: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

300MHz to 450MHz ASK Receiver with Internal IF Filter

General Description

The MAX7036 low-cost receiver is designed to receive amplitude-shift-keyed (ASK) and on-off-keyed (OOK) data in the 300 MHz to 450 MHz frequency range. The receiver has an RF input signal range of -109 dBm to OdBm.
The MAX7036 requires few external components and has a power-down pin to put it in a low-current sleep mode, making it ideal for cost- and power-sensitive applications. The low-noise amplifier (LNA), phaselocked loop (PLL), mixer, IF filter, received-signalstrength indicator (RSSI), and baseband sections are all on-chip. The MAX7036 uses a very-low intermediate frequency (VLIF) architecture. The MAX7036 integrates the IF filter on-chip and therefore eliminates an external ceramic filter, reducing the bill-of-materials cost. The device also contains an on-chip automatic gain control (AGC) that reduces the LNA gain by 30dB when the input signal power is large. The MAX7036 operates from either a 5 V or a 3.3 V power supply and draws 5.5 mA (typ) of current.

The MAX7036 is available in a 20-pin thin QFN package with an exposed pad and is specified over the AEC-Q100 Level $2\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$ temperature range.

Applications

Low-Cost RKE
Garage Door Openers
Remote Controls
Home Automation
Sensor Networks
Security Systems

		Features
- ASK/OOK Modulation		
- <250رs Enable Turn-On Time		
- On-Chip PLL, VCO, Mixer, IF, Baseband		
- Low IF (200kHz Nominal)		
- 5.5mA DC Current		
-1رA Standby Current		
- 3.3V/5V Operation		
- Small 20-Pin Thin QFN Package with an Exposed Pad		
	Ordering	formation
PART	TEMP RANGE	PIN-PACKAGE
MAX7036GTP/V+	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20 Thin QFN-EP*

Ndenotes an automotive qualified part.
+Denotes a lead (Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Pin Configuration

300MHz to 450MHz ASK Receiver with Internal IF Filter

ABSOLUTE MAXIMUM RATINGS

VDD to GND	-0.3V to +6.0V
AVDD to GND	-0.3V to +4.0V
DVDD to GND	-0.3V to +4.0V
ENABLE to GN	-0.3V to (VDD + 0.3V)
LNAIN to GND	-0.3 V to +1.2 V
All Other Pins	-3V to (VDVDD + 0.3V)
Continuous Po	

Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$) (Note 1) 20-Pin TQFN	CN
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) (Note 1)	
20-Pin TQFN.	$48^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range-40	$+105^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a singlelayer board. For detailed information on package thermal considerations, go to www.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3.3V DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, 50Ω system impedance, $\mathrm{V}_{\text {AVDD }}=\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$ to $450 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\text {AVDD }}=\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) $(100 \%$ tested at $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage	VDD	$\mathrm{V}_{\text {AVDD }}=\mathrm{V}_{\text {DVDD }}=\mathrm{V}_{\text {DD }}$		3.0	3.3	3.6	V
Supply Current	IIN	$\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}$	$\mathrm{fRF}^{\text {a }}$ 315MHz		5.3	6.7	mA
			$\mathrm{fRF}=433 \mathrm{MHz}$		5.8	7.3	
			Deep-sleep mode, VENABLE $=0 \mathrm{~V}$		1	2.7	$\mu \mathrm{A}$
DIGITAL INPUT (ENABLE)							
Input High Voltage	V_{IH}	$V_{\text {AVDD }}=V_{\text {DVDD }}=V_{\text {DD }}$		$\begin{gathered} \text { VDD - } \\ 0.4 \end{gathered}$			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{AVDD}}=\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{DD}}$				0.4	V
Input Current	IENABLE	$0 \leq V_{\text {ENABLE }} \leq V_{\text {DD }}$				20	$\mu \mathrm{A}$
DIGITAL OUTPUT (DATAOUT)							
Output Low Voltage	VOL	ISINK $=100 \mu \mathrm{~A}$				0.4	V
Output High Voltage	VOH	ISOURCE $=100 \mu \mathrm{~A}$		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \\ \hline \end{gathered}$			V

