: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Abstract

General Description The MAX6715A-MAX6729A/MAX6797A are ultra-low-voltage microprocessor ($\mu \mathrm{P}$) supervisory circuits designed to monitor two or three system power-supply voltages. These devices assert a system reset if any monitored supply falls below its factory-trimmed or adjustable threshold and maintain reset for a minimum timeout period after all supplies rise above their thresholds. The integrated dual/triple supervisory circuits significantly improve system reliability and reduce size compared to separate ICs or discrete components. These devices monitor primary supply voltages (VCC1) from 1.8 V to 5.0 V and secondary supply voltages (VCC2) from 0.9 V to 3.3 V with factory-trimmed reset threshold voltage options (see the Reset Voltage Threshold Suffix Guide). An externally adjustable RSTIN input option allows customers to monitor a third supply voltage down to 0.62 V . These devices are guaranteed to be in the correct reset output logic state when either Vcc1 or Vcc2 remains greater than 0.8 V . A variety of push-pull or open-drain reset outputs along with watchdog input, manual-reset input, and power-fail input/output features are available (see the Selector Guide). Select reset timeout periods from 1.1 ms to 1120 ms (min) (see the Reset Timeout Period Suffix Guide). The MAX6715A-MAX6729A/MAX6797A are available in small 5-, 6-, and 8-pin SOT23 packages and operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Applications

Multivoltage Systems
Telecom/Networking Equipment
Computers/Servers
Portable/Battery-
Operated Equipment

Typical Operating Circuit

Features

- Vcc1 (Primary Supply) Reset Threshold Voltages from 1.58 V to 4.63 V
- Vcc2 (Secondary Supply) Reset Threshold Voltages from 0.79 V to 3.08 V
- Externally Adjustable RSTIN Threshold for Auxiliary/Triple-Voltage Monitoring (0.62V Internal Reference)
- Watchdog Timer Option 35s (min) Long Startup Period 1.12s (min) Normal Timeout Period
- Manual-Reset Input Option
- Power-Fail Input/Power-Fail Output Option (Push-Pull and Open-Drain Active-Low)
- Guaranteed Reset Valid Down to Vcc1 or $\mathrm{Vcc} 2=0.8 \mathrm{~V}$
- Reset Output Logic Options
- Immune to Short Vcc Transients
- Low Supply Current 14رA (typ) at 3.6V
- Watchdog Disable Feature
- Small 5-, 6-, and 8-Pin SOT23 Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE
MAX6715AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23
MAX6716AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23
MAX6717AUK__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23
MAX6718AUK__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23
MAX6719AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23
MAX6720AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23

+Denotes a lead-free/RoHS-compliant package.
$T=$ Tape and reel.
Note: The first " _ " are placeholders for the threshold voltage levels of the devices. Desired threshold levels are set by the part number suffix found in the Reset Voltage Threshold Suffix Guide. The "_" after the D is a placeholder for the reset timeout delay time. Desired delay time is set using the timeout period suffix found in the Reset Timeout Period Suffix Guide. For example, the MAX6716AUTLTD3-T is a dual-voltage supervisor $V_{T H} 1=$ $4.625 \mathrm{~V}, V_{T H} 2=3.075 \mathrm{~V}$, and 210 ms (typ) timeout period.

Ordering Information continued at end of data sheet.

Pin Configurations and Selector Guide appear at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with respect to GND)
$\mathrm{V}_{\mathrm{CC}} 1, \mathrm{~V}_{\mathrm{CC}} 2 \ldots \ldots \ldots .-0.3 \mathrm{~V}$ to +6 V

