imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High-Precision, Dual-Output Series Voltage Reference

General Description

The MAX6072 is a dual-output precision series voltage reference. The product features two outputs, $+V_{REF}$ and $+V_{REF}/2$. The device exhibits a very low 1/f noise of 2ppm (peak-to-peak). Each output can source and sink 10mA and has an independent sense line. This product has a temperature drift of 6ppm/°C (max) over the ambient temperature range of -40°C to +125°C and an initial accuracy of 0.04%. Three pairs of output voltages are available: 5V/2.5V, 4.096V/2.048V, and 2.5V/1.25V. The product operates with an input voltage range of 2.8V to 5.5V and has sufficient headroom for the highest voltage. It consumes a mere $150\mu A$ (typ) of quiescent supply current per reference. The dual voltage outputs make this device ideal for precision ADC applications where the input signal needs to be referred to $V_{REF}/2$.

The MAX6072 is available in a 10-pin μ MAX[®] package and is specified for operation over the extended -40°C to +125°C industrial temperature range.

Applications

- ADC/DAC References and Common-Mode Set-Point
- Test and Measurement/ATE
- High-Accuracy Industrial and Process Control
- Portable Medical

Benefits and Features

- Low Temperature Coefficient Ensures Stable System Over Wide Temperature Ranges
 - A-grade: 6ppm/°C (max)
 - B-grade: 8ppm/°C (max)
- Excellent Long-Term Drift Ensures Accurate Signal Chain Readings Over Time
 - 15ppm Drift Over 1,000 Hours
- Dual References (V_{REF} and V_{REF}/2) Provide ADC/ DAC Reference and Common-Mode Reference
 - MAX6072__50: V_{REF} = 5V, V_{REF}/₂ = 2.5V
 - MAX6072_41: V_{REF} = 4.096V, V_{REF}/₂ = 2.048V
 - MAX6072___25: V_{REF} = 2.5V, V_{REF}/₂ = 1.25V
- Low Thermal Hysteresis Ensures Consistent Results Through Temperature Cycles
 - 85ppm
 - 2.5ppm Thermal Hysteresis Tracking
- Separate Enable-Control for Each Output Allows Independent Control
- Low Power for Battery-/Loop-Powered Sensors: 150µA/Reference

<u>Typical Operating Circuit</u> and <u>Ordering Information</u> appears at end of data sheet.

For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX6072.related.

PART	OUTPUT VOLTAGES (V)	ACCURACY (%)	TEMPERATURE COEFFICIENT (ppm/°C)
MAX6072AAUB50	5/2.5	0.05	6
MAX6072BAUB50	5/2.5	0.08	8
MAX6072AAUB41	4.096/2.048	0.05	6
MAX6072BAUB41	4.096/2.048	0.08	8
MAX6072AAUB25	2.5/1.25	0.05	6
MAX6072BAUB25	2.5/1.25	0.08	8

Dual Reference Selector Guide

µMAX is a registered trademark of Maxim Integrated Products, Inc.

High-Precision, Dual-Output Series Voltage Reference

Absolute Maximum Ratings

IN1, IN2 to GND0.3V to +6	3V
OUT1F to GND0.3V to the lower of (V _{IN1} + 0.3V), +6	δV
OUT2F to GND0.3V to the lower of $(V_{IN2} + 0.3V)$, +6	δV
OUT1S, OUT2S to GND0.3V to +6	δV
EN1, EN2 to GND0.3V to +6	δV
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
µMAX (derate 5.6mW/°C above +70°C)444m	W

Operating Temperature Range	-40°C to +125°C
Storage Temperature	-65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

μMAX

Junction-to-Ambient Thermal Resistance (θ_{JA}) 180°C/W

Junction-to-Case Thermal Resistance (θ_{JC})......42°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

MAX6072_50 Electrical Characteristics (VREF1: VOUT1F = 5V, VREF2: VOUT2F = 2.5V) ($V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5.5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
Output Voltage Accuracy (OUT1F		MAX6072A_50	, T _A = +25°C	-0.05		+0.05	%
and OUT2F)		MAX6072B_50	, T _A = +25°C	-0.08		+0.08	70
Output Voltage Temperature Drift	TOV	MAX6072A_50			1.5	6	ppm/°C
(OUT1F and OUT2F) (Note 3)	TCV _{OUT}	MAX6072B_50			2.0	8	ppin/ C
Output Voltage Temperature Drift Tracking (OUT1F and OUT2F)	ΔTC	MAX6072A_50			0.4		ppm/°C
(Note 3)		MAX6072B_50	MAX6072B_50		0.4		pping C
		OUT1F, 5.2V	T _A = +25°C		200	620	μV/V
		< V _{IN1} < 5.5V	T _A = -40°C to +125°C			700	
Line Regulation			T _A = +25°C		60	260	
		OUT2F, 2.8V < V _{IN2} < 5.5V	T _A = -40°C to +125°C			275	
		0mA < I _{OUT} < 10mA, sink	OUT1F		160	290	
Load Regulation		0mA < I _{OUT} < 10mA, source	OUTF		160	350	u) //m ()
		0mA < I _{OUT} < 10mA, sink	OUT2F		80	185	μV/mA
		0mA < I _{OUT} < 10mA, source	UUIZP		75	190	

