imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

General Description

The MAX6126 is an ultra-low-noise, high-precision, lowdropout voltage reference. This family of voltage references feature curvature-correction circuitry and high-stability, laser-trimmed, thin-film resistors that result in 3ppm/°C (max) temperature coefficients and an excellent ±0.02% (max) initial accuracy. The proprietary low-noise reference architecture produces a low flicker noise of $1.3\mu V_{P-P}$ and wideband noise as low as $60nV/\sqrt{Hz}$ (2.048V output) without the increased supply current usually found in low-noise references. Improve wideband noise to $35 \text{nV}/\sqrt{\text{Hz}}$ and AC power-supply rejection by adding a 0.1µF capacitor at the noise reduction pin. The MAX6126 series mode reference operates from a wide 2.7V to 12.6V supply voltage range and load-regulation specifications are guaranteed to be less than 0.025Ω for sink and source currents up to 10mA. These devices are available over the automotive temperature range of -40°C to +125°C.

The MAX6126 typically draws 380µA of supply current and is available in 2.048V, 2.500V, 2.800V, 3.000V, 4.096V, and 5.000V output voltages. These devices also feature dropout voltages as low as 200mV. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, the MAX6126 offers supply current that is virtually independent of supply voltage and does not require an external resistor. The MAX6126 is stable with 0.1µF to 10µF of load capacitance.

The MAX6126 is available in the tiny 8-pin $\mu\text{MAX}^{\textcircled{B}}$, as well as 8-pin SO packages.

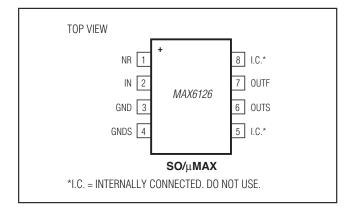
Applications

High-Resolution A/D and D/A Converters

ATE Equipment

High-Accuracy Reference Standard

Precision Current Sources


Digital Voltmeters

High-Accuracy Industrial and Process Control µMAX is a registered trademark of Maxim Integrated Products, Inc.

Features

- ♦ Ultra-Low 1.3µVp-p Noise (0.1Hz to 10Hz, 2.048V Output)
- ♦ Ultra-Low 3ppm/°C (max) Temperature Coefficient
- ◆ ±0.02% (max) Initial Accuracy
- Wide (V_{OUT} + 200mV) to 12.6V Supply Voltage Range
- Low 200mV (max) Dropout Voltage
- ♦ 380µA Quiescent Supply Current
- 10mA Sink/Source-Current Capability
- ♦ Stable with CLOAD = 0.1µF to 10µF
- Low 20ppm/1000hr Long-Term Stability
- ♦ 0.025Ω (max) Load Regulation
- ◆ 20µV/V (max) Line Regulation
- Force and Sense Outputs for Remote Sensing

Pin Configuration

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	MAXIMUM INITIAL ACCURACY (%)	MAXIMUM TEMPCO (-40°C to +85°C) (ppm/°C)
MAX6126AASA21+	-40°C to +125°C	8 SO	2.048	0.02	3
MAX6126BASA21+	-40°C to +125°C	8 SO	2.048	0.06	5
MAX6126A21+	-40°C to +125°C	8 µMAX	2.048	0.06	3

Ordering Information continued at end of data sheet. +Denotes a lead(Pb)-free/RoHS-compliant package.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND)

GNDS0.3V to +0.3V
IN0.3V to +13V
OUTF, OUTS, NR0.3V to the lesser of (VIN + 0.3V) or +6V
Output Short Circuit to GND or IN60s
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
8-Pin µMAX (derate 4.5mW/°C above +70°C)

8-Pin SO (derate 5.88mW/°C above +70°C)471mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10	Os)+300°C
Soldering Temperature (reflow)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6126_21 (Vout = 2.048V)

PARAMETER	SYMBOL		CONDITIONS		MIN	ТҮР	MAX	UNITS
OUTPUT	•							
Output Voltage	Vout	$T_A = +25^{\circ}C$				2.048		V
			A grade	e SO	-0.02		+0.02	%
Output Voltage Accuracy		Referred to	B grade	e SO	-0.06		+0.06	
Output Voltage Accuracy		V _{OUT} , T _A = +25°C	A grade	e µMAX	-0.06		+0.06	/0
			B grade	e µMAX	-0.1		+0.1	
		T _A = -40°C to +85°C	A grade	e SO		0.5	3	
			B grade	e SO		1	5	
			A grade	e µMAX		1	3	ppm/°C
Output Voltage Temperature	TOVAUT		B grade	e µMAX		2	7	
Coefficient (Note 1)	TCVOUT	T _A = -40°C to +125°C	A grade	e SO		1	5	
			B grade	e SO		2	10	
			A grade	e µMAX		2	5	
			B grade	e µMAX		3	12	
Line Degulation	ΔV _{OUT} /	$2.7V \le V_{\rm IN} \le$	T _A = +25°C			2	20	
Line Regulation	ΔV_{IN}	12.6V	$T_{A} = -4$	0°C to +125°C			40	μV/V
Lood Degulation	ΔV _{OUT} /	Sourcing: 0 ≤	l _{OUT} ≤ 10i	mA		0.7	25	u)//~^^
Load Regulation	Δlout	Sinking: -10m	A ≤ I _{OUT} :	≤ 0		1.3	25	µV/mA
	1	Short to GND				160		
OUT Short-Circuit Current	ISC	Short to IN				20		mA
Thermal Unstances (Neta 2)	ΔVουτ/	ΔV _{OUT} / SO				25		10.10.100
Thermal Hysteresis (Note 2)	cycle	μΜΑΧ				80		ppm
Long Torm Stability	ΔVout/	1000br at T	. 25%	SO		20		ppm/
Long-Term Stability	time	1000hr at T _A =	= +25°C	μΜΑΧ		100		1000hr

