

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX6133 high-precision, low-power, low-dropout voltage reference features a low 3ppm/°C (max) temperature coefficient and a low dropout voltage (200mV, max). This series-mode device features bandgap technology for low-noise performance and excellent accuracy. Load regulation specifications are guaranteed for source currents up to 15mA. The laser-trimmed, highstability thin-film resistors, together with post-package trimming, guarantee an excellent initial accuracy specification (0.04%, max). The MAX6133 is a series voltage reference and consumes only 40µA of supply current (virtually independent of supply voltage). Series-mode references save system power and use minimal external components compared to 2-terminal shunt references.

The MAX6133 is available in 8-pin µMAX and SO packages. The unique blend of tiny packaging and excellent precision performance make these parts ideally suited for portable and communication applications.

Applications

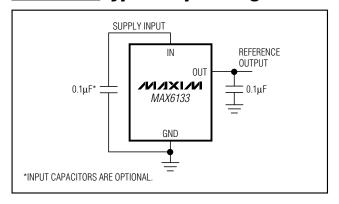
Precision Regulators A/D and D/A Converters **Power Supplies**

High-Accuracy Industrial and Process Control Hand-Held Instruments

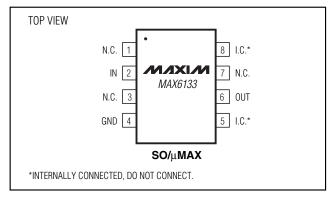
Features

- **♦ Low Temperature Coefficient** 3ppm/°C (max), SO 5ppm/°C (max), µMAX
- ♦ Tiny 5mm × 3mm µMAX Package
- ♦ Low 200mV (max) Dropout Voltage
- ♦ Low 40µA Quiescent Current
- ♦ ±0.04% (max) Initial Accuracy
- ♦ Low 16µVp-p Noise (0.1Hz to 10Hz) (2.5V Output)
- ◆ 15mA Output Source-Current Capability
- ♦ Wide 2.7V to 12.6V Supply Voltage
- ♦ Excellent Line (30µV/V, max) and Load (0.05mV/mA, max) Regulation

Selector Guide


SUFFIX	VOLTAGE OUTPUT
25	2.500V
30	3.000V
41	4.096V
50	5.000V

Ordering Information


PART	TEMP RANGE	PIN-PACKAGE	MAXIMUM INITIAL ACCURACY (%)	MAXIMUM TEMPCO (ppm/°C, -40°C to +85°C)
MAX6133A	-40°C to +125°C	8 µMAX	0.06	5
MAX6133AASA	-40°C to +125°C	8 SO	0.04	3
MAX6133BASA	-40°C to +125°C	8 SO	0.08	5

Note: Two-number part suffix indicates output voltage option.

Typical Operating Circuit

Pin Configuration

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltage (with Respect to GND) IN0.3V to +13V OUT0.3V to +6V or (V _{IN} + 0.3V) OUT Short Circuit to IN or GND Duration60s Continuous Power Dissipation (T _A = +70°C) 8-Pin µMAX (derate 5.5mW/°C above +70°C)362mW	Operating Temperature Range40°C to +125°C Storage Temperature Range65°C to +150°C Junction Temperature+150°C Lead Temperature (soldering, 10s)+300°C
8-Pin SO (derate 5.88mW/°C above +70°C)471mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6133_25 (Vout = 2.500V)