Push-Pull RST, $\overline{\mathrm{RST}}, \overline{\mathrm{PFO}}, \overline{\mathrm{RST}}$. \qquad .-0.3V to ($\left.\mathrm{VCC}_{\mathrm{C}} 1+0.3 \mathrm{~V}\right)$
Push-Pull RST2. \qquad -0.3 V to ($\mathrm{VCC} 2+0.3 \mathrm{~V}$)
RSTIN, PFI, $\overline{M R}$, WDI \qquad .-0.3V to +6 V
Input Current/Output Current (all pins) \qquad - $10+6 \mathrm{~V}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 5-Pin SOT23-5 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots571 \mathrm{~mW}$ 6-Pin SOT23-6 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW 8-Pin SOT23-8 (derate $8.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 714 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC1}=0.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 2=0.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{CC}		0.8		5.5	V
Supply Current	ICC1	$\mathrm{V}_{\mathrm{CC}} 1<5.5 \mathrm{~V}$ all I/O connections open, outputs not asserted		15	39	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} 1<3.6 \mathrm{~V}$ all I/O connections open, outputs not asserted		10	28	
	ICC2	Vcc2 $<3.6 \mathrm{~V}$ all I/O connections open, outputs not asserted		4	11	
		$\mathrm{V}_{\mathrm{CC}} 2<2.75 \mathrm{~V}$ all I/O connections open, outputs not asserted		3	9	
VCC1 Reset Threshold	$\mathrm{V}_{\text {TH1 }}$	L (falling)	4.500	4.625	4.750	V
		M (falling)	4.250	4.375	4.500	
		T (falling)	3.000	3.075	3.150	
		S (falling)	2.850	2.925	3.000	
		R (falling)	2.550	2.625	2.700	
		Z (falling)	2.250	2.313	2.375	
		Y (falling)	2.125	2.188	2.250	
		W (falling)	1.620	1.665	1.710	
		V (falling)	1.530	1.575	1.620	
VCC2 Reset Threshold	$V_{\text {TH2 }}$	T (falling)	3.000	3.075	3.150	V
		S (falling)	2.850	2.925	3.000	
		R (falling)	2.550	2.625	2.700	
		Z (falling)	2.250	2.313	2.375	
		Y (falling)	2.125	2.188	2.250	
		W (falling)	1.620	1.665	1.710	
		V (falling)	1.530	1.575	1.620	
		I (falling)	1.350	1.388	1.425	
		H (falling)	1.275	1.313	1.350	
		G (falling)	1.080	1.110	1.140	
		F (falling)	1.020	1.050	1.080	
		E (falling)	0.810	0.833	0.855	
		D (falling)	0.765	0.788	0.810	

\qquad

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC1}=0.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 2=0.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reset Threshold Tempco	$\Delta \mathrm{V}_{\text {TH }} /{ }^{\circ} \mathrm{C}$		20			ppm/ ${ }^{\circ} \mathrm{C}$
Reset Threshold Hysteresis	VHYST	Referenced to $\mathrm{V}_{\text {TH }}$ typical	0.5			\%
VCC to Reset Output Delay	trD	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} 1=\left(\mathrm{V}_{\mathrm{TH}} 1+100 \mathrm{mV}\right) \text { to }\left(\mathrm{V}_{\mathrm{TH} 1} 1-100 \mathrm{mV}\right) \text { or } \\ & \mathrm{V}_{\mathrm{CC}} 2=\left(\mathrm{V}_{T H} 2+75 \mathrm{mV}\right) \text { to }\left(\mathrm{V}_{\mathrm{TH}} 2-75 \mathrm{mV}\right) \end{aligned}$	20			$\mu \mathrm{s}$
Reset Timeout Period	tRP	D1	1.1	1.65	2.2	ms
		D2	8.8	13.2	17.6	
		D7 (MAX6797A only)	17.5	26.25	35	
		D8 (MAX6797A only)	35	52.5	70	
		D3	140	210	280	
		D5	280	420	560	
		D6	560	840	1120	
		D4	1120	1680	2240	
ADJUSTABLE RESET COMPARATOR INPUT (MAX6719A/MAX6720A/MAX6723A-MAX6727A)						
RSTIN Input Threshold	VRSTIN		611	626.5	642	mV
RSTIN Input Current	IRSTIN		-100		+100	nA
RSTIN Hysteresis				3		mV
RSTIN to Reset Output Delay	tRSTIND	VRSTIN to (VRSTIN - 30mV)		22		$\mu \mathrm{s}$
POWER-FAIL INPUT (MAX6728A/MAX6729A)						
PFI Input Threshold	VPFI		611	626.5	642	mV
PFI Input Current	IPFI		-100		+100	nA
PFI Hysteresis	VPFH			3		mV
PFI to $\overline{\text { PFO }}$ Delay	tDPF	($\mathrm{VPFI}^{\text {P }}+30 \mathrm{mV}$) to (VPFI -30 mV)		2		$\mu \mathrm{s}$
MANUAL-RESET INPUT (MAX6715A-MAX6722A/MAX6725A-MAX6729A)						
$\overline{\mathrm{MR}}$ Input Voltage	$\mathrm{V}_{\text {IL }}$		$0.3 \times V_{\text {cc }} 1$			V
	V_{IH}		$0.7 \times \mathrm{VCC}$			
$\overline{\mathrm{MR}}$ Minimum Pulse Width			1			$\mu \mathrm{s}$
$\overline{\mathrm{MR}}$ Glitch Rejection			100			ns
$\overline{\mathrm{MR}}$ to Reset Delay	tMR		200			ns
$\overline{\mathrm{MR}}$ Pullup Resistance			25	50	80	k Ω
WATCHDOG INPUT (MAX6721A-MAX6729A)						
Watchdog Timeout Period	twD	First watchdog period after reset timeout period			72	s
		Normal mode	1.12	1.68	2.24	
WDI Pulse Width	twDI	(Note 2)	50			ns
WDI Input Voltage	V_{IL}		$0.3 \times \mathrm{VCC}^{1}$			V
	V_{IH}		$0.7 \times \mathrm{V}_{\mathrm{CC}} 1$			
WDI Input Current	IWDI	$\mathrm{WDI}=0 \mathrm{~V}$ or $\mathrm{VCC1}$	-1		+1	$\mu \mathrm{A}$