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

ELECTRICAL CHARACTERISTICS—MAX6126_21 (VOUT = 2.048V) (continued)

 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	ТҮР	MAX	UNITS	
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz			1.3		μVp-p	
Noise Voltage	$f = 1 \text{ kHz}, C_{\text{NR}} = 0.1 \mu \text{F}$ 35	f = 1kHz, C _{NR} = 0			60		nV/√Hz	
		110/0112						
Turn On Sottling Time	t _R	To V _{OUT} = 0.01% of	$C_{NR} = 0$		0.8		ms	
Turn-On Settling Time		final value	$C_{NR} = 0.1 \mu F$		20			
Capacitive-Load Stability Range	CLOAD	No sustained oscillation	IS		0.1 to 10		μF	
INPUT								
Supply Voltage Range	VIN	Guaranteed by line-reg	ulation test	2.7		12.6	V	
O dia a ant Oursela Ourset	l _{IN}	$T_A = +25^{\circ}C$			380	550		
Quiescent Supply Current		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				725	μΑ	

ELECTRICAL CHARACTERISTICS—MAX6126_25 (Vout = 2.500V)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS	
OUTPUT								
Output Voltage	Vout	$T_A = +25^{\circ}C$			2.500		V	
			A grade SO	-0.02		+0.02		
Output Voltaga Aggurgay		Referred to VOUT,	B grade SO	-0.06		+0.06	%	
Output Voltage Accuracy		$T_A = +25^{\circ}C$	A grade µMAX	-0.06		+0.06	70	
			B grade µMAX	-0.1		+0.1		
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	A grade SO		0.5	3	ppm/°C	
			B grade SO		1	5		
			A grade µMAX		1	3		
Output Voltage Temperature	TOV		B grade µMAX		2	7		
Coefficient (Note 1)	TCVOUT	$T_A = -40^{\circ}C$ to	A grade SO		1	5		
			B grade SO		2	10		
		+125°C	A grade µMAX		2	5		
			B grade µMAX		3	12		
Line Degulation	ΔVout/	0.7\/	$T_A = +25^{\circ}C$		3	20		
LI INE REQUIATION	ΔV_{IN}	$2.7 V \leq V_{IN} \leq 12.6 V$	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			40	μV/V	
Load Pagulation	ΔVOUT/	Sourcing: 0 ≤ I _{OUT} ≤	10mA		1	25	u)//m/	
Load Regulation	Δlout	Sinking: -10mA \leq I _{OU}	Sinking: $-10\text{mA} \le I_{OUT} \le 0$		1.8	25	μV/mA	

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

ELECTRICAL CHARACTERISTICS—MAX6126_25 (VOUT = 2.500V) (continued)

 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS	
Dropout Voltago (Noto 2)		A = 0.1%	$I_{OUT} = 5mA$		0.06	0.2	V	
Dropout Voltage (Note 3)	VIN - VOUT	$\Delta V_{OUT} = 0.1\%$	$I_{OUT} = 10 \text{mA}$		0.12	0.4	v	
OUT Short-Circuit Current	laa	Short to GND			160		mA	
COT Short-Circuit Current	Isc	Short to IN			20		ШA	
Thormal Hyptoropia (Note 2)	ΔV _{OUT} /	SO			35		nnm	
Thermal Hysteresis (Note 2)	cycle	μMAX			80		ppm	
Long Torm Stability	ΔV _{OUT} /	1000br at Ta	SO		20		ppm/	
Long-Term Stability	time	1000hr at $T_A = +25^{\circ}C$	μMAX		100		1000hr	
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz			1.45		μV _{P-P}	
Noise Voltage	eout	$f = 1 kHz, C_{NR} = 0$	75			n\///		
		$f = 1 \text{kHz}, C_{\text{NR}} = 0.1 \mu \text{F}$	45			nV/√Hz		
Turn On Sottling Time	ta	To V _{OUT} = 0.01% of	$C_{NR} = 0$		1			
Turn-On Settling Time	tR	final value	$C_{NR} = 0.1 \mu F$		20		ms	
Capacitive-Load Stability Range	CLOAD	No sustained oscillation	S		0.1 to 10		μF	
INPUT								
Supply Voltage Range	VIN	Guaranteed by line-regu	ulation test	2.7		12.6	V	
Quiagaant Supply Current		$T_A = +25^{\circ}C$			380	550	μA	
Quiescent Supply Current	lin	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			725			