 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}.$ Typical values are at $T_A = +25 ^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CON	CONDITIONS			MAX	UNITS	
			A grade SO	2.4990	2.5000	2.5010		
Output Voltage	Vout	T _A = +25°C	B grade SO	2.4980	2.5000	2.5020	V	
			μΜΑΧ	2.4985	2.5000	2.5015		
0 1 11/1			A grade SO	-0.04		+0.04	%	
Output Voltage Accuracy		T _A = +25°C	B grade SO	-0.08		+0.08		
Accuracy			μΜΑΧ	-0.06		+0.06		
		A grada SO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	3		
		A grade SO	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		4	7		
Output Voltage Temperature	TCV	B grade SO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	5	nnm/0C	
Coefficient (Note 1)	TCV _{OUT}	ь grade so	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		5	10	ppm/°C	
Oddinoloni (Noto 1)			μMAX	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	5]
		μινιΑΛ	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	7		
Input Voltage Range	V _{IN}	Inferred from line regulation		2.7		12.6	V	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$2.7V \le V_{IN} \le 12.6V$			2	30	μV/V	
Load Regulation	ΔVουτ/ΔΙουτ	-100μA ≤ I _{OUT} ≤ 15mA			0.003	0.05	mV/mA	
Dropout Voltage	.,	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 1$ mA			0.02	0.2		
(Note 2)	V _{DO}	$\Delta V_{OUT} = 0.1\%$, I_{OUT}	= 10mA		0.2	0.4	V	
Quiescent Supply		T _A = +25°C			40	60		
Current	IIN	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$				85	μΑ	
Output Short-Circuit	1	Short to GND: Vour	= 0V		90		A	
Current	Isc	Short to V _{IN} : V _{OUT} = V _{IN}		-2			mA	
Outrout Valta are Naisa	C	0.1Hz ≤ f ≤ 10Hz			16		μV _{P-P}	
Output Voltage Noise	e _n	$10Hz \le f \le 1kHz$			12		μV _{RMS}	
Turn-On Settling Time	ton	V _{OUT} settles to ±0.01% of final value			500		μs	
Thermal Hysteresis (Note 3)					120		ppm	
O		11 1000	SO		40		ppm	
Long-Term Stability		$\Delta t = 1000 \text{ hours}$			145			

ELECTRICAL CHARACTERISTICS—MAX6133_30 (VOUT = 3.0000V)

 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} . Typical values are at $T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
			A grade SO	2.9988	3.0000	3.0012	
Output Voltage	Vout	T _A = +25°C	B grade SO	2.9976	3.0000	3.0024	V
			μΜΑΧ	2.9982	3.0000	3.0018	
0			A grade SO	-0.04		+0.04	
Output Voltage Accuracy		T _A = +25°C	B grade SO	-0.08		+0.08	%
Accuracy			μΜΑΧ	-0.06		+0.06	
		A grada SO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	3	
		A grade SO	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		4	7	
Output Voltage	TCVOUT	D grade CO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	5	nnm/0C
Temperature Coefficient (Note 1)	10,001	B grade SO	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		5	10	ppm/°C
Coomoioni (Noto 1)		MAY	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	5	
		μMAX	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	7	
Input Voltage Range	VIN	Inferred from line reg	3.2		12.6	V	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	3.2V ≤ V _{IN} ≤ 12.6V			2	30	μV/V
Load Regulation	ΔV _{OUT} /Δl _{OUT}	-100µA ≤ I _{OUT} ≤ 15m.		0.003	0.06	mV/mA	
Dropout Voltage	\/= a	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 0.1\%$	= 1mA		0.01	0.2	2 V
(Note 2)	V _{DO}	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 0.1\%$	$\Delta V_{OUT} = 0.1\%, I_{OUT} = 10 \text{mA}$		0.2	0.4	V
Quiescent Supply	I.e.	T _A = +25°C			40	60	
Current	IIN	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$				85	μΑ
Output Short-Circuit	la a	Short to GND: Vout =	= 0V		90		Λ
Current	I _{SC}	Short to V _{IN} : V _{OUT} = '	VIN		-2		mA
Output Valtage Naise		0.1Hz ≤ f ≤ 10Hz			24		μV _{P-P}
Output Voltage Noise	e _n	10Hz ≤ f ≤ 1kHz			15		μV _{RMS}
Turn-On Settling Time	ton	V _{OUT} settles to ±0.01% of final value			600		μs
Thermal Hysteresis (Note 3)					120		ppm
Long Torm Stability		At = 1000 bours	SO	40			
Long-Term Stability		$\Delta t = 1000 \text{ hours}$ μMAX		145			ppm

ELECTRICAL CHARACTERISTICS—MAX6133_41 (Vout = 4.096V)