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}} 1=0.8 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 2=0.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RESET/POWER-FAIL OUTPUTS						
$\overline{\mathrm{RST}} / \overline{\mathrm{RST}} 1 / \overline{\mathrm{RST} 2} / \overline{\mathrm{PFO}}$ Output LOW (Push-Pull or Open-Drain)	Vol	$\mathrm{V}_{\mathrm{CC}} 1$ or $\mathrm{V}_{\mathrm{CC}} 2 \geq 0.8 \mathrm{~V}$, ISINK $=1 \mu \mathrm{~A}$, output asserted			0.3	V
		$\mathrm{V}_{\mathrm{CC}} 1$ or $\mathrm{V}_{\mathrm{CC}} 2 \geq 1.0 \mathrm{~V}$, ISINK $=50 \mu \mathrm{~A}$, output asserted			0.3	
		$\mathrm{V}_{\mathrm{CC}} 1$ or $\mathrm{V}_{\mathrm{CC}} 2 \geq 1.2 \mathrm{~V}$, $\operatorname{ISINK}=100 \mu \mathrm{~A}$, output asserted			0.3	
		$V_{C C} 1$ or $V_{C C} 2 \geq 2.7 \mathrm{~V}$, $\operatorname{ISINK}=1.2 \mathrm{~mA}$, output asserted			0.3	
		$\mathrm{V}_{\mathrm{CC}} 1$ or $\mathrm{V}_{\mathrm{CC}} 2 \geq 4.5 \mathrm{~V}$, I IINK $=3.2 \mathrm{~mA}$, output asserted			0.4	
$\overline{\mathrm{RST}} / \overline{\mathrm{RST}} 1 / \overline{\mathrm{PFO}}$ Output HIGH (Push-Pull Only)	VOH	$V_{C C} 1 \geq 1.8 \mathrm{~V}$, ISOURCE $=200 \mu \mathrm{~A}$, output not asserted	$0.8 \times$			V
		$V_{C C} 1 \geq 2.7 \mathrm{~V}$, ISOURCE $=500 \mu \mathrm{~A}$, output not asserted	$0.8 \times \mathrm{V}$			
		$\mathrm{V}_{\text {CC }} 1 \geq 4.5 \mathrm{~V}$, ISOURCE $=800 \mu \mathrm{~A}$, output not asserted	$0.8 \times \mathrm{V}$			
$\overline{\text { RST2 }}$ Output HIGH (Push-Pull Only)	VOH	$V_{C C} 1 \geq 1.8 \mathrm{~V}$, ISOURCE $=200 \mu \mathrm{~A}$, output not asserted	$0.8 \times$			V
		$\mathrm{V}_{\text {CC }} 1 \geq 2.7 \mathrm{~V}$, ISOURCE $=500 \mu \mathrm{~A}$, output not asserted	$0.8 \times \mathrm{V}$			
		$\mathrm{V}_{\mathrm{CC}} 1 \geq 4.5 \mathrm{~V}$, ISOURCE $=800 \mu \mathrm{~A}$, output not asserted	$0.8 \times \mathrm{V}$			
RST Output HIGH (Push-Pull Only)	VOH	$V_{C C} 1 \geq 1.0 \mathrm{~V}$, ISOURCE $=1 \mu \mathrm{~A}$, reset asserted	$0.8 \times V$			V
		$\mathrm{V}_{\mathrm{CC}} 1 \geq 1.8 \mathrm{~V}, \text { ISOURCE }=150 \mu \mathrm{~A},$ reset asserted	$0.8 \times \mathrm{V}$			
		$\mathrm{V}_{\mathrm{CC}} 1 \geq 2.7 \mathrm{~V}, \text { ISOURCE }=500 \mu \mathrm{~A},$ reset asserted	$0.8 \times \mathrm{V}$			
		$\mathrm{V}_{\mathrm{CC}} 1 \geq 4.5 \mathrm{~V}, \text { ISOURCE }=800 \mu \mathrm{~A},$ reset asserted	$0.8 \times \mathrm{V}$			
RST Output LOW (Push-Pull or Open Drain)	VOL	$V_{C C} 1$ or $V_{C C} 2 \geq 1.8 \mathrm{~V}$, $\operatorname{ISINK}=500 \mu \mathrm{~A}$, reset not asserted			0.3	V
		$\mathrm{V}_{\mathrm{CC}} 1$ or $\mathrm{V}_{\mathrm{CC}} 2 \geq 2.7 \mathrm{~V}$, $\operatorname{ISINK}=1.2 \mathrm{~mA}$, reset not asserted			0.3	
		$\mathrm{V}_{\mathrm{CC}} 1$ or $\mathrm{V}_{\mathrm{CC}} 2 \geq 4.5 \mathrm{~V}$, $\operatorname{ISINK}=3.2 \mathrm{~mA}$, reset not asserted			0.4	
$\overline{\mathrm{RST}} / \overline{\mathrm{RST}} 1 / \overline{\mathrm{RST}} / \overline{\mathrm{PFO}}$ Output Open-Drain Leakage Current		Output not asserted			0.5	$\mu \mathrm{A}$
RST Output Open-Drain Leakage Current		Output asserted			0.5	$\mu \mathrm{A}$