300MHz to 450MHz ASK Receiver with Internal IF Filter

5.0V DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, 50Ω system impedance, $\mathrm{V} D \mathrm{DD}=4.5 \mathrm{~V}$ to 5.5 V , fRF $=300 \mathrm{MHz}$ to $450 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (100% tested at $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage	VDD			4.5	5.0	5.5	V
Supply Current	IIN	$\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}$	$\mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}$		5.4	6.8	mA
			$\mathrm{f}_{\mathrm{RF}}=433 \mathrm{MHz}$		5.9	7.4	
			Deep-sleep mode, VENABLE $=0 \mathrm{~V}$		1	3.4	$\mu \mathrm{A}$
DIGITAL INPUT (ENABLE)							
Input High Voltage	V_{IH}	$V_{\text {AVDD }}=\mathrm{V}_{\text {DVDD }}$		$\begin{gathered} V_{D D}- \\ 0.4 \end{gathered}$			V
Input Low Voltage	VIL	$V_{\text {AVDD }}=\mathrm{V}_{\text {DVDD }}$				0.4	V
Input Current	IENABLE	$0 \leq V_{\text {ENABLE }} \leq \mathrm{V}_{\text {DD }}$				20	$\mu \mathrm{A}$
DIGITAL OUTPUT (DATAOUT)							
Output Low Voltage	VOL	$\mathrm{ISINK}=100 \mu \mathrm{~A}$				0.4	V
Output High Voltage	VOH	ISOURCE $=100 \mu \mathrm{~A}$		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{gathered}$			V

AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, 50Ω system impedance, $\mathrm{V}_{\text {AVDD }}=\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$ to $450 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $V_{\text {AVDD }}=V_{D V D D}=V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, f_{R F}=315 \mathrm{MHz}$, unless otherwise noted.) (100% tested at $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Receiver Input Frequency Range	f_{RF}			300		450	MHz
Maximum Receiver Input Level	PRFIN				0		dBm
Sensitivity (Note 2)		$\mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}$			-109		
		$\mathrm{f}_{\mathrm{RF}}=433 \mathrm{MHz}$			-107		
Power-On Time	ton	Time for valid RSSI output, does not include baseband filter settling	Enable power on $\left(V_{D D}>3.0 V\right)$		250		$\mu \mathrm{s}$
			$V_{\text {DD }}$ power on		1		ms
AGC Hysteresis					5		dB
AGC Low Gain-to-High Gain Switching Time					13		ms

300MHz to 450MHz ASK Receiver with Internal IF Filter

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, 50Ω system impedance, $\mathrm{V}_{\text {AVDD }}=\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{fRF}=300 \mathrm{MHz}$ to $450 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{AVDD}}=\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}$, unless otherwise noted.) $\left(100 \%\right.$ tested at $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LNA/MIXER							
LNA Input Impedance	ZINLNA	Normalized to 50Ω	$\mathrm{fRF}^{\text {a }}=315 \mathrm{MHz}$		$\begin{aligned} & 0.4- \\ & \text { j5.6 } \end{aligned}$		Ω
			$\mathrm{fRF}=433 \mathrm{MHz}$		$\begin{aligned} & 0.4- \\ & \text { j4.0 } \end{aligned}$		
LO Signal Feedthrough to Antenna					-75		dBm
Voltage Gain Reduction		Low-gain mode, AGC enabled		29			dB
LNA/Mixer Voltage Gain		High-gain LNA mode		55			dB
		Low-gain LNA mode		26			
3dB Cutoff Frequency	BW ${ }_{\text {IF }}$	Set by capacitors on IFC1 and IFC2 (see the Typical Application Circuit)		400			kHz
RSSI Linearity				± 0.5			dB
RSSI Dynamic Range		Includes AGC		80			dB
RSSI Level		$P_{\text {RFIN }}<-120 \mathrm{dBm}$		1.34			V
		PRFIN > OdBm, AGC enabled		2.35			
Intermediate Frequency	$\mathrm{fIF}^{\text {l }}$				200		kHz
Maximum Data-Filter Bandwidth	BW DF				50		kHz
Maximum Data-Slicer Bandwidth	BWDS				100		kHz
Maximum Peak Detector Bandwidth					50		kHz
Maximum Data Rate		Manchester coded			33		kbps
		Nonreturn to zero (NRZ)		66			
Crystal Frequency	fXtal			9.36		14.06	MHz
Crystal Load Capacitance	Cload				10		pF

Note 2: $\mathrm{BER}=2 \times 10^{-3}$, Manchester coded, data rate $=4 \mathrm{kbps}$. IF bandwidth $=400 \mathrm{kHz}$.