High-Precision, Dual-Output Series Voltage Reference

MAX6072_50 Electrical Characteristics (V_{REF1}: V_{OUT1F} = 5V, V_{REF2}: V_{OUT2F} = 2.5V) (continued)

(continued) ($V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5.5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS		
Dropout Voltage		I _{OUT} = 10mA, T _A = -40°C to	OUT1F (Note 6)		60	150	mV		
Diopour voltage		+125°C	OUT2F (Note 4)		110	230	IIIV		
Output Current (OUT1F and OUT2F)	IOUT			-10		+10	mA		
Short-Circuit Current (OUT1F and		Sourcing to gro	und		25				
OUT2F)	Isc	Sinking from VII	N		25		mA		
Thermal Hysteresis (Note 5)		OUT1F			85		ppm		
		OUT2F			85				
Thermal Hysteresis Tracking (Note 5)		OUT2F to OUT	1F		2.5		ppm		
		OUT1F, 1000 h T _A = +25°C	ours at		15		ppm		
ong-Term Stability		OUT2F, 1000 hours T _A = +25°C			15				
Long-Term Drift Tracking					5		ppm		
DYNAMIC CHARACTERISTICS		1							
		1/f noise, 0.1Hz to	OUT1F		9				
Noise Voltage		10Hz, C _{OUT} = 0.1µF	OUT2F		4.8		μV _{P-P}		
Noise voitage	eout	Thermal noise, 10Hz to 10kHz, C _{OUT} = 0.1µF	OUT1F		15				
			OUT2F		6		μV _{RMS}		
Noise Voltage Spectral Density		Thermal noise, f=	OUT1F		120		nV/√ Hz		
Noise voltage Spectral Density		1kHz, C _{OUT} = 0.1µF	OUT2F	T2F 60					
Ripple Rejection		Frequency =	OUT1F		74		dB		
		60Hz	OUT2F		84				
Turn- On Settling Time	t _R	Settling to 0.01%, C _{OUT}	OUT1F		50		μs		
.		= 0.1µF	OUT2F		30				
Enable Settling Time	t	Settling to OUT1F		100					
	ng Time t _{EN} 0.01%, C _{OUT} = 0.1µF		OUT2F		75		— µs		

High-Precision, Dual-Output Series Voltage Reference

MAX6072_50 Electrical Characteristics (V_{REF1}: V_{OUT1F} = 5V, V_{REF2}: V_{OUT2F} = 2.5V) (continued)

 $(V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5.5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Capacitive-Load Stability Range (OUT1F, OUT2F)		I _{OUT} ≤ 10mA		0.1		10	μF
INPUT (IN1 and IN2)							
Quarky Valtage		Guaranteed	OUT1F	5.2		5.5	Ň
Supply Voltage	V _{IN} by line regulation	1 -	OUT2F	2.8		5.5	V
DEE1 Ouissaant Sunnhy Current		T _A = +25°C			160	270	
REF1 Quiescent Supply Current	I _{IN}	T _A = -40°C to +	·125°C			350	μA
DEE2 Ouissesset Oursely Ourset		T _A = +25°C			150	245	
REF2 Quiescent Supply Current	I _{IN}	T _A = -40°C to +125°C				320	μA
Shutdown Supply Current per Reference	I _{SD}	V _{EN} = 0V			0.85	28	μA
ENABLE (EN1 and En2)	•						
Enable Input Current	I _{EN}			-1		+1	μA
Enable Logic- High	VIH			0.7 x V _{IN}			V
Enable Logic- Low	VIL					0.3 x V _{IN}	V

MAX6072_41 Electrical Characteristics (V_{REF1}: V_{OUT1F} = 4.096V, V_{REF2}: V_{OUT2F} = 2.048V)

 $(V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
Output Voltage Accuracy (OUT1F		MAX6072A_41	MAX6072A_41, T _A = +25°C			+0.05	%
and OUT2F)		MAX6072B_41	, T _A = +25°C	-0.08		+0.08	70
Output Voltage Temperature Drift	TOV	MAX6072A_41			1.5	6	nnm/°C
(OUT1F and OUT2F) (Note 3)	TCV _{OUT}	MAX6072B_41			2.0	8	ppm/°C
Output Voltage Temperature Drift Tracking (OUT1F and OUT2F)	ΔТС	MAX6072A_41			0.4		ppm/°C
(Note 3)	MAX6072B_41				0.4		ppin/ C
			T _A = +25°C		100	450	
Line Regulation		OUT1F, 4.3V < V _{IN1} < 5.5V	T _A = -40°C to +125°C			485	– μV/V
			T _A = +25°C		50	250	
		OUT2F, 2.7V < V _{IN2} < 5.5V				270	