Note 1: Devices tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Overtemperature limits are guaranteed by design and not production tested.
Note 2: Parameter guaranteed by design.

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}} 1=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 2=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

SUPPLY CURRENT vs. TEMPERATURE
(Vcc1 $=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}} 2=+1.2 \mathrm{~V}$)

NORMALIZED Vcc RESET THRESHOLD vs. TEMPERATURE

RESET INPUT AND POWER-FAIL INPUT THRESHOLD vs. TEMPERATURE

SUPPLY CURRENT vs. TEMPERATURE
(Vcc1 $=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}} 2=+1.8 \mathrm{~V}$)

MAXIMUM Vcc TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVE

Vcc TO RESET DELAY
vs. TEMPERATURE

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

$\left(\mathrm{V}_{C C} 1=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} 2=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN								NAME	FUNCTION
MAX6715A/ MAX6716A	MAX6717A MAX6718A	MAX6719A MAX6720A	MAX6721A/ MAX6722A	MAX6723A MAX6724A	MAX6725A MAX6726A	MAX6727A	MAX6728A MAX6729A MAX6797A		
1	1	1	1	1	1	1, 4	1	$\frac{\overline{\mathrm{RST}} /}{\overline{\mathrm{RST} 1}}$	Active-Low Reset Output, Open-Drain or Push-Pull. $\overline{\text { RST/RST1 }}$ changes from high to low when Vcc1 or $V_{c c} 2$ drops below the selected reset thresholds, RSTIN is below threshold, $\overline{\mathrm{MR}}$ is pulled low, or the watchdog triggers a reset. $\overline{\text { RST/RST1 }}$ remains low for the reset timeout period after $V_{c c} 1 / V_{c c}$ /RSTIN exceed the device reset thresholds, $\overline{\mathrm{MR}}$ goes low to high, or the watchdog triggers a reset. Opendrain outputs require an external pullup resistor. Push-pull outputs are referenced to $\mathrm{V}_{\mathrm{CC}} 1$.

\qquad

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Pin Description (continued)

PIN								NAME	FUNCTION
MAX6715A/ MAX6716A	MAX6717A MAX6718A	MAX6719A MAX6720A	MAX6721A/ MAX6722A	MAX6723A MAX6724A	MAX6725A/ MAX6726A	MAX6727A	MAX6728A MAX6729A MAX6797A		
5	-	-	-	-	-	-	-	$\overline{\mathrm{RST}}$ 2	Active-Low Reset Output, Open-Drain or Push-Pull. $\overline{\mathrm{RST}}$ changes from high to low when $V_{c c} 1$ or $V_{C C} 2$ drops below the selected reset thresholds or $\overline{\mathrm{MR}}$ is pulled low. $\overline{\mathrm{RST} 2}$ remains low for the reset timeout period after $\mathrm{V}_{\mathrm{CC}} 1 / \mathrm{V}_{\mathrm{C} C} 2$ exceed the device reset thresholds or $\overline{\mathrm{MR}}$ goes low to high. Open-drain outputs require an external pullup resistor. Push-pull outputs are referenced to Vcc2.
2	2	2	2	2	2	2	2	GND	Ground
3	3	3	3	-	5	5	5	$\overline{\mathrm{MR}}$	Active-Low Manual-Reset Input. Internal $50 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{\mathrm{Cc}} 1$. Pull low to force a reset. Reset remains active as long as $\overline{\mathrm{MR}}$ is low and for the reset timeout period after $\overline{\mathrm{MR}}$ goes high. Leave unconnected or connect to $\mathrm{V}_{\mathrm{CC}} 1$ if unused.
4	4	4	4	4	6	6	6	Vcc2	Secondary Supply Voltage Input. Powers the device when it is above $\mathrm{V}_{\mathrm{Cc}} 1$ and input for secondary reset threshold monitor.
6	5	6	6	6	8	8	8	VCC1	Primary Supply Voltage Input. Powers the device when it is above V_{Cc} 2 and input for primary reset threshold monitor.