300MHz to 450MHz ASK Receiver with Internal IF Filter

Typical Operating Characteristics

(Typical Application Circuit, $\mathrm{V}_{\mathrm{AVDD}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DVDD}}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

BIT ERROR RATE vs. PEAK RF INPUT POWER

LNA/MIXER VOLTAGE GAIN vs. IF FREQUENCY

SUPPLY CURRENT vs. SUPPLY VOLTAGE
(5.0V OPERATION)

SENSITIVITY vs. TEMPERATURE

S $_{11}$ SMITH CHART PLOT OF RFIN (315MHz CIRCUIT)

RSSI vs. INPUT POWER

S_{11} SMITH CHART PLOT OF RFIN (433MHz CIRCUIT)

300MHz to 450MHz ASK Receiver with Internal IF Filter

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{AVDD}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DVDD}}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	ENABLE	Enable Input. Internally pulled down to ground. Set VENABLE = VDD for normal operation.
2	XTAL2	Crystal Input 2. Connect an external crystal from XTAL2 to XTAL1. Bypass to GND if XTAL1 is driven from an AC-coupled external reference (see the Crystal Oscillator section).
3	XTAL1	Crystal Input 1. Connect an external crystal from XTAL2 to XTAL1. Can also be driven with an AC- coupled external reference oscillator (see the Crystal Oscillator section).
4	AVDD	Positive Analog Supply Voltage. Connect to DVDD. Bypass to GND with a 0.1 1 F capacitor as close as possible to the device (see the Typical Application Circuit). For 5.0V operation, AVDD is internally connected to an on-chip 3.2V LDO regulator. For 3.3V operation, connect AVDD to VDD.
5	LNAIN	Low-Noise Amplifier Input. Must be AC-coupled (see the Low-Noise Amplifier section).
6	LNAOUT	Low-Noise Amplifier Output. Must be connected to AVDD through a parallel LC tank circuit. AC- couple to MIXIN2 (see the Low-Noise Amplifier section).
8	MIXIN2	2nd Differential Mixer Input. Connect to the LNAOUT side of the LC tank filter through a 100pF capacitor (see the Typical Application Circuit).
9	IFC2	1st Differential Mixer Input. Connect to the AVDD side of the LC tank filter through a 100pF capacitor (see the Typical Application Circuit).
10	IF Filter Capacitor Connection 2. This is for the Sallen-Key IF filter. Connect a capacitor from IFC2 to GND. The value of the capacitor is determined by the IF filter bandwidth (see the Typical Application Circuit).	
11	IFC1	IF Filter Capacitor Connection 1. This is for the Sallen-Key IF filter. Connect a capacitor from IFC1 to IFC3. The value of the capacitor is determined by the IF filter bandwidth (see the Typical Application Circuit).
12	DVDD	IF Filter Capacitor Connection 3. This is for the Sallen-Key IF filter. Connect a capacitor from IFC3 to IFC1. The value of the capacitor is determined by the IF filter bandwidth (see the Typical Application Circuit).
Positive Digital Supply Voltage Input. Connect to AVDD. Bypass to GND with a 0.01uF capacitor as close as possible to the device (see the Typical Application Circuit).		

300MHz to 450MHz ASK Receiver with Internal IF Filter

Pin Description (continued)

PIN	NAME	FUNCTION
13	DCOC	DC Offset Capacitor Connection. This is for the RSSI amplifier. Connect a 1 μ F capacitor from this pin to ground (see the Typical Application Circuit).
14	OPP	Noninverting Op-Amp Input. This is for the Sallen-Key data filter. Connect a capacitor from this pin to GND. The value of the capacitor is determined by the data-filter bandwidth.
15	DFFB	Data-Filter Feedback Input. Input for the feedback of the Sallen-Key data filter. Connect a capacitor from this pin to DSP. The value of the capacitor is determined by the data-filter bandwidth.
16	DSP	Positive Data-Slicer Input. Connect a capacitor from this pin to DFFB. The value of the capacitor is determined by the data-filter bandwidth.
17	DSN	Negative Data-Slicer Input
18	PDOUT	Peak-Detector Output
19	VDD	Power-Supply Voltage Input. For 5.OV operation, VDD is the input to an on-chip voltage regulator whose 3.2V output drives AVDD. Bypass to ground with a 0.1 device capacitor as close as possible to the Typical Application Circuit).
20	DATAOUT	Digital Baseband Data Output -
EP	Exposed Pad. Internally connected to ground. Connect to a large ground plane using multiple vias to maximize thermal and electrical performance.	