High-Precision, Dual-Output Series Voltage Reference

MAX6072_41 Electrical Characteristics (V_{REF1}: V_{OUT1F} = 4.096V, V_{REF2}: V_{OUT2F} =

2.048V) (continued) ($V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	8	MIN	ТҮР	MAX	UNITS
		0mA < I _{OUT} < 10mA, sink	OUT	1		125	260	
Lood Deculation		0mA < I _{OUT} < 10mA, source		IF		135	300	
Load Regulation		0mA < I _{OUT} < 10mA, sink	OUT	25		135	260	μV/mA
		0mA < I _{OUT} < 10mA, source	001	26		135	250	
Dropout Voltage		I _{OUT} = 10mA, T -40°C to +125°((Note 6)		OUT1F		75	150	mV
Output Current (OUT1F and OUT2F)	IOUT				-10		+10	mA
Short-Circuit Current (OUT1F and	I _{SC}	Sourcing to gro	und			25		mA
OUT2F)	'SC	Sinking from VII	N			25		
Thermal Hysteresis (Note 5)		OUT1F				85		ppm
		OUT2F		85			PP	
Thermal Hysteresis Tracking (Note 5)		OUT2F to OUT	1F			2.5		ppm
Long Torr Otability		OUT1F, 1000 h T _A = +25°C	ours at			15		
Long-Term Stability		OUT2F, 1000 h T _A = +25°C	ours at	:		15		ppm
Long-Term Drift Matching						5		ppm
DYNAMIC CHARACTERISTICS								
		1/f noise, 0.1Hz to	OUT	1F		9.6		
	0.0.1	10Hz, C _{OUT} = 0.1µF	OUT	2F		6.4		μV _{P-P}
Noise Voltage	eOUT	Thermal OUT1F noise, 10Hz to		1F		12		
	10kHz, C _{OUT} = 0.1µF		OUT	2F		8.6		μV _{RMS}

High-Precision, Dual-Output Series Voltage Reference

MAX6072_41 Electrical Characteristics (VREF1: VOUT1F = 4.096V, VREF2: VOUT2F =

2.048V) (continued) ($V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
Noice Voltage Spectral Depaits		Thermal noise, f=	OUT1F		110		nV/√ Hz
Noise Voltage Spectral Density		1kHz, C _{OUT} = 0.1µF	OUT2F		75		∏V/N⊓Z
Ripple Rejection		Frequency =	OUT1F		80		dB
		60Hz	OUT2F		86		uВ
Turn- On Settling Time	t_	Settling to 0.01%, C _{OUT}	OUT1F		40		μs
Turn- On Setting Time	t _R	= 0.1µF	OUT2F		25		μο
Frails Orthing Time		Settling to	OUT1F		85		
Enable Settling Time	ten	0.01%, C _{OUT} = 0.1µF	OUT2F		65		μs
Capacitive- Load Stability Range (OUT1F, OUT2F)		I _{OUT} ≤ 10mA		0.1		10	μF
INPUT (IN1 and IN2)							
Supply Voltage	V _{IN}	Guaranteed by line	OUT1F	4.3		5.5	V
Supply Voltage	VIN	regulation	OUT2F	2.7		5.5	v
REF1 Quiescent Supply Current	lu.	T _A = +25°C			150	265	
REF I Quescent Supply Current	I _{IN}	$T_A = -40^{\circ}C$ to +	125°C			350	μA
REF2 Quiescent Supply Current	lu.	T _A = +25°C			130	220	μA
Kei z Quiescent Supply Guirent	l _{IN}	T _A = -40°C to +	125°C			280	μΑ
Shutdown Supply Current per Reference	I _{SD}	V _{EN} = 0V			0.85	28	μA
ENABLE (EN1 and EN2)							
Enable Input Current	I _{EN}			-1		+1	μA
Enable Logic- High	VIH			0.7 x V _{IN}			V
Enable Logic- Low	VIL					0.3 x V _{IN}	V