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

PIN								NAME	FUNCTION
MAX6715A MAX6716A	MAX6717A MAX6718A	MAX6719A MAX6720A	MAX6721A MAX6722A	MAX6723A MAX6724A	MAX6725A MAX6726A	MAX6727A	MAX6728A/ MAX6729A/ MAX6797A		
-	-	-	5	3	3	3	3	WDI	Watchdog Input. If WDI remains high or low for longer than the watchdog timeout period, the internal watchdog timer runs out and the reset output asserts for the reset timeout period. The internal watchdog timer clears whenever a reset is asserted or WDI sees a rising or falling edge. The watchdog has a long startup period (35s min) after each reset event and a short watchdog timeout period (1.12s min) after the first valid WDI transition. Leave WDI unconnected to disable the watchdog timer. The WDI unconnected-state detector uses a small 200nA current source. Therefore, do not connect WDI to anything that will source more than 50nA.
-	-	5	-	5	7	7	-	RSTIN	Undervoltage Reset Comparator Input. Highimpedance input for adjustable reset monitor. The reset output is asserted when RSTIN falls below the 0.626 V internal reference voltage. Set the monitored voltage reset threshold with an external resistor-divider network. Connect RSTIN to VCC1 or $V_{C C 2}$ if not used.

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Pin Description (continued)

PIN								NAme	FUNCTION
MAX6715A/ MAX6716A	MAX6717A MAX6718A	MAX6719A MAX6720A	MAX6721A/ MAX6722A	MAX6723A MAX6724A	MAX6725A MAX6726A	MAX6727A	MAX6728A/ MAX6729A MAX6797A		
-	-	-	-	-	-	-		PFI	Power-Fail Voltage Monitor Input. Highimpedance input for internal power-fail monitor comparator. Connect PFI to an external resistordivider network to set the power-fail threshold voltage (0.626 V typical internal reference voltage). Connect to GND, $V_{C C} 1$, or $V_{C C} 2$ if not used.
-	-	-	-	-	-	-	4	$\overline{\text { PFO }}$	Active-Low Power-Fail Monitor Output, OpenDrain or Push-Pull. $\overline{\text { PFO }}$ is asserted low when PFI is less than 0.626 V . $\overline{\mathrm{PFO}}$ deasserts without a reset timeout period. Opendrain outputs require an external pullup resistor. Push-pull outputs are referenced to $\mathrm{V}_{\mathrm{Cc}} 1$.
-	-	-	-	-	4	-	-	RST	Active-High Reset Output, Open-Drain or Push-Pull. RST changes from low to high when $\mathrm{V}_{\mathrm{Cc}} 1$ or V_{C} 2 drops below selected reset thresholds, RSTIN is below threshold, $\overline{\mathrm{MR}}$ is pulled low, or the watchdog triggers a reset. RST remains HIGH for the reset timeout period after VCC1/VCC2/RSTIN exceed the device reset thresholds, $\overline{\mathrm{MR}}$ goes low to high, or the watchdog triggers a reset. Opendrain outputs require an external pullup resistor. Push-pull outputs are referenced to V_{Cc}.

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Detailed Description

Supply Voltages

The MAX6715A-MAX6729A/MAX6797A μ P supervisory circuits maintain system integrity by alerting the $\mu \mathrm{P}$ to fault conditions. These ICs are optimized for systems that monitor two or three supply voltages. The outputreset state is guaranteed to remain valid while either $V_{c c} 1$ or $V_{c c} 2$ is above 0.8 V .

Threshold Levels

Input-voltage threshold level combinations are indicated by a two-letter code in the Reset Voltage Threshold Suffix Guide (Table 1). Contact factory for availability of other voltage threshold combinations.

Reset Outputs

The MAX6715A-MAX6729A/MAX6797A provide an active-low reset output (RST) and the MAX6725A/ MAX6726A also provide an active-high (RST) output. RST, RST, $\overline{\text { RST1 }}$, and $\overline{\text { RST2 }}$ are asserted when the voltage at either $V_{C C 1}$ or $V_{C C} 2$ falls below the voltage threshold level, RSTIN drops below threshold, or MR is pulled low. Once reset is asserted, it stays low for the reset timeout period (see Table 2). If $\mathrm{V}_{\mathrm{Cc}} 1, \mathrm{~V}_{\mathrm{Cc}} 2$, or RSTIN goes below the reset threshold before the reset timeout period is completed, the internal timer restarts. The MAX6715A/MAX6717A/MAX6719A/MAX6721A/ MAX6723A/MAX6725A/MAX6727A/MAX6728A contain open-drain reset outputs, while the MAX6716A/ MAX6718A/MAX6720A/MAX6722A/MAX6724A/ MAX6726A/MAX6729A/MAX6797A contain push-pull reset outputs. The MAX6727A provides two separate open-drain RST outputs driven by the same internal logic.