Functional Diagram

300MHz to 450MHz ASK Receiver with Internal IF Filter

Detailed Description

The MAX7036 CMOS RF receiver, and a few external components, provide the complete receiver chain from the antenna to the digital output data. Depending on signal power and component selection, data rates as high as 33kbps Manchester (66kbps NRZ) can be achieved.
The MAX7036 is designed to receive binary ASK/OOK data modulated in the 300 MHz to 450 MHz frequency range. ASK modulation uses a difference in amplitude of the carrier to represent digital data.

Voltage Regulator

For operation with a single 3.0 V to 3.6 V supply voltage, connect AVDD, DVDD, and VDD to the supply voltage. For operation with a single 4.5 V to 5.5 V supply voltage, connect $V_{D D}$ to the supply voltage. An on-chip voltage regulator drives the AVDD pin to approximately 3.2V. For proper operation, connect DVDD and AVDD together. Bypass VDD and AVDD to GND with $0.1 \mu \mathrm{~F}$ capacitors placed as close as possible to the device. Bypass DVDD to GND with a $0.01 \mu \mathrm{~F}$ capacitor (see the Typical Application Circuit).

Low-Noise Amplifier

The LNA is an nMOS cascode amplifier. The LNA and mixer have a combined 55 dB voltage gain. The gain and noise figures are dependent on both the antennamatching network at the LNA input and the LC tank network between the LNA output and the mixer inputs.
L2 and C1 comprise the LC tank filter connected to LNAOUT (see the Typical Application Circuit). L2 also serves as a bias inductor to LNAOUT. Bypass the power-supply side of L2 to GND with a capacitor that provides a low-impedance path at the RF carrier frequency (e.g., 220pF). Select L2 and C1 to resonate at the desired RF input frequency. The resonant frequency is given by:

$$
f_{R F}=\frac{1}{2 \pi \sqrt{L_{\text {TOTAL }} \times C_{\text {TOTAL }}}}
$$

where LTOTAL $=$ L2 + LPARASItICs and CTOTAL $=\mathrm{C} 1+$ Cparasitics.
Lparasitics and Cparasitics include inductance and capacitance of the PCB traces, package pins, mixer input impedance, LNA output impedance, etc. At high frequencies, these parasitics can have a dramatic effect on the tank filter center frequency and must not be ignored. The total parasitic capacitance is generally 4 pF to 6 pF . Adjust L2 and C1 accordingly to achieve the desired tank center frequency.

Automatic Gain Control (AGC)
The AGC circuit monitors the RSSI output. The AGC switches to its low-gain state when the RSSI output reaches 2.2 V . The AGC gain reduction is typically 29 dB , corresponding to an RSSI voltage drop of 435 mV . The LNA resumes high-gain mode when the RSSI level drops back below 1.67 V for 13 ms for 315 MHz and 10 ms for 433 MHz operation. The AGC has a hysteresis of 5 dB . With this AGC function, the MAX7036 can reliably produce an ASK output for RF input levels up to 0 dBm , with modulation depth of 30 dB .

Mixer

The mixer cell is a double-balanced mixer that performs a downconversion of the RF input to a typical IF of 200 kHz from either a high-side or a low-side injected LO. The mixer output drives the input of the on-chip IF filter.

Phase-Locked Loop (PLL) The PLL block contains a phase detector, charge pump, integrated loop filter, VCO, asynchronous clock dividers, and crystal-oscillator driver. Besides the crystal, this PLL does not require any external components. The VCO generates the LO. The relationship between the RF, IF, and crystal reference frequencies is given by:

$$
f_{\text {XTAL }}=\frac{f_{L O}}{32}
$$

where fLO $=f_{R F} \pm f_{f} F$

Received-Signal-Strength Indicator (RSSI)

The RSSI circuit provides a DC output proportional to the logarithm of the input power level. RSSI output voltage has a slope of about $14.5 \mathrm{mV} / \mathrm{dB}$ (of input power).The RSSI monotonic dynamic range exceeds 80dB. This includes the 30 dB of AGC .