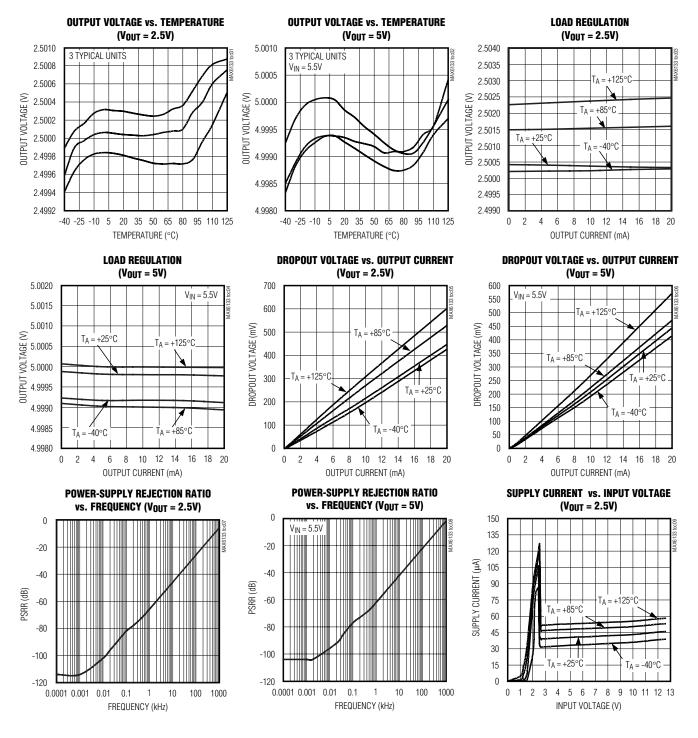
 $(V_{IN} = 5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}.$ Typical values are at $T_A = +25 ^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CON	MIN	TYP	MAX	UNITS		
				A grade SO	4.0943	4.0960	4.0977	
Output Voltage	Vout	T _A = +25°C	B grade SO	4.0927	4.0960	4.0993	V	
			μΜΑΧ	4.0935	4.0960	4.0985		
0			A grade SO	-0.04		+0.04		
Output Voltage Accuracy		T _A = +25°C	B grade SO	-0.08		+0.08	%	
Accuracy			μΜΑΧ	-0.06		+0.06		
		A swada CO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	3		
		A grade SO	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		4	7		
Output Voltage	TOV	D ave do CO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	5	in in in 10 C	
Temperature Coefficient (Note 1)	TCV _{OUT}	B grade SO	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		5	10	ppm/°C	
Coomoioni (Noto 1)			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	5		
		μMAX	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	7		
Input Voltage Range	V _{IN}	Inferred from line reg	4.2		12.6	V		
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$4.2V \le V_{ N} \le 12.6V$	4.2V ≤ V _{IN} ≤ 12.6V		2	40	μV/V	
Load Regulation	ΔV _{OUT} /Δl _{OUT}	-100μA ≤ I _{OUT} ≤ 15mA			0.003	0.08	mV/mA	
Dropout Voltage	\/	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 1$ mA			0.01	0.2	V	
(Note 2)	V _{DO}	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 0.1\%$	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 10$ mA		0.2	0.4	V	
Quiescent Supply	T	T _A = +25°C			45	65		
Current	IIN	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$				85	μΑ	
Output Short-Circuit	1	Short to GND: Vout =	= 0V		90		A	
Current	I _{SC}	Short to V _{IN} : V _{OUT} = V _{IN}		-2			mA mA	
Output Valtage Naise		0.1Hz ≤ f ≤ 10Hz			32		μV _{P-P}	
Output Voltage Noise	e _n	$10Hz \le f \le 1kHz$			22		μV _{RMS}	
Turn-On Settling Time	ton	V _{OUT} settles to ±0.01% of final value			800		μs	
Thermal Hysteresis (Note 3)					120		ppm	
Lang Tarre Ctability		At 1000 hours	SO		40		†	
Long-Term Stability		$\Delta t = 1000 \text{ hours}$	μΜΑΧ		145		ppm	

ELECTRICAL CHARACTERISTICS—MAX6133_50 (VOUT = 5.000V)