ELECTRICAL CHARACTERISTICS—MAX6126_28 (Vout = 2.800V)

PARAMETER	SYMBOL	CONDTIONS		MIN	ТҮР	MAX	UNITS
OUTPUT		·					
Output Voltage	Vout	$T_A = +25^{\circ}C$			2.800		V
		Referred to VOUT, T _A =	A grade µMAX	-0.06		+0.06	%
Output Voltage Accuracy		+25°C	B grade µMAX	-0.10		+0.10	70
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	A grade µMAX		1	3	
Output Voltage Temperature Coefficient (Note 1)		$I_A = -40 \text{ C} [0 + 65 \text{ C}]$	B grade µMAX		2	7	ppm/°C
	TCV _{OUT}	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	A grade µMAX		2	5	
			B grade µMAX		3	12	
			$T_A = +25^{\circ}C$		3.5	23	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$3.0V \le V_{IN} \le 12.6V$	T _A = -40°C to +125°C			45	μV/V
		Sourcing: $0 \le I_{OUT} \le 10m$	nA		1.3	28	
Load Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	Sinking: -10mA \leq I _{OUT} \leq	0		2.4	28	μV/mA
			I _{OUT} = 5mA		0.06	0.2	V
Dropout Voltage (Note 3)	Vin - Vout	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 10mA		0.12	0.4	

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

ELECTRICAL CHARACTERISTICS—MAX6126_28 (VOUT = 2.800V) (continued)

 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDTIC	DNS	MIN	ТҮР	MAX	UNITS	
OLIT Chart Circuit Current	laa	Short to GND			160			
OUT Short-Circuit Current	ISC	Short to IN			20		mA	
Thermal Hysteresis (Note 2)	ΔV_{OUT} /cycle	μMAX			80		ppm	
Long-Term Stability	ΔV _{OUT} /time	1000hr at T _A = +25°C	μΜΑΧ		100		ppm/ 1000hr	
DYNAMIC CHARACTERISTICS								
		f = 0.1Hz to 10Hz		1.45			μV _{P-P}	
Noise Voltage	eout	$f = 1 kHz, C_{NR} = 0$	75			nV/√Hz		
		$f = 1$ kHz, $C_{NR} = 0.1 \mu$ F			45			
	t	To V _{OUT} = 0.01% of	$C_{NR} = 0$	1				
Turn-On Settling Time	tR	final value	$C_{NR} = 0.1 \mu F$		20		ms	
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscillations	5		0.1 to 10		μF	
INPUT								
Supply Voltage Range	VIN	Guaranteed by line-regulation test		3.0		12.6	V	
Quieseent Quanky Quarent		$T_A = +25^{\circ}C$		380	550			
Quiescent Supply Current	lin	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$				725	μA	

ELECTRICAL CHARACTERISTICS—MAX6126_30 (Vout = 3.000V)

PARAMETER	SYMBOL	CON	CONDITIONS			MAX	UNITS
OUTPUT	·						
Output Voltage	Vout	$T_A = +25^{\circ}C$			3.000		V
			A grade SO	-0.02		+0.02	
		Referred to V_{OUT} , $T_A = +25^{\circ}C$	B grade SO	-0.06		+0.06	~ %
Output Voltage Accuracy			A grade µMAX	-0.06		+0.06	
			B grade µMAX	-0.1		+0.1	
			A grade SO		0.5	3	ppm/°C
		T _A = -40°C to +85°C	B grade SO		1	5	
			A grade µMAX		1	3	
Output Voltage Temperature	TOVA		B grade µMAX		2	7	
Coefficient (Note 1)	TCV _{OUT}		A grade SO		1	5	
		$T_A = -40^{\circ}C$ to	B grade SO		2	10	
		+125°C	A grade µMAX		2	5	
			B grade µMAX		3	12]

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

ELECTRICAL CHARACTERISTICS—MAX6126_30 (VOUT = 3.000V) (continued)