Manual-Reset Input

Many $\mu \mathrm{P}$-based products require manual-reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic-low on $\overline{M R}$ asserts the reset output. Reset remains asserted while $\overline{\mathrm{MR}}$ is low for the reset timeout period (tRP) after $\overline{\mathrm{MR}}$ returns high. This input has an internal $50 \mathrm{k} \Omega$ pullup resistor to $V_{C C} 1$ and can be left unconnected if not used. $\overline{\mathrm{MR}}$ can be driven with CMOS logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manualreset function; external debounce circuitry is not required. If $\overline{M R}$ is driven from long cables or if the device is used in a noisy environment, connect a $0.1 \mu \mathrm{~F}$ capacitor from $\overline{M R}$ to GND to provide additional noise immunity.

Adjustable Input Voltage

The MAX6719A/MAX6720A and MAX6723A-MAX6727A provide an additional input to monitor a third system voltage. The threshold voltage at RSTIN is typically 626 mV . Connect a resistor-divider network to the circuit as shown in Figure 1 to establish an externally controlled threshold voltage, VEXT_TH.

$$
V_{\text {EXT_TH }}=626 m V((R 1+R 2) / R 2)
$$

Low-leakage current at RSTIN allows the use of largevalued resistors resulting in reduced power consumption of the system.

Watchdog Input

The watchdog monitors $\mu \mathrm{P}$ activity through the watchdog input (WDI). To use the watchdog function, connect WDI to a bus line or μ P I/O line. When WDI remains high or low for longer than the watchdog timeout period, the reset output asserts.
The MAX6721A-MAX6729A/MAX6797A include a dualmode watchdog timer to monitor $\mu \mathrm{P}$ activity. The flexible timeout architecture provides a long period initial watchdog mode, allowing complicated systems to complete lengthy boots, and a short period normal watchdog mode, allowing the supervisor to provide quick alerts when processor activity fails. After each reset event (Vcc power-up/brownout, manual reset, or watchdog reset), there is a long initial watchdog period of 35 s minimum. The long watchdog period mode provides an extended time for the system to power-up and fully initialize all $\mu \mathrm{P}$ and system components before assuming responsibility for routine watchdog updates.

Figure 1. Monitoring a Third Voltage

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

The normal watchdog timeout period (1.12s min) begins after the first transition on WDI before the conclusion of the long initial watchdog period (Figure 2). During the normal operating mode, the supervisor will issue a reset pulse for the reset timeout period if the $\mu \mathrm{P}$ does not update the WDI with a valid transition (high-tolow or low-to-high) within the standard timeout period (1.12s min).

Leave WDI unconnected to disable the watchdog timer. The WDI unconnected-state detector uses a small (200nA typ) current source. Therefore, do not connect WDI to anything that will source more than 50 nA .

Power-Fail Comparator

PFI is the noninverting input to a comparator. If PFI is less than VPFI (626.5 mV), $\overline{\mathrm{PFO}}$ goes low. Common uses for the power-fail comparator include monitoring preregulated input of the power supply (such as a battery) or providing an early power-fail warning so software can conduct an orderly system shutdown. It can also be used to monitor supplies other than $\mathrm{V}_{\mathrm{CC}} 1$ or $\mathrm{V}_{\mathrm{CC}} 2$ by setting the power-fail threshold with a resistor-divider, as shown in Figure 3. PFI is the input to the power-fail comparator. The typical comparator delay is $2 \mu \mathrm{~s}$ from PFI to PFO. Connect PFI to ground of $\mathrm{V}_{\mathrm{C}} 1$ if unused.

Figure 2. Normal Watchdog Startup Sequence

Ensuring a Valid Reset Output Down to VCC = OV

The MAX6715A-MAX6729A/MAX6797A are guaranteed to operate properly down to $\mathrm{V} C \mathrm{C}=0.8 \mathrm{~V}$. In applications that require valid reset levels down to $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$, use a pulldown resistor at $\overline{\mathrm{RST}}$ to ground. The resistor value used is not critical, but it must be large enough not to load the reset output when V_{Cc} is above the reset threshold. For most applications, $100 \mathrm{k} \Omega$ is adequate. This configuration does not work for the open-drain outputs of the MAX6715A/MAX6717A/MAX6719A/MAX6721A/ MAX6723A/MAX6725A/MAX6727A/MAX6728A. For pushpull, active-high RST output connect the external resistor as a pullup from RST to VCC1.

Figure 3. Using Power-Fail Input to Monitor an Additional
Power-Supply a) VIN is Positive b) VIN is Negative

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Abstract

Applications Information Interfacing to $\boldsymbol{\mu}$ Ps with Bidirectional Reset Pins Most μ Ps with bidirectional reset pins can interface directly to open-drain RST output options. Systems simultaneously requiring a push-pull RST output and a bidirectional reset interface can be in logic contention. To prevent contention, connect a $4.7 \mathrm{k} \Omega$ resistor between $\overline{\operatorname{RST}}$ and the $\mu \mathrm{P}$'s reset I/O port as shown in Figure 4.

