: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

3.3 V-Input to Regulated 5V-Output Charge Pumps

Abstract

General Description The MAX682/MAX683/MAX684 charge-pump regulators generate 5 V from a 2.7 V to 5.5 V input. They are specifically designed to serve as high-efficiency auxiliary supplies in applications that demand a compact design. The MAX682, MAX683, and MAX684 deliver $250 \mathrm{~mA}, 100 \mathrm{~mA}$, and 50 mA output current, respectively. These complete 5 V regulators require only one resistor and three external capacitors-no inductors are needed. High switching frequencies (externally adjustable up to 2 MHz) and a unique regulation scheme allow the use of capacitors as small as $1 \mu \mathrm{~F}$ per 100 mA of output current. The MAX683/MAX684 are offered in a spacesaving 8-pin $\mu \mathrm{MAX}$ package that is only 1.1 mm high, while the MAX682 is available in an 8-pin SO.

Applications

Flash Memory Supplies
Battery-Powered Applications
Miniature Equipment
PCMCIA Cards
3.3V to 5V Local Conversion Applications

Backup-Battery Boost Converters
3V to 5V GSM SIMM Cards

[^0]Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX682ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX683EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX684EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

3.3V-Input to Regulated 5V-Output Charge Pumps

ABSOLUTE MAXIMUM RATINGS

IN, OUT, $\overline{\text { SHDN, }}$, $\overline{\text { SKIP }}$ to GN	-0.3 V to +6 V
PGND to GND.	$\pm 0.3 \mathrm{~V}$
CXN to GND	-0.3V to ($\left.\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
CXP to GND....................	.-0.3V to (VOUT + 0.3V)
Continuous Output Current	
MAX682.	.. 300 mA
MAX683.	.150mA
MAX684.	75 mA
Output Short-Circuit Duration	.. 5 sec

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SKIP}}=0 \mathrm{~V}, \mathrm{C}_{I N}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{X}}=0.47 \mu \mathrm{~F}, \mathrm{COUT}^{2}=2 \mu \mathrm{~F}, \mathrm{I} \overline{\mathrm{SHDN}}=22 \mu \mathrm{~A}\right.$; $\mathrm{I}_{\mathrm{MAX}}=250 \mathrm{~mA}$ for $\mathrm{MAX} 682, \mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}$ for MAX683, $I_{\text {MAX }}=50 \mathrm{~mA}$ for MAX684; $\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.) $($ Note 1)

3.3 V-Input to Regulated 5V-Output Charge Pumps

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SKIP}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{CX}_{\mathrm{X}}=0.47 \mu \mathrm{~F}, \mathrm{CoUT}^{2}=2 \mu \mathrm{~F}, \mathrm{I} \overline{S H D N}=22 \mu \mathrm{~A}\right.$; $\mathrm{I}_{\mathrm{MAX}}=250 \mathrm{~mA}$ for MAX682, $\mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}$ for MAX683, $I_{\text {MAX }}=50 \mathrm{~mA}$ for MAX684; $\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
$\overline{\text { SKIP }}$ Input Voltage Low	$\mathrm{V}_{\text {INL, }}$ SKIP			0.8	V
SKIP Input Voltage High	VINH, SKIP	V IN $=5.5 \mathrm{~V}$	2.4		
$\overline{\text { SKIP }}$ Input Leakage Current	ISKIP	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}$ SKIP $=0 \mathrm{~V}$ or 5.5 V	-1	1	$\mu \mathrm{A}$

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Note 2: Current into $\overline{S H D N}$ determines oscillator frequency: $\operatorname{REXT}(\mathrm{k} \Omega)=45000\left(\mathrm{~V}_{\mathrm{IN}}-0.69 \mathrm{~V}\right) / \mathrm{fosc}(\mathrm{kHz})$

Typical Operating Characteristics
(Circuit of Figure 5, $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$, component values from Tables 2 and $3, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3.3V-Input to Regulated 5 V-Output Charge Pumps

3.3 V-Input to Regulated 5V-Output Charge Pumps

Typical Operating Characteristics (continued)
(Circuit of Figure 5, $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$, component values from Tables 2 and $3, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$100 \mu \mathrm{~s} / \mathrm{div}$
A: OUTPUT VOLTAGE: $\overline{\text { SKIP }}=\mathrm{HIGH}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{~V} / \mathrm{I}_{\mathrm{MAX}}, 2 \mathrm{~V} / \mathrm{div}$ B: $\overline{\text { SHDN }}$ VOLTAGE: $1 \mathrm{~V} / \mathrm{div}$