 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS	
Line Degulation	ΔV _{OUT} /	$2.0 V_{1} \times V_{10} \times 10.6 V_{1}$	Τ _Α	= +25°C		4	25	
Line Regulation	$\Delta V_{\rm IN}$	$3.2 V \leq V_{IN} \leq 12.6 V$	ΤA	= -40°C to +125°C			50	μV/V
Lood Degulation	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le 10$		۱A		1.5	30	
Load Regulation	ΔI_{OUT}	Sinking: -10mA ≤ IOI	J⊺ ≤	0		2.8	30	μV/mA
		A)/a	Ιοι	JT = 5mA		0.06	0.2	- V
Dropout Voltage (Note 3)	Vin - Vout	$\Delta V_{OUT} = 0.1\%$	Ιοι	JT = 10mA		0.11	0.4	
OLIT Chart Circuit Current	laa	Short to GND				160		
OUT Short-Circuit Current	Isc	Short to IN				20		mA
	ΔVουτ/	SO		SO 20			10.10.000	
Thermal Hysteresis (Note 2)	cycle	μΜΑΧ			80			ppm
Long-Term Stability	ΔVουτ/	1000hr at $T_A = +25^{\circ}C$		SO		20	ppm/	
	time			μMAX		100		1000hr
DYNAMIC CHARACTERISTICS		•						
		f = 0.1Hz to 10Hz		f = 0.1Hz to 10Hz 1.75			μVp-p	
Noise Voltage	eout	$f = 1kHz, C_{NR} = 0$		90			NU 1	
		$f = 1 \text{kHz}, C_{\text{NR}} = 0.1 \mu \text{F}$			55			nV/√Hz
Capacitive-Load Stability Range	C _{LOAD}	No sustained oscilla	tions	3		0.1 to 10		μF
		To Vout = 0.01%	CN	IR = 0		1.2		
Turn-On Settling Time	t _R	of final value	CN	ιR = 0.1μF		20		ms
INPUT		•						
Supply Voltage Range	VIN	Guaranteed by line-	regu	lation test	3.2		12.6	V
		$T_A = +25^{\circ}C$			380	550	μA	
Quiescent Supply Current	lin	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				725		

ELECTRICAL CHARACTERISTICS—MAX6126_41 (Vout = 4.096V)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP MAX	UNITS	
OUTPUT							
Output Voltage	Vout	$T_A = +25^{\circ}C$			4.096	V	
		Referred to V _{OUT} , T _A = +25°C	A grade SO	-0.02	+0.02	%	
			B grade SO	-0.06	+0.06		
Output Voltage Accuracy			A grade µMAX	-0.06	+0.06		
			B grade µMAX	-0.1	+0.1		

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

ELECTRICAL CHARACTERISTICS—MAX6126_41 (VOUT = 4.096V) (continued)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	ТҮР	MAX	UNITS
			A grade SO		0.5	3	ppm/°C
		$T_A = -40^{\circ}C$ to	B grade SO		1	5	
		+85°C	A grade µMAX		1	3	
Output Voltage Temperature			B grade µMAX		2	7	
Coefficient (Note 1)	TCVOUT		A grade SO		1	5	
		$T_A = -40^{\circ}C$ to	B grade SO		2	10	
		+125°C	A grade µMAX		2	5	
			B grade µMAX		3	12	
	ΔVout/		$T_A = +25^{\circ}C$		4.5	30	μV/V
Line Regulation	ΔV_{IN}	$4.3 V \leq V_{IN} \leq 12.6 V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			60	
Load Pogulation	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le 10$ mA			2	40	u)//m /
Load Regulation	ΔΙΟυτ	Sinking: -10mA ≤ I _{OU}	⊺≤0		5	40	μV/mA
Dropout Valtage (Note 2)	VIN - VOUT	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 5mA		0.05	0.2	- V
Dropout Voltage (Note 3)			I _{OUT} = 10mA		0.1	0.4	
OUT Short-Circuit Current	100	Short to GND			160		mA
	Isc	Short to IN			20		ША
Thermal Hysteresis (Note 2)	$\Delta V_{OUT}/$	SO			20		
mermai Hysteresis (Note 2)	cycle	μΜΑΧ			80		ppm
Long-Term Stability	ΔVout/	$1000 \text{ br at } T_{4} = 125^{\circ} \text{ C}$	SO		20		ppm/
Long-Term Stability	time	1000hr at T _A = +25°C μ MAX			100		1000hr
DYNAMIC CHARACTERISTICS							
		f = 0.1Hz to 10Hz			2.4		μV _{P-P}
Noise Voltage	eout	$f = 1 kHz, C_{NR} = 0$		120		nV/√Hz	
		$f = 1 \text{ KHz}, C_{\text{NR}} = 0.1 \mu \text{F}$			80		
Capacitive-Load Stability Range	CLOAD	No sustained oscillations			0.1 to 10		μF
	t _R	To V _{OUT} = 0.01% of	$C_{NR} = 0$		1.6		
Turn-On Settling Time		final value	$C_{NR} = 0.1 \mu F$		20		ms
INPUT							
Supply Voltage Range	VIN	Guaranteed by line-re	egulation test	4.3		12.6	V
	l _{IN}	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			380	550	
Quiescent Supply Current						725	μA