Adding Hysteresis to the Power-Fail Comparator

The power-fail comparator has a typical input hysteresis of 3 mV . This is sufficient for most applications where a power-supply line is being monitored through an external voltage-divider (see the Power-Fail Comparator section). If additional noise margin is desired, connect a resistor between PFO and PFI as shown in Figure 5. Select the values of R1, R2, and R3 so PFI sees VPFI (626 mV) when $V_{\text {EXT }}$ falls to its power-fail trip point (VFAIL) and when VIN rises to its power-good trip point ($\mathrm{V}_{\mathrm{GOOD}}$). The hysteresis window extends between the specified $\mathrm{V}_{\text {FAIL }}$ and $\mathrm{V}_{\mathrm{GOOD}}$ thresholds. R3 adds the additional hysteresis by sinking current from the R1/R2 divider network when $\overline{\mathrm{PFO}}$ is logic-low and sourcing current into the network when $\overline{\text { PFO }}$ is logic-high. R3 is typically an order of magnitude greater than R1 or R2.

Figure 4. Interfacing to μ Ps with Bidirectional Reset I/O

The current through R2 should be at least $2.5 \mu \mathrm{~A}$ to ensure that the 100 nA (max) PFI input current does not significantly shift the trip points. Therefore, R2 < VPF// $10 \mu \mathrm{~A}<$ $62 \mathrm{k} \Omega$ for most applications. R3 will provide additional hysteresis for $\overline{\mathrm{PFO}}$ push-pull ($\mathrm{VOH}=\mathrm{VCC}^{\prime}$) or open-drain ($\mathrm{VOH}=\mathrm{V}_{\text {PULLUP }}$) applications.

Monitoring an Additional Power Supply

 These $\mu \mathrm{P}$ supervisors can monitor either positive or negative supplies using a resistor voltage-divider to PFI. $\overline{\text { PFO }}$ can be used to generate an interrupt to the $\mu \mathrm{P}$ or cause reset to assert (Figure 3).
Monitoring a Negative Voltage

The power-fail comparator can be used to monitor a negative supply voltage using the circuit shown in Figure 3 . When the negative supply is valid, $\overline{\mathrm{PFO}}$ is low. When the negative supply voltage drops, $\overline{\mathrm{PFO}}$ goes high. The circuit's accuracy is affected by the PFI threshold tolerance, $\mathrm{V}_{\mathrm{CC}}, \mathrm{R} 1$, and R2.

Negative-Going VCC Transients

 The MAX6715A-MAX6729A/MAX6797A supervisors are relatively immune to short-duration negative-going VCC transients (glitches). It is usually undesirable to reset the $\mu \mathrm{P}$ when $\mathrm{V} C C$ experiences only small glitches. The Typical Operating Characteristics show Maximum Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negative-going VCC pulses, starting above V_{TH} and ending below the reset threshold by the

Figure 5. Adding Hysteresis to Power-Fail for Push-Pull PFO

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

magnitude indicated (reset threshold overdrive). The graph shows the maximum pulse width that a negativegoing VCC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. A $0.1 \mu \mathrm{~F}$ bypass capacitor mounted close to the V_{CC} pin provides additional transient immunity.

Watcholog Software Considerations

Setting and resetting the watchdog input at different points in the program, rather than "pulsing" the watchdog input high-low-high or low-high-low, helps the watchdog timer to closely monitor software execution. This technique avoids a "stuck" loop where the watchdog timer continues to be reset within the loop, keeping the watchdog from timing out. Figure 6 shows an example flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the beginning of every subroutine or loop, then set high again when the program returns to the beginning. If the program should "hang" in any subroutine, the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued.