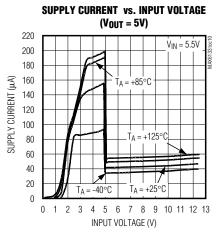
 $(V_{IN} = 5.5V, C_{LOAD} = 0.1 \mu F, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}.$ Typical values are at $T_A = +25 ^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONI	MIN	TYP	MAX	UNITS		
		T _A = +25°C	A grade SO	4.9980	5.0000	5.0020	V	
Output Voltage	Vout		B grade SO	4.9960	5.0000	5.0040		
			μΜΑΧ	4.9970	5.0000	5.0030		
			A grade SO	-0.04		+0.04		
Output Voltage Accuracy		T _A = +25°C	B grade SO	-0.08		+0.08	%	
Accuracy			μΜΑΧ	-0.06		+0.06		
		A swada CO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	3		
		A grade SO	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		4	7		
Output Voltage	TO\/	D avada CO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		3	5	in in in 10 C	
Temperature Coefficient (Note 1)	TCV _{OUT}	B grade SO	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		5	10	ppm/°C	
Coomoioni (Noto 1)			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1	5		
		μMAX	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	7	1	
Input Voltage Range	VIN	Inferred from line regu	5.2		12.6	V		
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$5.2V \le V_{IN} \le 12.6V$			2	50	μV/V	
Load Regulation	ΔVουτ/ΔΙουτ	-100μA ≤ I _{OUT} ≤ 15mA			0.01	0.10	mV/mA	
Dropout Voltage	\/	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 1$ mA			0.02	0.2	\/	
(Note 2)	V _{DO}	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} =$	$\Delta V_{OUT} = 0.1\%$, $I_{OUT} = 10$ mA		0.2	0.4	V	
Quiescent Supply		T _A = +25°C			40	60		
Current	IIN	T _A = -40°C to +125°C				85	μΑ	
Output Short-Circuit		Short to GND: Vout =	OV		90			
Current	I _{SC}	Short to V _{IN} : V _{OUT} = V _{IN}		-2			mA	
Outrout Valta are Nieles	_	0.1Hz ≤ f ≤ 10Hz			40		μV _{P-P}	
Output Voltage Noise	e _n	10Hz ≤ f ≤ 1kHz			26		μV _{RMS}	
Turn-On Settling Time	ton	V _{OUT} settles to ±0.01% of final value			1000		μs	
Thermal Hysteresis (Note 3)					120		ppm	
Lawren Tarres Otale III		At 4000 l	SO	40				
Long-Term Stability		$\Delta t = 1000 \text{ hours}$	μΜΑΧ		145		ppm	

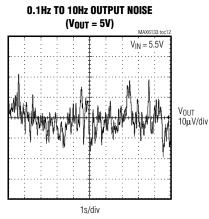

Note 1: The MAX6133 is 100% drift-tested for $T_A = T_{MIN}$ to T_{MAX} , as specified.

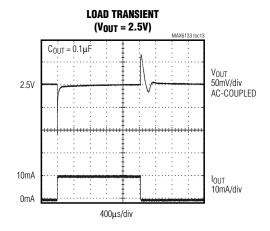
Note 2: Dropout Voltage is the minimum voltage at which V_{OUT} changes ≤ 0.1% from V_{OUT} at V_{IN} = 5V (V_{IN} = 5.5V for V_{OUT} = 5V).

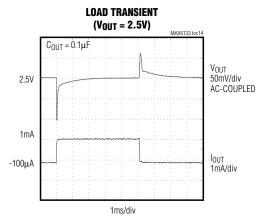
Note 3: Thermal Hysteresis is defined as the change in the initial +25°C output voltage after cycling the device from T_{MAX} to T_{MIN}.

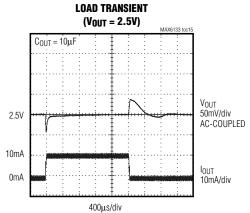

Typical Operating Characteristics

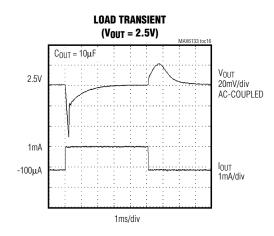
 $(V_{IN} = 5V, I_{OUT} = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (Note 4)

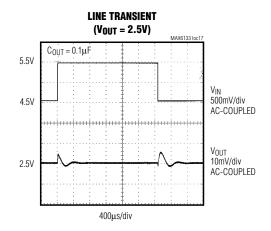


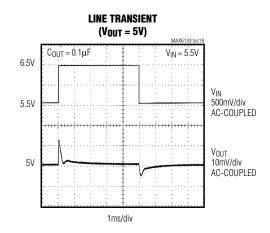

Typical Operating Characteristics (continued)

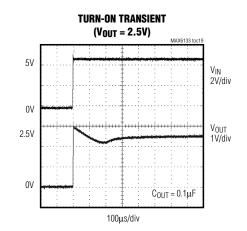

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = +25$ °C, unless otherwise noted.) (Note 4)