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

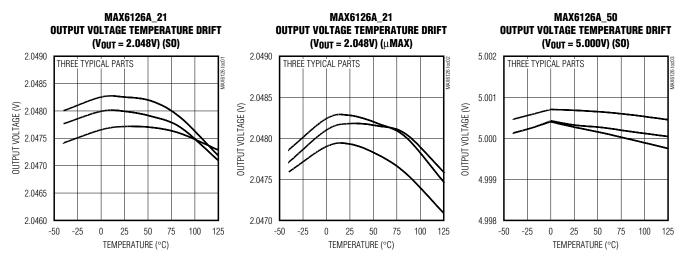
ELECTRICAL CHARACTERISTICS—MAX6126_50 (VOUT = 5.000V)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS	
OUTPUT	•						•	
Output Voltage	Vout	$T_A = +25^{\circ}C$			5.000		V	
		TA = +25°C	A grade SO	-0.02		+0.02	%	
			B grade SO	-0.06		+0.06		
Output Voltage Accuracy			A grade µMAX	-0.06		+0.06		
			B grade µMAX	-0.1		+0.1		
			A grade SO		0.5	3		
		T _A = -40°C to +85°C	B grade SO		1	5		
		$T_A = -40 \text{ C} 10 + 65 \text{ C}$	A grade µMAX		1	3		
Output Voltage Temperature	TCVOUT		B grade µMAX		2	7	nnm/°C	
Coefficient (Note 1)	10,001		A grade SO		1	5	ppm/°C	
		$T_A = -40^{\circ}C$ to	B grade SO		2	10		
		+125°C	A grade µMAX		2	5		
			B grade µMAX		3	12		
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$5.2V \le V_{\rm IN} \le 12.6V$	$T_A = +25^{\circ}C$		3	40	μV/V	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			80	μν/ν	
Load Regulation	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le 1$	10mA		2.5	50	50 µV/mA	
Load negulation	Δlout	Sinking: -10mA \leq I _{OUT} \leq 0			6.5	50	μν/ΠΑ	
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	$\Delta V_{OUT} = 0.1\%$	I _{OUT} = 5mA		0.05	0.2	V	
Diopour voltage (Note 3)			I _{OUT} = 10mA		0.1	0.4		
OUT Short-Circuit Current	Isc	Short to GND	t to GND		160		mA	
Cor Short-Circuit Current	ISC	Short to IN			20		ША	
Thermal Hysteresis (Note 2)	$\Delta V_{OUT}/$	SO			15		nnm	
	cycle	μΜΑΧ			80		ppm	
Long-Term Stability	ΔVout/	1000hr at T _A = +25°C	SO		20		ppm/	
	time	μMAX			100		1000hr	
DYNAMIC CHARACTERISTICS	1	1		[1	
	eout	f = 0.1Hz to 10Hz			2.85		μV _{P-P}	
Noise Voltage		$f = 1 \text{kHz}, C_{\text{NR}} = 0$			145		nV/√Hz	
		$f = 1 \text{kHz}, C_{\text{NR}} = 0.1 \mu \text{F}$			95			
Capacitive-Load Stability Range	CLOAD	No sustained oscillati	ons		0.1 to 10		μF	

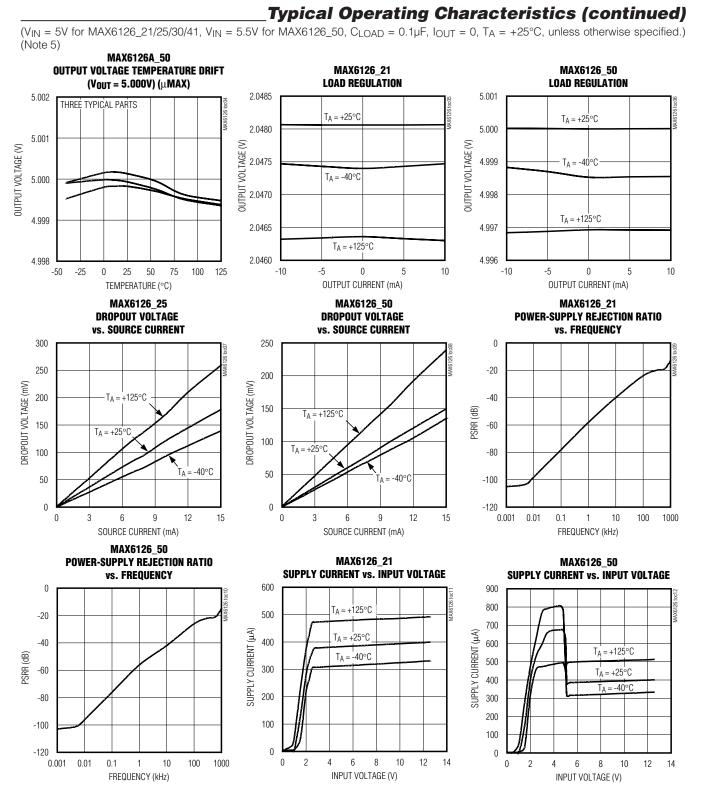
Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

ELECTRICAL CHARACTERISTICS—MAX6126_50 (VOUT = 5.000V) (continued)

 $(V_{IN} = 5.5V, C_{LOAD} = 0.1\mu F, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$)