LINE-TRANSIENT RESPONSE

$2 \mathrm{~ms} / \mathrm{div}$
A: INPUT VOLTAGE: $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$ TO $3.6 \mathrm{~V}, 500 \mathrm{mV} / \mathrm{div}$ B: OUTPUT VOLTAGE: $\overline{\text { SKIP }}=\mathrm{HIGH}, \overline{\mathrm{I} H D N}=22 \mu \mathrm{~A}$, LLOAD $=250 \mathrm{~mA}, 50 \mathrm{mV} / \mathrm{div}$, MAX682

LOAD-TRANSIENT RESPONSE

$2 \mathrm{~ms} / \mathrm{div}$
A: LOAD CURRENT: $\operatorname{LOAD}=5 \mathrm{~mA}$ TO $250 \mathrm{~mA}, 500 \mathrm{~mA} / \mathrm{div}$ B: OUTPUT VOLTAGE: $\overline{S K I P}=\mathrm{HIGH}, \mathrm{I} \overline{\mathrm{SHDN}}=22 \mu \mathrm{~A}$, $100 \mathrm{mV} / \mathrm{div}$, MAX682

PIN	NAME	FUNCTION
1	$\overline{\text { SKIP }}$	When $\overline{\mathrm{SKIP}}=$ low, the regulator operates in low-quiescent-current skip mode. When $\overline{\mathrm{SKIP}}=$ high, the regulator operates in constant-frequency mode, minimizing output ripple and noise. $\overline{\text { SKIP }}$ must be tied high for input voltages above 3.6V.
2	$\overline{\text { SHDN }}$	Shutdown Input. Drive $\overline{\mathrm{SHDN}}$ through an external resistor. When $\overline{\mathrm{SHDN}}=$ low, the device turns off. When current is sourced into $\overline{\text { SHDN }}$ through REXT, the device activates, and the $\overline{\text { SHDN }}$ pin input current sets the oscillator's switching frequency. REXT $(k \Omega)=45000\left(V_{\text {IN }}-0.69 \mathrm{~V}\right) /$ fosc $(k H z)$.
3	IN	Input Supply Pin. Can range from 2.7 V to 5.5 V for $\overline{\mathrm{SKIP}}=$ high, and 2.7 V to 3.6 V for $\overline{\mathrm{SKIP}}=$ low. Bypass to PGND with a suitable value capacitor (see Capacitor Selection section).
4	GND	Ground Pin. Connect to PGND through a short trace.
5	PGND	Power Ground Pin
6	CXN	Negative Terminal of the Charge-Pump Transfer Capacitor
7	CXP	Positive Terminal of the Charge-Pump Transfer Capacitor
8	OUT	Fixed 5V Power Output. Bypass to PGND with output filter capacitor.

3.3V-Input to Regulated 5V-Output Charge Pumps

Detailed Description

The MAX682/MAX683/MAX684 charge pumps provide a regulated 5 V output from a 2.7 V to 5.5 V input. They deliver a maximum of $250 \mathrm{~mA}, 100 \mathrm{~mA}$, or 50 mA load current, respectively. Designed specifically for compact applications, a complete regulator circuit requires only three small external capacitors and one resistor. An externally adjustable switching frequency and innovative control scheme allow the circuit to be optimized for efficiency, size, or output noise. The devices also contain a shutdown feature.
The MAX682/MAX683/MAX684 consist of an error amplifier, a 1.23 V bandgap reference, an internal resistive feedback network, an oscillator, high-current MOSFET switches, and shutdown and control logic (Figure 1). Figure 2 shows an idealized unregulated chargepump voltage doubler. The oscillator runs at a 50% duty cycle. During one half of the period, the transfer capacitor (Cx) charges to the input voltage. During the other half, the doubler stacks the voltage across CX and the input voltage, and transfers the sum of the two voltages to the output filter capacitor (COUT). Rather than simply doubling the input voltage, the MAX682/MAX683/MAX684 provide a regulated fixed output voltage (5 V) using either skip mode or constantfrequency mode. Skip mode and constant-frequency mode are externally selected via the SKIP input pin.

Figure 1. Functional Block Diagram

Figure 2. Unregulated Voltage Doubler

Figure 3. Skip-Mode Regulation

Skip Mode

In skip mode ($\overline{\mathrm{SKIP}}=$ low $)$, the error amplifier disables switching when it detects an output higher than 5 V . The device then skips switching cycles until the output voltage drops. Then the error amplifier reactivates the oscillator. Figure 3 illustrates the regulation scheme. This regulation method minimizes operating current because the device does not switch continuously. SKIP is a logic input and should not remain floating.