High-Precision, Dual-Output Series Voltage Reference

 $(V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
OUTPUT							
Output Voltage Accuracy (OUT1F		MAX6072A_25	, T _A = +25°C	-0.05		+0.05	0/
and OUT2F)		MAX6072B_25	, T _A = +25°C	-0.08		+0.08	%
Output Voltage Temperature Drift	TOV	MAX6072A_25			1.5	6	
(OUT1F and OUT2F, Note 3)	TCV _{OUT}	MAX6072B_25			2.0	8	ppm/°C
Output Voltage Temperature Drift Tracking (OUT1F and OUT2F)	ΔTC	MAX6072A_25			0.4		ppm/°C
(Note 3)		MAX6072B_25			0.4		ppin/ C
			T _A = +25°C		60	260	
		OUT1F, 2.8V < V _{IN1} < 5.5V	T _A = -40°C to +125°C			275	
Line Regulation			T _A = +25°C		13	190	μV/V
		OUT2F, 2.75V < V _{IN2} < 5.5V	T _A = -40°C to +125°C			200	
		0mA < I _{OUT} < 10mA, sink	0.1745		80	185	μV/mA
Load Regulation		0mA < I _{OUT} < 10mA, source	OUT1F		75	190	
		0mA < I _{OUT} < 10mA, sink	OUT2E		70	185	
		0mA < I _{OUT} < 10mA, source	OUT2F		100	190	
Dropout Voltage		$I_{OUT} = 10mA,$ $T_A = -40^{\circ}C$ to +125°C (Note 6)	OUT1F		110	230	mV
Output Current (OUT1F and OUT2F)	IOUT			-10		+10	mA
Short-Circuit Current (OUT1F and		Sourcing to gro	und		25		
OUT2F)	Isc	Sinking from VI	N		25		mA
		OUT1F			85		
Thermal Hysteresis (Note 5)		OUT2F			85		ppm
Thermal Hysteresis Tracking (Note 5)		OUT2F to OUT	1F		2.5		ppm
		OUT1F, 1000 h T _A = +25°C	ours at		15		
Long-Term Stability		OUT2F, 1000 h T _A = +25°C	ours at		20		ppm

High-Precision, Dual-Output Series Voltage Reference

 $(V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5V$, $I_{OUT} = 0$ mA, $C_{OUT} = 0.1\mu$ F, $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS	
Long-Term Drift Tracking				7		ppm		
DYNAMIC CHARACTERISTICS								
		1/f noise, 0.1Hz to	OUT1F	4.8				
		10Hz, C _{OUT} = 0.1µF	OUT2F		3.6		μV _{P-P}	
Noise Voltage	eout	Thermal noise, 10Hz to	OUT1F		6			
		10kHz, C _{OUT} = 0.1µF	OUT2F		5		μ ^V RMS	
Naisa Valtaga Spectral Density		Thermal noise, f=	OUT1F		60		nV/√ Hz	
Noise Voltage Spectral Density		1kHz, C _{OUT} = 0.1µF	OUT2F		50			
Dinala Deiestian		Frequency =	OUT1F		84		15	
Ripple Rejection		60Hz	OUT2F		100		dB	
Turn-On Settling Time		Settling to 0.01%, C _{OUT}	OUT1F		30		μs	
	л. Х	= 0.1µF	OUT2F		20			
Enable Settling Time	tes	Settling to 0.01%, C _{OUT}	OUT1F	75		- µs		
	^t EN	$= 0.1 \mu F$	OUT2F		60		μο	
Capacitive-Load Stability Range (OUT1F, OUT2F)		I _{OUT} ≤ 10mA		0.1		10	μF	
		INPUT (IN1 a	and IN2)	I				
0		Guaranteed	OUT1F	2.8		5.5		
Supply Voltage	V _{IN}	by line regulation	OUT2F	2.75		5.5	V	
DEE1 Outpeacent Output to Output		T _A = +25°C	·		150	245		
REF1 Quiescent Supply Current	IIN	$T_{A} = -40^{\circ}C \text{ to } +$	125°C		320		μA	
DEE2 Outpopont Summer Outpot		T _A = +25°C			130	210	μΑ	
REF2 Quiescent Supply Current	lin	$T_{A} = -40^{\circ}C \text{ to } +$	125°C			260		
Shutdown Supply Current per Reference	I _{SD}	V _{EN} = 0V			0.6	28	μA	

MAX6072_25 Electrical Characteristics (V_{REF1}: V_{OUT1F} = 2.5V, V_{REF2}: V_{OUT2F} = 1.25V) (continued)

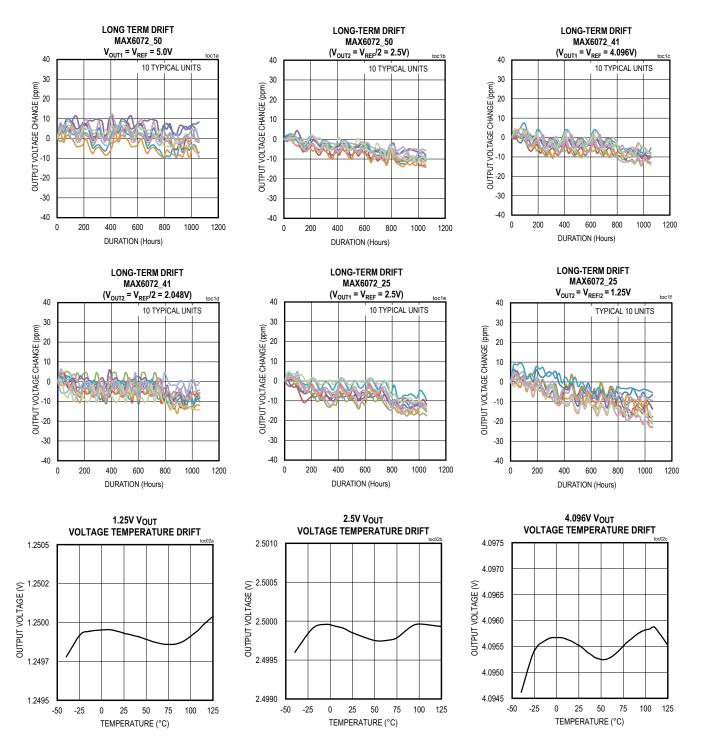
(V_{IN1} = V_{EN1} = V_{IN2} = V_{EN2} = +5V, I_{OUT} = 0mA, C_{OUT} = 0.1µF, T_A =-40°C to +125°C, unless otherwise noted. Typical values are at T_A =+25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
ENABLE (EN1 and EN2)					
Enable Input Current	IEN		-1	+1	μA
Enable Logic-High	VIH		0.7 x V _{IN} _		V
Enable Logic-Low	V _{IL}			0.3 x V _{IN} _	V