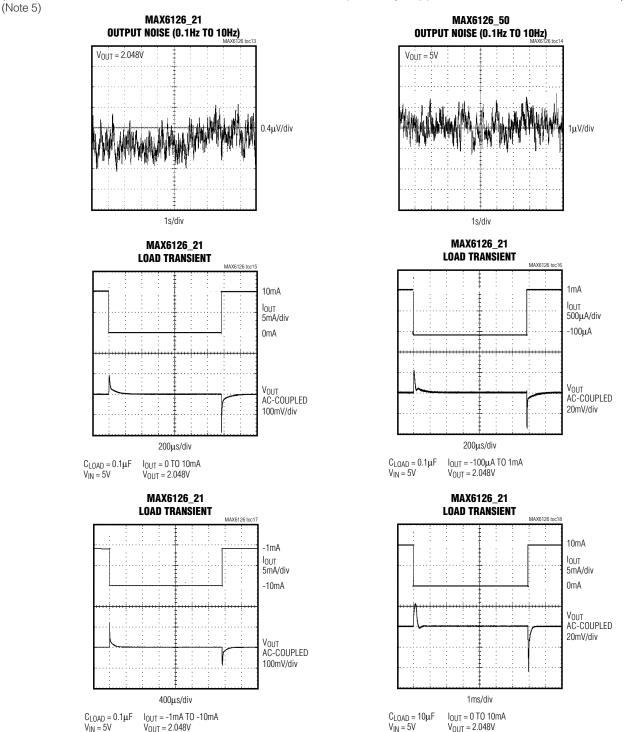

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
Turn-On Settling Time	t _R	To V _{OUT} = 0.01% of final value	$C_{NR} = 0$		2	100.0	
			$C_{NR} = 0.1 \mu F$		20		ms
INPUT							
Supply Voltage Range	VIN	Guaranteed by line-regulation test		5.2		12.6	V
Quiescent Supply Current	I _{IN}	$T_A = +25^{\circ}C$			380	550	
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				725	μA

Note 1: Temperature coefficient is measured by the "box" method, i.e., the maximum ΔV_{OUT} / V_{OUT} is divided by the maximum ΔT .


Note 2: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN}.
Note 3: Dropout voltage is defined as the minimum differential voltage (V_{IN} - V_{OUT}) at which V_{OUT} decreases by 0.1% from its original value at V_{IN} = 5.0V (V_{IN} = 5.5V for V_{OUT} = 5.0V).

Typical Operating Characteristics

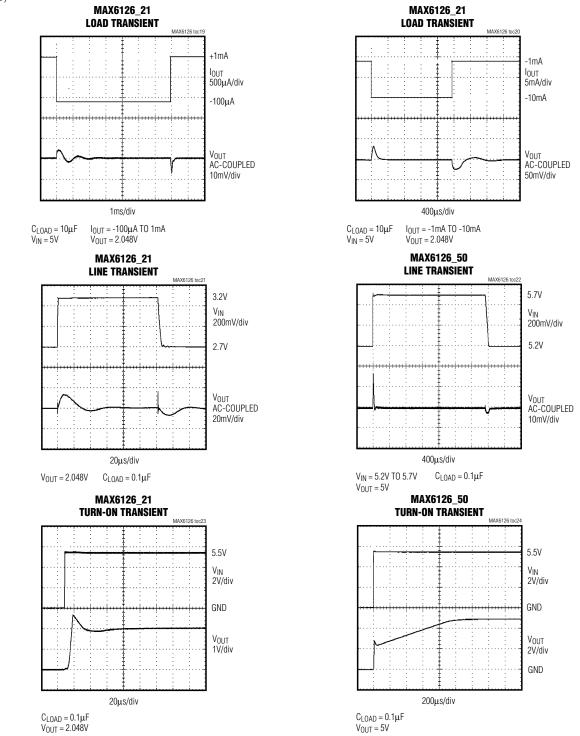
(V_{IN} = 5V for MAX6126_21/25/30/41, V_{IN} = 5.5V for MAX6126_50, C_{LOAD} = 0.1μ F, I_{OUT} = 0, T_A = +25°C, unless otherwise specified.) (Note 5)



Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Maxim Integrated

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference


Typical Operating Characteristics (continued)

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1\mu\text{F}, I_{OUT} = 0, T_A = +25^{\circ}\text{C}, unless otherwise specified.})$

MAX6126 Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Typical Operating Characteristics (continued)

(VIN = 5V for MAX6126_21/25/30/41, VIN = 5.5V for MAX6126_50, CLOAD = 0.1μ F, IOUT = 0, TA = +25°C, unless otherwise specified.) (Note 5)