Constant-Frequency Mode

When $\overline{\text { SKIP }}$ is high, the charge pump runs continuously at the selected frequency. Figure 4 shows a block diagram of the device in constant-frequency mode. The error amplifier controls the charge on Cx by driving the gate of the N -channel FET. When the output voltage falls, the gate drive increases, resulting in a larger voltage across Cx. This regulation scheme minimizes output ripple. Since the device switches continuously, the

3.3V-Input to Regulated 5V-Output Charge Pumps

Figure 4. Constant-Frequency-Mode Regulation
Table 1. Tradeoffs Between Operating Modes

FEATURE	SKIP MODE $(\overline{\text { SKIP }}=$ LOW $)$	CONSTANT- FREQUENCY MODE $(\overline{\text { SKIP }}=\mathbf{H I G H})$
Best Light-Load Efficiency	\checkmark	
Smallest External Component Size		
Output Ripple Amplitude and Frequency	Relatively large amplitude, variable frequency	Relatively small amplitude, constant frequency
Load Regulation	Very Good	Good

output noise contains well-defined frequency components, and the circuit requires much smaller external capacitors for a given output ripple. However, constantfrequency mode, due to higher operating current, is less efficient at light loads than skip mode. Note: For input voltages above 3.6 V , the devices must operate in constant-frequency mode. Table 1 summarizes the tradeoffs between the two operating modes.

Frequency Selection and Shutdown

 The $\overline{\text { SHDN }}$ pin on the MAX682/MAX683/MAX684 performs a dual function: it shuts down the device and determines the oscillator frequency. The SHDN input looks like a diode to ground and should be driven through a resistor.Driving $\overline{\text { SHDN }}$ low places the device in shutdown mode. This disables all switches, the oscillator, and control logic. The device typically draws $0.1 \mu \mathrm{~A}(5 \mu \mathrm{~A}$
max) of supply current in this mode and the output presents a $50 \mathrm{k} \Omega$ impedance to ground. The device exits shutdown once SHDN is forward biased (minimum of $1 \mu \mathrm{~A}$ of current). The typical no-load shutdown exit time is $50 \mu \mathrm{~s}$.
When $\overline{\text { SHDN }}$ is pulled high through an external resistor to V_{IN}, the bias current into $\overline{\text { SHDN }}$ determines the charge-pump frequency. To select the frequency, calculate the external resistor value, Rext, using the following formula:
$R_{E X T}=45000\left(\mathrm{~V}_{\text {IN }}-0.69 \mathrm{~V}\right) /$ fosC
where Rext is in $k \Omega$ and fosc is in $k H z$. Program the frequency in the 50 kHz to 2 MHz range. This frequency range corresponds to $\overline{\text { SHDN }}$ input currents between $1 \mu \mathrm{~A}$ and $50 \mu \mathrm{~A}$. Proper operation of the oscillator is not guaranteed beyond these limits. Currents lower than $1 \mu \mathrm{~A}$ may shut down the device. The forward-biased diode voltage from the $\overline{\text { SHDN }}$ input to GND has a temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Undervoltage Lockout

 The MAX682/MAX683/MAX684 have an undervoltagelockout feature that deactivates the devices when the input voltage falls below 2.25 V . Regulation at low input voltages cannot be maintained. This safety feature ensures that the device shuts down before the output voltage falls out of regulation by a considerable amount (typically 10% with no load). Once deactivated, hysteresis holds the device in shutdown until the input voltage rises 100 mV above the lockout threshold.
Applications Information

Capacitor Selection
The MAX682/MAX683/MAX684 require only three external capacitors (Figure 5). Their values are closely linked to the output current capacity, oscillator frequency, output noise content, and mode of operation.
Generally, the transfer capacitor (Cx) will be the smallest, and the input capacitor (CIN) is twice as large as Cx. Higher switching frequencies allow the use of smaller Cx and CIN. The output capacitor (COUT) can be anywhere from 5 -times to 50 -times larger than Cx , depending on the mode of operation and ripple tolerance. In continuous switching mode, smaller output ripple allows smaller Cout. In skip mode, a larger Cout is required to maintain low output ripple. Tables 2 and 3 show capacitor values recommended for lowest sup-ply-current operation (skip mode) and smallest size operation (constant-frequency mode), respectively.

3.3V-Input to Regulated 5V-Output Charge Pumps

Table 2. Recommended Capacitor Values
for Quiescent Current (Skip Mode)

PART	OUTPUT $(\mathbf{m A})$	$\mathbf{C}_{\mathbf{I N}}$ $(\boldsymbol{\mu F})$	$\mathbf{C}_{\mathbf{x}}$ $(\boldsymbol{\mu})$	Cout ($\boldsymbol{\mu F})$		VOUT RIPPLE
MAXTALUM	250	2.2	1	47	10	100
MAX6823	100	1	0.47	22	4.7	100
MAX684	50	0.47	0.22	10	2.2	100

Table 3. Recommended Capacitor Values for Smallest Size (Constant-Frequency Mode, $I_{\text {SHDN }}=22 \mu \mathrm{~A}, 1 \mathrm{MHz}$)