Note 2: All devices are 100% production tested at $T_A = +25^{\circ}$ C. Specifications over the entire operating temperature range are guaranteed by design and characterization. Typical specifications are at $T_A = +25^{\circ}C$.

Note 3: Temperature coefficient is calculated using the "box method" which measures temperature drift as the maximum voltage variation over a specified temperature range. The unit of measurement is ppm/°C. Temperature coefficient matching (ΔTC) ic calculated using the "box method" which measures temperature drift as the maximum variation of the difference between the normalized output voltages, VOUT2_NORM and VOUT1_NORM (over a specified temperature range). The unit of measurement is ppm/°C, $V_{OUT NORM} = [(V_{OUT}(T) - V_{OUT}(25^{\circ}C))/V_{OUT}(25^{\circ}C)]$ Note 4: Dropout voltage is defined as the minimum differential voltage ($V_{IN} - V_{OUT}$) at which V_{OUT} decreases by 0.2% from its

original value at V_{IN} = 5.0V.

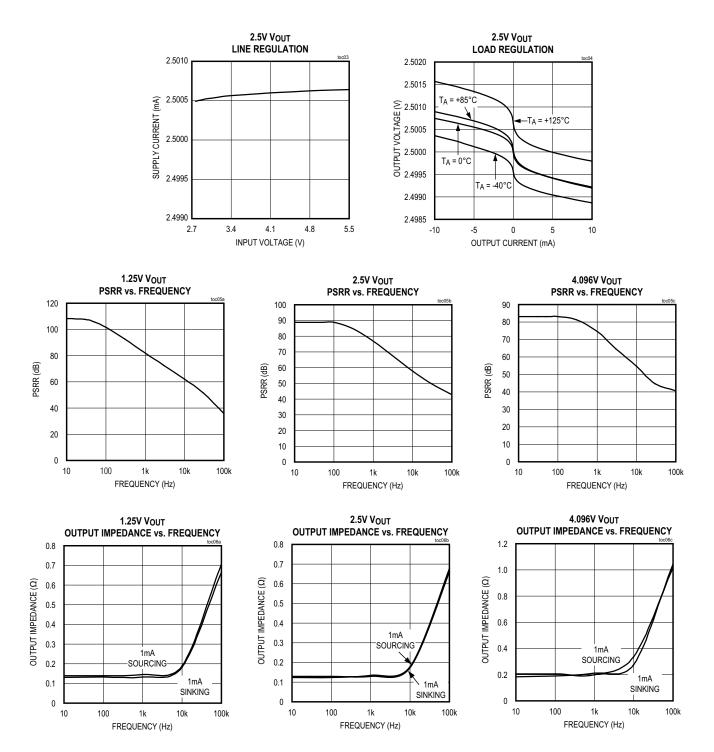

Note 5: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN}. Thermal hysteresis matching is defined as the difference of the thermal hysteresis for each output (OUT1 and OUT2): ΔTH = TH_{OUT2} - TH_{OUT1}

Note 6: Dropout voltage is defined as the minimum differential voltage (VIN - VOUT) at which VOUT decreases by 0.2% from its original value at V_{IN} = 5.5V.