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

MAX6126B 25 MAX6126 21 MAX6126 50 LONG-TERM STABILITY vs. TIME (SO) TURN-ON TRANSIENT **TURN-ON TRANSIENT** MAX6126 toc25 MAX6126 toc26 2.5006 TWO TYPICAL PARTS $V_{OUT} = 2.5V$ 5.5V 5.5V 2.5004 V_{IN} V_{IN} 2.5002 2V/div 2V/div 2.5000 GND GND 2 4998 VOUT VOUT 2V/div 1V/div 2.4996 GND 2.4994 0 200 400 600 800 1000 400µs/div 40µs/div $C_{LOAD} = 10 \mu F$ $V_{OUT} = 5 V$ TIME (hr) $C_{LOAD}=10\mu F$ V_{OUT} = 2.048V MAX6126B_50 MAX6126B 25 MAX6126B 50 LONG-TERM STABILITY vs. TIME (µMAX) LONG-TERM STABILITY vs. TIME (uMAX) LONG-TERM STABILITY vs. TIME (SO) 2.5010 5.0006 5.0010 TWO TYPICAL PARTS TWO TYPICAL PARTS $V_{OUT} = 5V$ $V_{OUT} = 5V$ 5.0004 2.5005 5.0005 5.0002 2.5000 () 100 5.0000 5.0000 4.9998 2.4995 4.9995 4.9996 TWO TYPICAL PARTS $V_{OUT} = 2.5V$ 2.4990 4.9994 4.9990 200 400 600 800 1000 0 200 400 600 800 1000 0 0 200 400 600 800 1000 TIME (hr) TIME (hr) TIME (hr)

Typical Operating Characteristics (continued)

 $(V_{IN} = 5V \text{ for MAX6126}_21/25/30/41, V_{IN} = 5.5V \text{ for MAX6126}_50, C_{LOAD} = 0.1\mu\text{F}, I_{OUT} = 0, T_A = +25^{\circ}\text{C}, unless otherwise specified.})$ (Note 5)

Note 5: Many of the MAX6126 *Typical Operating Characteristics* are extremely similar. The extremes of these characteristics are found in the MAX6126_21 (2.048V output) and the MAX6126_50 (5.000V output). The *Typical Operating Characteristics* of the remainder of the MAX6126 family typically lie between those two extremes and can be estimated based on their output voltages.

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

PIN	NAME	FUNCTION
1	NR	Noise Reduction. Connect a 0.1µF capacitor to improve wideband noise. Leave unconnected if not used (see Figure 1).
2	IN	Positive Power-Supply Input
3	GND	Ground
4	GNDS	Ground-Sense Connection. Connect to ground connection at load.
5, 8	I.C.	Internally Connected. Do not connect anything to these pins.
6	OUTS	Voltage Reference Sense Output
7	OUTF	Voltage Reference Force Output. Short OUTF to OUTS as close to the load as possible. Bypass OUTF with a capacitor (0.1 μ F to 10 μ F) to GND.

Pin Description

Detailed Description

Wideband Noise Reduction

To improve wideband noise and transient power-supply noise, add a 0.1μ F capacitor to NR (Figure 1). Larger values do not improve noise appreciably. A 0.1μ F NR capacitor reduces the noise from 60 nV/ \sqrt{Hz} to 35 nV/ \sqrt{Hz} for the 2.048V output. Noise in the power-supply input can affect output noise, but can be reduced by adding an optional bypass capacitor between IN and GND, as shown in the *Typical Operating Circuit*.

Output Bypassing

The MAX6126 requires an output capacitor between 0.1μ F and 10μ F. Locate the output capacitor as close to OUTF as possible. For applications driving switching capacitive loads or rapidly changing load currents, it is advantageous to use a 10μ F capacitor in parallel with a 0.1μ F capacitor. Larger capacitor values reduce transients on the reference output.

Supply Current

The quiescent supply current of the series-mode MAX6126 family is typically 380μ A and is virtually independent of the supply voltage, with only a 2μ A/V (max) variation with supply voltage.

When the supply voltage is below the minimum specified input voltage during turn-on, the device can draw



Figure 1. Noise-Reduction Capacitor

up to 300μ A beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Thermal Hysteresis

Thermal hysteresis is the change of output voltage at $T_A = +25^{\circ}C$ before and after the device is cycled over its entire operating temperature range. The typical thermal hysteresis value is 20ppm (SO package).

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 200 μ s to 2ms depending on the device. The turn-on time can increase up to 4ms with the device operating at the minimum dropout voltage and the maximum load. A noise reduction capacitor of 0.1 μ F increases the turn-on time to 20ms.

Output Force and Sense

The MAX6126 provides independent connections for the power-circuit output (OUTF) supplying current into a load, and for the circuit input regulating the voltage applied to that load (OUTS). This configuration allows for the cancellation of the voltage drop on the lines connecting the MAX6126 and the load. When using the Kelvin connection made possible by the independent current and voltage connections, take the power connection to the load from OUTF, and bring a line from OUTS to join the line from OUTF, at the point where the voltage accu-

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

racy is needed. The MAX6126 has the same type of Kelvin connection to cancel drops in the ground return line. Connect the load to ground and bring a connection from GNDS to exactly the same point.

_Applications Information

Precision Current Source

Figure 2 shows a typical circuit providing a precision current source. The OUTF output provides the bias current for the bipolar transistor. OUTS and GNDS sense the voltage across the resistor and adjust the current sourced by OUTF accordingly. For even higher precision, use a MOSFET to eliminate base current errors.