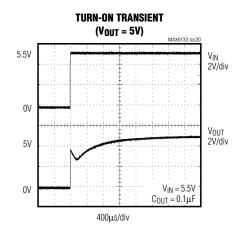


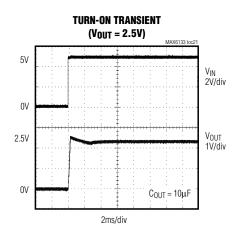


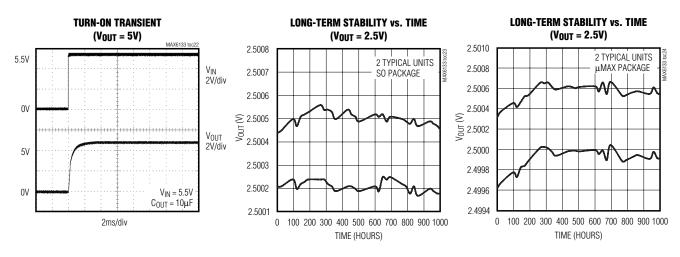


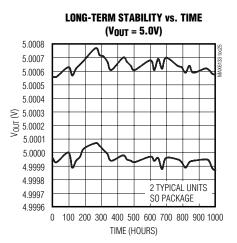


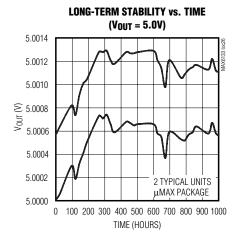

Typical Operating Characteristics (continued)


 $(V_{IN} = 5V, I_{OUT} = 0, T_A = +25$ °C, unless otherwise noted.) (Note 4)









Typical Operating Characteristics (continued)

 $(V_{IN} = 5V, I_{OUT} = 0, T_A = +25^{\circ}C, unless otherwise noted.)$ (Note 4)

Note 4: Many of the MAX6133 *Typical Operating Characteristics* are extremely similar. The extremes of these characteristics are found in the MAX6133 (2.5V output) and the MAX6133 (5V output). The *Typical Operating Characteristics* of the remainder of the MAX6133 family typically lie between these two extremes and can be estimated based on their output voltages.

Pin Description

PIN	NAME	FUNCTION
1, 3, 7	N.C.	No Connection. Not connected internally. Leave unconnected or connect to GND.
2	IN	Positive Power-Supply Input
4	GND	Ground
5, 8	I.C.	Internally Connected. Do not connect externally.
6	OUT	Reference Output Voltage. Connect a 0.1µF minimum capacitor to GND.

Applications Information Bypassing/Load Capacitance

For the best line-transient performance, decouple the input with a $0.1\mu F$ ceramic capacitor as shown in the *Typical Operating Circuit*. Place the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary. The MAX6133 family requires a minimum output capacitance of $0.1\mu F$ for stability and is stable with capacitive loads (including the bypass capacitance) of up to $100\mu F$. In applications where the load or the supply can experience step changes, a larger output capacitor reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Place output capacitors as close to the device as possible.

Supply Current

The quiescent supply current of the MAX6133 series reference is typically $40\mu A$ and is virtually independent of the supply voltage. In the MAX6133 family, the load current is drawn from the input only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life. When the supply voltage is below the minimum-specified input voltage (as during turn-on), the devices can draw up to $150\mu A$ beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Thermal Hysteresis

Thermal hysteresis is the change in the output voltage at $T_A = +25^{\circ}\text{C}$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical thermal hysteresis value is 120ppm for both SO and μ MAX packages.

Turn-On Time

These devices typically turn on and settle to within 0.01% of their final value in <1ms. The turn-on time can increase up to 2ms with the device operating at the minimum dropout voltage and the maximum load.

Low-Power, 14-Bit DAC with MAX6133 as a Reference

Figure 1 shows a typical application circuit for the MAX6133 providing both the power supply and precision reference voltage for a 14-bit high-resolution, serial-input, voltage-output digital-to-analog converter. The MAX6133 with a 2.5V output provides the reference voltage for the DAC.

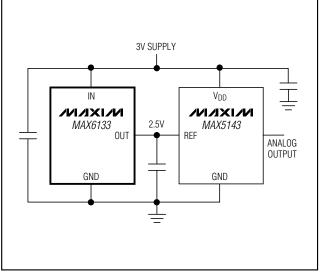


Figure 1. 14-Bit High-Resolution DAC and Positive Reference From a Single 3V Supply

Negative Low-Power Voltage Reference

As shown in Figure 2, the MAX6133 can be used to develop a negative voltage reference using the MAX400, a rail-to-rail op-amp with low power, low noise, and low offset. The circuit only provides a good negative reference and is ideal for space- and cost-sensitive applications since it does not use resistors.