Figure 6. Watchdog Flow Diagram

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Selector Guide

PART NUMBER	NUMBER OF VOLTAGE MONITORS	$\begin{aligned} & \text { OPEN- } \\ & \text { DRAIN } \\ & \hline \text { RESET } \end{aligned}$	OPENDRAIN RESET	$\begin{aligned} & \text { PUSH- } \\ & \text { PULL } \\ & \hline \text { RESET } \end{aligned}$	PUSHPULL RESET	MANUAL RESET	WATCHDOG INPUT	POWERFAIL INPUT/ OUTPUT
MAX6715A	2	2	-	-	-	\checkmark	-	-
MAX6716A	2	-	-	2	-	\checkmark	-	-
MAX6717A	2	1	-	-	-	\checkmark	-	-
MAX6718A	2	-	-	1	-	\checkmark	-	-
MAX6719A	3	1	-	-	-	\checkmark	-	-
MAX6720A	3	-	-	1	-	\checkmark	-	-
MAX6721A	2	1	-	-	-	\checkmark	\checkmark	-
MAX6722A	2	-	-	1	-	\checkmark	\checkmark	-
MAX6723A	3	1	-	-	-	-	\checkmark	-
MAX6724A	3	-	-	1	-	-	\checkmark	-
MAX6725A	3	1	1	-	-	\checkmark	\checkmark	-
MAX6726A	3	-	-	1	1	\checkmark	\checkmark	-
MAX6727A	3	2	-	-	-	\checkmark	\checkmark	-
MAX6728A	2	1	-	-	-	\checkmark	\checkmark	\checkmark (open drain)
MAX6729A	2	-	-	1	-	\checkmark	\checkmark	$\sqrt{ }$ (push-pull)
MAX6797A	2	-	-	1	-	\checkmark	\checkmark	\checkmark (open drain)

__Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE
MAX6721AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23
MAX6722AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23
MAX6723AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23
MAX6724AUT__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23
MAX6725AKA__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23
MAX6726AKA__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23
MAX6727AKA__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23
MAX6728AKA__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23
MAX6729AKA__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23
MAX6797AKA__D_+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23

+Denotes a lead-free/RoHS-compliant package.
$T=$ Tape and reel.
Note: The first " _ _" are placeholders for the threshold voltage levels of the devices. Desired threshold levels are set by the part number suffix found in the Reset Voltage Threshold Suffix Guide. The "." after the D is a placeholder for the reset timeout delay time. Desired delay time is set using the timeout period suffix found in the Reset Timeout Period Suffix Guide. For example, the MAX6716AUTLTD3-T is a dual-voltage supervisor $\mathrm{V}_{T H} 1=$ $4.625 \mathrm{~V}, V_{T H} 2=3.075 \mathrm{~V}$, and 210 ms (typ) timeout period.

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

Table 1. Reset Voltage Threshold Suffix Guide**

PART NUMBER SUFFIX (_ _)	Vcc1 NOMINAL VOLTAGE THRESHOLD (V)	Vcc2 NOMINAL VOLTAGE THRESHOLD (V)
LT	4.625	3.075
MS	4.375	2.925
MR	4.375	2.625
TZ	3.075	2.313
SY	2.925	2.188
RY	2.625	2.188
TW	3.075	1.665
SV	2.925	1.575
RV	2.625	1.575
TI	3.075	1.388
SH	2.925	1.313
RH	2.625	1.313
TG	3.075	1.110
SF	2.925	1.050
RF	2.625	1.050
TE	3.075	0.833
SD	2.925	0.788
RD	2.625	0.788
ZW	2.313	1.665
YV	2.188	1.575
ZI	2.313	1.388
YH	2.188	1.313
ZG	2.313	1.110
YF	2.188	1.050
ZE	2.313	0.833
YD	2.188	0.788
WI	1.665	1.388
VH	1.575	1.313
WG	1.665	1.110
VF	1.575	1.050
WE	1.665	0.833
VD	1.575	0.788

**Standard versions are shown in bold and are available in a D3 timeout option only. Standard versions require 2,500 piece order increments and are typically held in sample stock. There is a 10,000 order increment on nonstandard versions. Other threshold voltages may be available, contact factory for availability.

Table 2. Reset Timeout Period Suffix Guide

TIMEOUT PERIOD SUFFIX	ACTIVE TIMEOUT PERIOD	
	MIN (ms)	MAX (ms)
D1	1.1	2.2
D2	8.8	17.6
D7 †	17.5	35.0
D8 \dagger	35.0	70.0
D3	140	280
D5	280	560
D6	560	1120
D4	1120	2240

$\dagger D 7$ and D8 timeout periods are only available for the MAX6797A.

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

TOP VIEW

TRANSISTOR COUNT: 1072
PROCESS: BiCMOS

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
5 SOT23	U5-1	$\underline{\mathbf{2 1 - 0 0 5 7}}$
6 SOT23	U6-1	$\underline{\mathbf{2 1 - 0 0 5 8}}$
8 SOT23	$\mathrm{K} 8 \mathrm{SN}-1$	$\underline{\mathbf{2 1 - 0 0 7 8}}$

Dual/Triple, Ultra-Low-Voltage, SOT23 μ P Supervisory Circuits

REVISION NUMBER	REVISION DATE	PESCRIPTION CHANGED	
0	$4 / 06$	Initial release	-
1	$7 / 06$	Updated Ordering Information.	1,15
2	$6 / 08$	Added the MAX6797A to Ordering Information, Electrical Characteristics, Pin Description, Detailed Description, Figures 4 and 5, Selector Guide, Table 2, Pin Configurations.	$1,2,6-11,12,15-17$
3	$9 / 08$	Updated Selector Guide.	15