High-Resolution DAC and Reference from a Single Supply

Figure 3 shows a typical circuit providing the reference for a high-resolution, 16-bit MAX541 D/A converter.

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 4 shows the maximum allowable reference voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range ($T_{MAX} - T_{MIN}$) with the converter resolution as a parameter. The graph assumes the reference voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes.

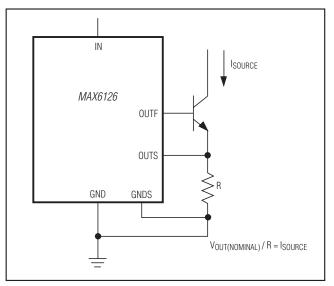


Figure 2. Precision Current Source

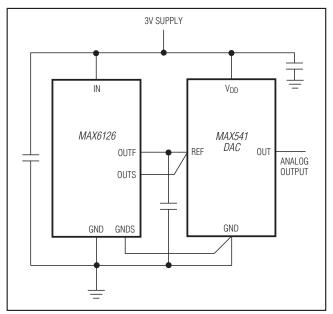


Figure 3. 14-Bit High-Resolution DAC and Positive Reference from a Single 3V Supply

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

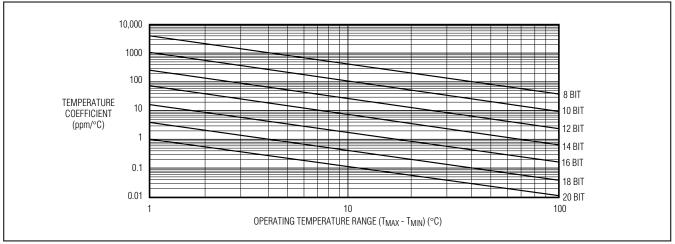
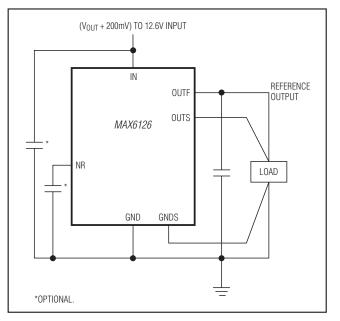



Figure 4. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Typical Operating Circuit

Chip Information

PROCESS: BICMOS

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	MAXIMUM INITIAL ACCURACY (%)	MAXIMUM TEMPCO (-40°C to +85°C) (ppm/°C)
MAX6126B21+	-40°C to +125°C	8 µMAX	2.048	0.1	7
MAX6126AASA25+	-40°C to +125°C	8 SO	2.500	0.02	3
MAX6126BASA25+	-40°C to +125°C	8 SO	2.500	0.06	5
MAX6126A25+	-40°C to +125°C	8 µMAX	2.500	0.06	3
MAX6126B25+	-40°C to +125°C	8 µMAX	2.500	0.1	7
MAX6126A28+	-40°C to +125°C	8 µMAX	2.800	0.06	3
MAX6126B28+	-40°C to +125°C	8 µMAX	2.800	0.1	7
MAX6126AASA30+	-40°C to +125°C	8 SO	3.000	0.02	3
MAX6126BASA30+	-40°C to +125°C	8 SO	3.000	0.06	5
MAX6126A30+	-40°C to +125°C	8 µMAX	3.000	0.06	3
MAX6126B30+	-40°C to +125°C	8 µMAX	3.000	0.1	7
MAX6126AASA41+	-40°C to +125°C	8 SO	4.096	0.02	3
MAX6126BASA41+	-40°C to +125°C	8 SO	4.096	0.06	5
MAX6126BASA41/V+	-40°C to +125°C	8 SO	4.096	0.06	5
MAX6126A41+	-40°C to +125°C	8 µMAX	4.096	0.06	3
MAX6126B41+	-40°C to +125°C	8 µMAX	4.096	0.1	7
MAX6126AASA50+	-40°C to +125°C	8 SO	5.000	0.02	3
MAX6126BASA50+	-40°C to +125°C	8 SO	5.000	0.06	5
MAX6126A50+	-40°C to +125°C	8 µMAX	5.000	0.06	3
MAX6126B50+	-40°C to +125°C	8 µMAX	5.000	0.1	7

+Denotes a lead(Pb)-free/RoHS-compliant package.

N denotes an automotive qualified part.

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>
8 SO	S8+4	<u>21-0041</u>	<u>90-0096</u>

Ultra-High-Precision, Ultra-Low-Noise, Series Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/02	Initial release	_
1	3/03	Remove "future product" and "contact factory" notes	1, 16
2	6/03	Add "A" grade devices	1, 16
3	12/03	Change µMAX part number	1, 16
4	7/04	Add top mark to Ordering Information	1, 16
5	12/10	Add 2.8V option, add lead-free options, update Package Information	1, 2, 4, 15, 16
6	8/12	Added automotive package, MAX6126BASA41/V+ to data sheet	17

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

18

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.