-Bit High-Resolution DAC and Positive Reference from a Single 3V Supply

Turn-On Time

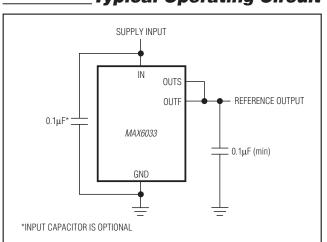
These devices typically turn on and settle to within 0.01% of their final value in $>1\mu$ s. The turn-on time can increase up to 2ms with the device operating at the minimum dropout voltage and the maximum load.

Precision Current Source

Figure 1 shows a typical circuit providing a precision current source. The OUTF output provides the bias current for the bipolar transistor. OUTS senses the voltage across the resistor and adjusts the current sourced by OUTF accordingly.

High-Resolution DAC and Reference from Single Supply

Figure 2 shows a typical circuit providing both the power supply and reference for a high-resolution DAC. A MAX6033 with 2.5V output provides the reference voltage for the DAC.


Ultra-High-Precision SOT23 Series Voltage Reference

Ordering Information/Selector Guide (continued)

PART	OUTPUT VOLTAGE (V)	TEMP COEFF (ppm/°C)	INITIAL ACCURACY (%)	TOP MARK
MAX6033CAUT30-T	3.000	40	0.10	AAXI
MAX6033CAUT30#TG16	3.000	40	0.10	#ACNH
MAX6033AAUT41-T	4.096	10	0.04	ABDH
MAX6033AAUT41#TG16	4.096	10	0.04	#ACNI
MAX6033BAUT41-T	4.096	15	0.20	AAXN
MAX6033BAUT41#TG16	4.096	15	0.20	#ACLG
MAX6033CAUT41-T	4.096	40	0.10	AAXJ
MAX6033CAUT41#TG16	4.096	40	0.10	#ACNJ
MAX6033AAUT50-T	5.000	10	0.04	ABDI
MAX6033AAUT50#TG16	5.000	10	0.04	#ACNK
MAX6033BAUT50-T	5.000	15	0.20	AAXO
MAX6033BAUT50#TG16	5.000	15	0.20	#ACNL
MAX6033CAUT50-T	5.000	40	0.10	AAXK
MAX6033CAUT50#TG16	5.000	40	0.10	#ACNM

#Denotes a RoHS-compliant device that may include lead(Pb) that is exempt under the RoHS requirements.

T = Tape and reel.

Typical Operating Circuit

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
SOT23-6	U6F-6	<u>21-0058</u>	<u>90-0175</u>
RoHS SOT23-6	UGFH-6	—	—

Ultra-High-Precision SOT23 Series Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	6/03	Various changes	—
3	3/12	Replaced Ordering Information table/Selector Guide, updated packaging information	1, 10

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2012 Maxim Integrated Products, Inc.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

11