High-Precision, Dual-Output Series Voltage Reference

Typical Operating Characteristics

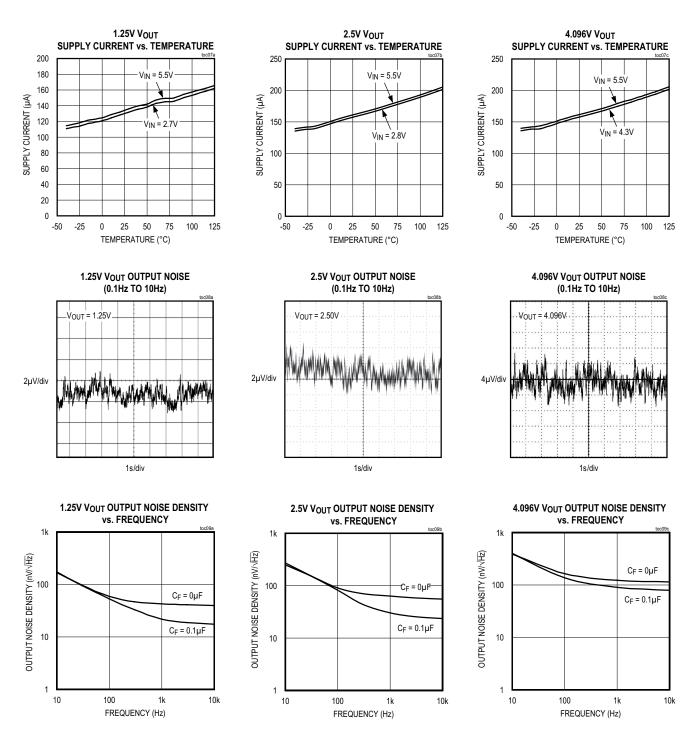
 $(V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} = +5.5V (MAX6072_50), V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} (MAX6072_41 and MAX6072_25), I_{OUT} = 0mA, C_{OUT} = 0.1\mu$ F, T_A = +25°C, unless otherwise noted.)



MAX6072A/MAX6072B

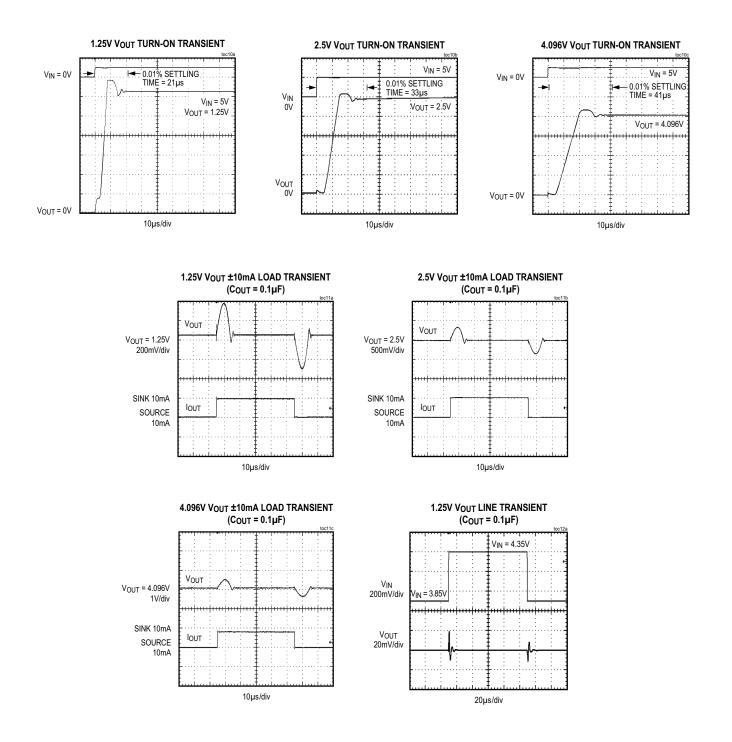
High-Precision, Dual-Output Series Voltage References

Typical Operating Characteristics (continued)


 $(V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} = +5.5V (MAX6072_50), V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} (MAX6072_41 and MAX6072_25), I_{OUT} = 0mA, C_{OUT} = 0.1\mu$ F, T_A = +25°C, unless otherwise noted.)

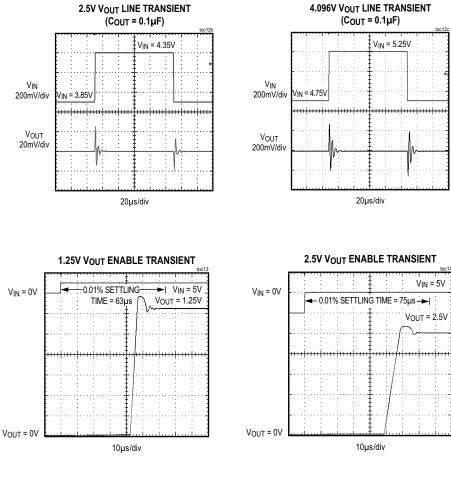
High-Precision, Dual-Output Series Voltage Reference

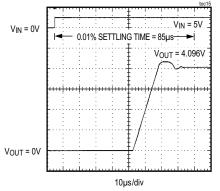
Typical Operating Characteristics (continued)


 $(V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} = +5.5V \text{ (MAX6072}_50), V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} \text{ (MAX6072}_41 \text{ and MAX6072}_25), I_{OUT} = 0mA, C_{OUT} = 0.1\mu\text{F}, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

High-Precision, Dual-Output Series Voltage Reference

Typical Operating Characteristics (continued)

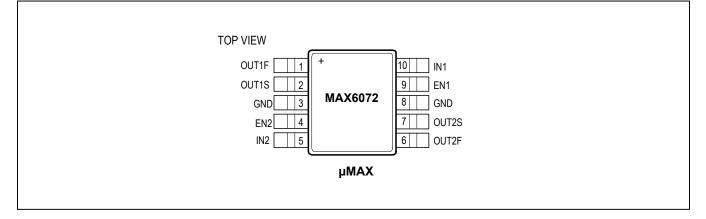

 $(V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} = +5.5V (MAX6072_50), V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} (MAX6072_41 and MAX6072_25), I_{OUT} = 0mA, C_{OUT} = 0.1\mu$ F, T_A = +25°C, unless otherwise noted.)