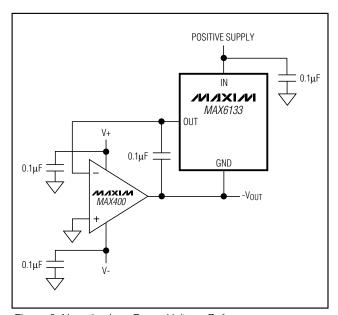


Figure 2. Negative Low-Power Voltage Reference

Temperature Coefficient vs. Operating Temperature Range for a 1LSB Maximum Error

In a data converter application, the converter's reference voltage must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 3 shows the maximum allowable reference-voltage temperature coefficient that keeps the conversion error to less than 1LSB. This is a function of the operating temperature range (T_{MAX} - T_{MIN}) with the converter resolution as a parameter. The graph assumes the reference-voltage temperature coefficient as the only parameter affecting accuracy. In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes.

Chip Information

TRANSISTOR COUNT: 656 PROCESS: BICMOS

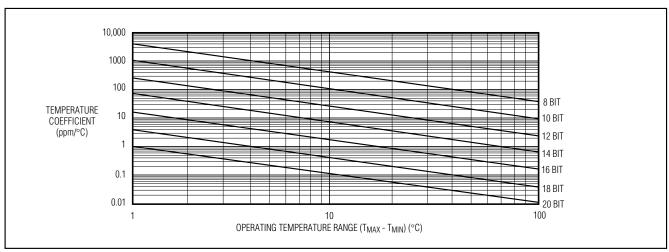
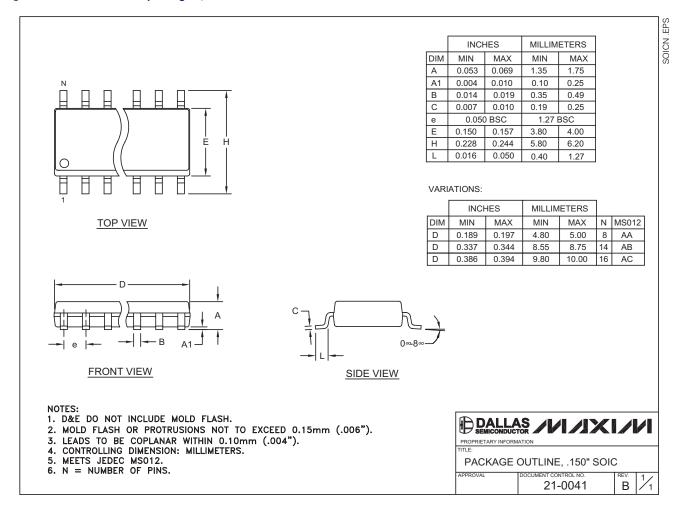
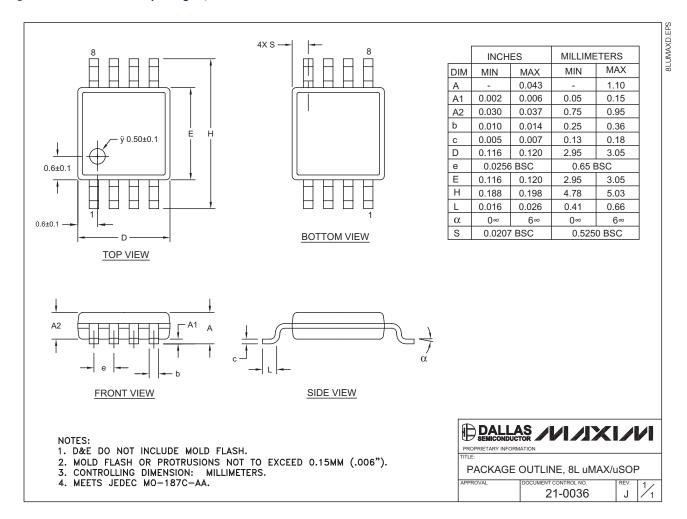



Figure 3. Temperature Coefficient vs. Operating Temperature Range for a 1LSB Maximum Error


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.