PART	OUTPUT (mA)	CIN $(\mu \mathrm{F})$	CX $(\mu \mathrm{F})$	CERAMIC CouT $(\mu \mathrm{F})$	VIPUT (mV)
MAX682	250	1	0.47	2.2	80
MAX683	100	0.47	0.22	1	80
MAX684	50	0.22	0.1	0.47	80

Table 4. Recommended Capacitor Manufacturers

VALUE	DESCRIPTION	MANUFACTURER	PHONE NUMBER
$47 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$	595D-series tantalum surface mount	Sprague	(603) $224-1961$
$47 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$	TPS-series surface mount	AVX	(803) 946 -0690
$0.1 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$	Ceramic surface mount	TDK	(847) $390-4373$

In addition, the following two equations approximate output ripple for each mode. In skip mode, output ripple is dominated by ESR, and is approximately:

Figure 5. Standard Operating Circuit

Figure 6. Paralleling Two MAX682s
where ESRcout is the ESR of the output filter capacitance, and RTX is the open-loop output transfer resistance of the IC. RTX is typically 0.8Ω for the MAX682, 1.6Ω for the MAX683, and 3Ω for the MAX684. In con-stant-frequency mode, output ripple is dominated by Cout and is approximately:

$$
\text { VRIPPLE(const-freq) } \cong \text { lout / (} 2 \times \text { fosc } \times \text { Cout })
$$

All capacitors must maintain a low ($<100 \mathrm{~m} \Omega$) equivalent series resistance (ESR). Table 4 lists the manufacturers of recommended capacitors. Surface-mount tantalum capacitors will work well for most applications. Ceramic capacitors will provide the lowest ripple due to their typically lower ESR.
If the source impedance or inductance of the input supply is large, additional input bypassing ($2.2 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$) may be needed. This additional capacitance need not be a low-ESR type.

3.3V-Input to Regulated 5V-Output Charge Pumps

Power Dissipation

The power dissipated in the MAX682/MAX683/MAX684 depends on output current and is accurately described by:
PDISS = IOUT (2VIN - VOUT)

PDISS must be less than that allowed by the package rating. See the Absolute Maximum Ratings for 8-pin 4MAX (MAX683/MAX684) and SO (MAX682) powerdissipation limits and deratings.

Layout Considerations

All capacitors should be soldered in close proximity to the IC. Connect ground and power ground through a short, low-impedance trace. If a high-value resistor is driving the shutdown input and is picking up noise (i.e., frequency jitter at CXP and CXN), bypass $\overline{\text { SHDN }}$ to GND with a small capacitor $(0.01 \mu \mathrm{~F})$.

Paralleling Devices
The MAX682/MAX683/MAX684 can be paralleled to yield higher load currents. The circuit of Figure 6 can deliver 500 mA at 5 V . It uses two MAX682s in parallel. The devices can share the output capacitors, but each one requires its own transfer capacitor (CX) and input capacitor. For best performance, the paralleled devices should operate in the same mode (skip or constant frequency).

Chip Information
TRANSISTOR COUNT: 659
SUBSTRATE CONNECTED TO GND

Package Information
NOTES:

1. D\&E DI NUT INCLUDE MGLD FLASH
2. MILD FLASH OR PROTRUSIDNS NLT TV EXCEED . 15 mm (.006").
3. CONTRULLING DIMENSIDN: INCHES

INCHES		MILLIME TERS		
	MIN	MAX	MIN	MAX
A	0.036	0.044	0.91	1.11
A1	0.004	0.008	0.10	0.20
B	0.010	0.014	0.25	0.36
C	0.005	0.007	0.13	0.18
D	0.116	0.120	2.95	3.05
e	0.0256	0.65		
E	0.116	0.120	2.95	3.05
H	0.188	0.198	4.78	5.03
L	0.016	0.026	0.41	0.66
a	0°	6°	0°	6°

3.3V-Input to Regulated 5 V-Output Charge Pumps

3.3 V-Input to Regulated 5V-Output Charge Pumps

NOTES

3.3V-Input to Regulated 5 V-Output Charge Pumps

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: - Ultra-Small: $1 \mu \mathrm{~F}$ Capacitors per 100mA of Output Current
 - No Inductors Required
 - 1.1mm Height in μ MAX Package (MAX683/MAX684)
 - Up to 250mA Output Current (MAX682)
 - Regulated $\pm 4 \%$ Output Voltage
 - 50kHz to 2 MHz Adjustable Switching Frequency
 - 2.7V to 5.5V Input Voltage
 - $100 \mu \mathrm{~A}$ Quiescent Current in Pulse-Skipping Mode
 - $0.1 \mu \mathrm{~A}$ Shutdown Current