High-Precision, Dual-Output Series Voltage Reference

Typical Operating Characteristics (continued)

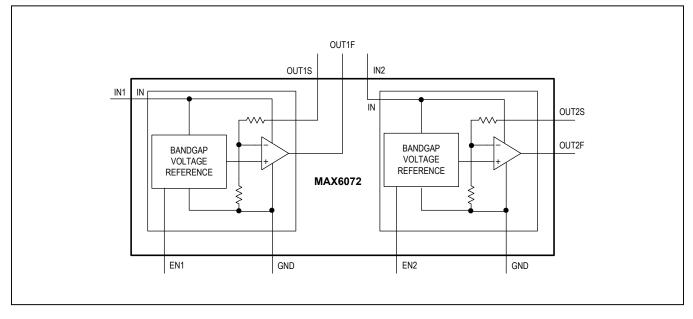
 $(V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} = +5.5V \text{ (MAX6072_50), } V_{IN1} = V_{IN2} = V_{EN1} = V_{EN2} \text{ (MAX6072_41 and MAX6072_25), } I_{OUT} = 0\text{mA}, C_{OUT} = 0.1\mu\text{F}, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$



4.096V VOUT ENABLE TRANSIENT

High-Precision, Dual-Output Series Voltage Reference

Pin Configuration



Pin Description

PIN	NAME	FUNCTION	
1	OUT1F	V_{REF} Reference 1 (V_{OUT1F}) Force Output. Short OUT1F to OUT1S as close as possible to the load. Bypass with a capacitor (0.1µF to 10µF) to GND.	
2	OUT1S	V _{REF} Voltage Reference 1 (V _{OUT1S)} Sense	
3, 8	GND	Ground. Both the pins 3 and 8 must be externally connected to a solid ground plane.	
4	EN2	Voltage Reference 2 Enable Input. Drive high to enable V _{REF2} . Drive low to disable V _{REF2} .	
5	IN2	Voltage Reference 2 Supply Input	
6	OUT2F	V_{REF} /2 Voltage Reference 2 (V_{OUT2F}) Force Output. Short OUT2F to OUT2S as close as possible to the load. Bypass with a capacitor (0.1µF to 10µF) to GND.	
7	OUT2S	V _{REF} /2 Voltage Reference 2 (V _{OUT2S}) Sense	
9	EN1	Voltage Reference 1 Enable Input. Drive high to enable V _{REF1} . Drive low to disable V _{REF1} .	
10	IN1	Voltage Reference 1 Supply Input	

High-Precision, Dual-Output Series Voltage Reference

Functional Diagram

Detailed Description

Output Force and Sense

The MAX6072 provides independent Kelvin connections for the power-circuit output (OUTF) supplying current to the load and the circuit input regulating the voltage applied to that load (OUTS). This configuration allows for the cancellation of the voltage drop on the lines connecting the MAX6072 and the load. When using the Kelvin connection made possible by the independent current and voltage connections, connect OUTF to the load and connect OUTS to OUTF at the point where the voltage accuracy is most needed (see Figure 1).

Output Bypassing

The MAX6072 requires an output capacitor between 0.1 μ F and 10 μ F. Place the output capacitor as close to OUT_F as possible. For applications driving switching capacitive loads or rapidly changing load currents, use a 10 μ F capacitor in parallel with a 0.1 μ F capacitor. Larger capacitor values reduce transients on the reference output.

Supply Voltage

Each of the MAX6072 references offers individual supply voltage inputs (IN1 and IN2). IN1 supplies the power to V_{REF1} and IN2 for V_{REF2} . Each of the two references can be powered up separately or from the same supply voltage by shorting IN1 and IN2 together.

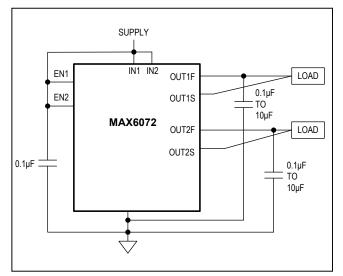


Figure 1. Reference Output Kelvin Connection

High-Precision, Dual-Output Series Voltage Reference

Thermal Hysteresis

Thermal hysteresis is the change of output voltage at T_A = +25°C before and after the device is cycled over its entire operating temperature range. The typical thermal hysteresis value is 85ppm.

Turn-On Time

The device typically turns on and settles to within 0.01% of their final value in 25µs to 40µs. The turn-on time can increase up to 4ms with the device operating at the minimum dropout voltage and the maximum load.

Applications Information

Accurate Reference by Using the Other Reference Output as the Supply Input

In certain applications where only a single reference is required, the dual reference can be used as a single reference output when one of its references (V_{OUT1F} where $V_{OUT1F} > V_{OUT2F}$) is used as the supply input for the second internal reference of the part (see Figure 2). By doing so, the output reference accuracy is improved as the PSRR performance improves. Since both the references are present in the same package, they exhibit the same thermal trend in variation.

Dual Referencing Fully Differential Amplifier and ADC

Applications employing a fully differential amplifier and ADC in a signal chain typically require maintaining the input(s) at half the V_{REF} (V) for the common-mode voltage being applied to the ADC. For this purpose, either a second reference with the value V_{REF} _DIFF_AMP = $V_{REF}/2$, or an op amp is often used as output common-mode biasing. The MAX6072A/B series is used with ease in these situations, where V_{REF} _DIFF_AMP can be referenced from the V_{REF} available from the part. This way, both the V_{REF} and $V_{REF}/2$ to the ADC and the differential amplifier are provided by the same part providing improved accuracy and lesser board space. See Figure 3.

The *Typical Operating Circuit* shows MAX6072A_41 used in a signal chain, performing single-ended to differential conversion.

Figure 2. Increasing the Accuracy of Reference

High-Precision, Dual-Output Series Voltage Reference

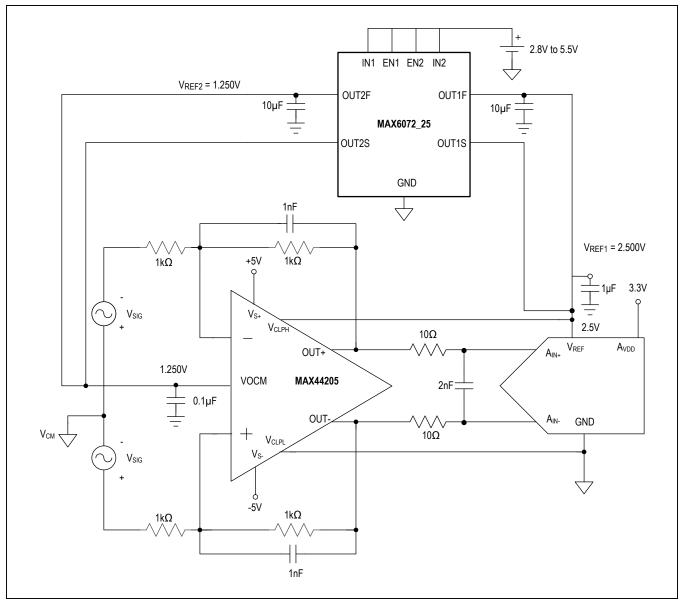
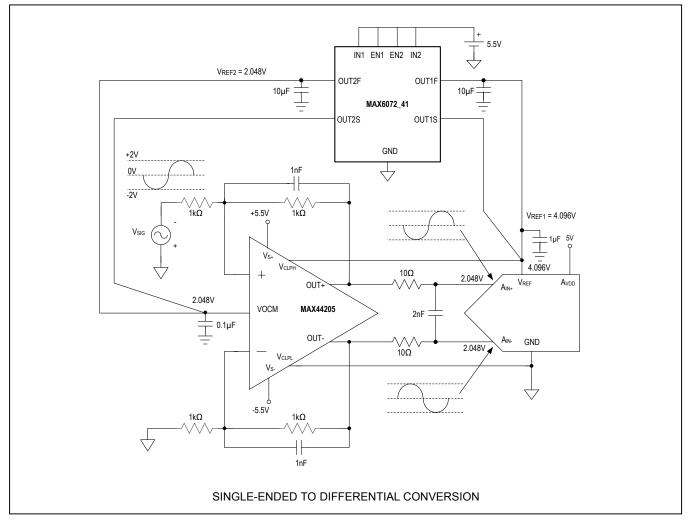



Figure 3. Fully Differential Amplifier and ADC with Dual Referencing from MAX6072_25

High-Precision, Dual-Output Series Voltage Reference

Typical Operating Circuit

High-Precision, Dual-Output Series Voltage Reference

Ordering Information

PART	PIN- PACKAGE	V _{REF1} /V _{REF2}
MAX6072AAUB25+	10 µMAX	2.500V/1.250V
MAX6072AAUB41+	10 µMAX	4.096V/2.048V
MAX6072AAUB50+	10 µMAX	5.000V/2.500V
MAX6072BAUB25+	10 µMAX	2.500V/1.250V
MAX6072BAUB41+	10 µMAX	4.096V/2.048V
MAX6072BAUB50+	10 µMAX	5.000V/2.500V

Note: All devices are specified over the -40°C to +125°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE NO.	LAND	
TYPE	CODE		PATTERN NO.	
10 µMAX	U10M+5	<u>21-0061</u>	<u>90-0330</u>	

High-Precision, Dual-Output Series Voltage Reference

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	12/14	Initial release	—

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.