Applications Information

Crystal Oscillator

The crystal (XTAL) oscillator in the MAX7036 is designed to present a capacitance of approximately 4 pF between XTAL1 and XTAL2. In most cases, this corresponds to a 6 pF load capacitance applied to the external crystal when typical PCB parasitics are added. The MAX7036 is designed to operate with a typical 10pF load capacitance crystal. It is very important to use a crystal with a load capacitance equal to the capacitance of the MAX7036 crystal oscillator plus PCB parasitics. If a crystal designed to oscillate with a different load capacitance is used, the crystal is pulled away from its stated operating frequency, introducing

300MHz to 450MHz ASK Receiver with Internal IF Filter

an error in the reference frequency. A crystal designed to operate at a higher load capacitance than the value specified for the oscillator is always pulled higher in frequency. Adding capacitance to increase the load capacitance on the crystal increases the start-up time and may prevent oscillation altogether.
In actuality, the oscillator pulls every crystal. The crystal's natural frequency is really below its specified frequency, but when loaded with the specified load capacitance, the crystal is pulled and oscillates at its specified frequency. This pulling is already accounted for in the specification of the load capacitance.
Additional pulling can be calculated if the electrical parameters of the crystal are known. The frequency pulling is given by:

$$
f_{P}=\frac{\mathrm{C}_{\mathrm{M}}}{2}\left(\frac{1}{\mathrm{C}_{\mathrm{CASE}}+\mathrm{C}_{\mathrm{LOAD}}}-\frac{1}{\mathrm{C}_{\mathrm{CASE}}+\mathrm{C}_{\mathrm{SPEC}}}\right) \times 10^{6}
$$

where:
f_{p} is the amount the crystal frequency is pulled in ppm.
CM_{M} is the motional capacitance of the crystal.
CCASE is the case capacitance.
CSPEC is the specified load capacitance.
CLOAD is the actual load capacitance.
When the crystal is loaded, as specified (i.e., CloAD = CSPEC), the frequency pulling equals zero.
It is possible to use an external reference oscillator in place of a crystal to drive the VCO. AC-couple the external oscillator to XTAL1 with a 1000pF capacitor. Drive XTAL1 with a signal level of approximately -10 dBm . ACcouple XTAL2 to ground with a 1000pF capacitor.

IF Filter

The IF filter is a 2nd-order Butterworth lowpass filter preceded by a low-frequency DC block. The lowpass filter is implemented as a Sallen-Key filter using an internal op amp and two on-chip $22 k \Omega$ resistors. The pole locations are set by the combination of the on-chip resistors and two external capacitors (C9 and C10, Figure 1). The values of these two capacitors for a 3dB cutoff frequency of 400 kHz are given below:

$$
\begin{aligned}
& \mathrm{C} 9=\frac{1}{(1.414)(\mathrm{R})(\pi)\left(\mathrm{f}_{\mathrm{c}}\right)}=\frac{1}{(1.414)(22 \mathrm{k} \Omega)(3.14)(400 \mathrm{kHz})}=26 \mathrm{pF} \\
& \mathrm{C} 10=\frac{1}{(2.828)(\mathrm{R})(\pi)\left(\mathrm{f}_{\mathrm{c}}\right)}=\frac{1}{(2.828)(22 \mathrm{k} \Omega)(3.14)(400 \mathrm{kHz})}=13 \mathrm{pF}
\end{aligned}
$$

Because the stray shunt capacitance at each of the pins (IFC1 and IFC2) on a typical PCB is approximately 2 pF , choose the value of the external capacitors to be approximately 2 pF lower than the desired total capacitance. Therefore, the practical values for C9 and C10 are 22 pF and 10 pF , respectively.

Figure 1. Sallen-Key Lowpass IF Filter

Data Filter

The data filter is implemented as a 2nd-order lowpass Sallen-Key filter. The pole locations are set by the combination of two on-chip resistors and two external capacitors. Adjusting the value of the external capacitors changes the corner frequency to optimize for different data rates. Set the corner frequency to approximately 1.5 times the fastest Manchester expected data rate from the transmitter. Keeping the corner frequency near the data rate rejects any noise at higher frequencies, resulting in an increase in receiver sensitivity.
The configuration shown in Figure 2 can create a Butterworth or Bessel response. The Butterworth filter offers a very flat amplitude response in the passband and a rolloff rate of $40 \mathrm{~dB} /$ decade for the two-pole filter. The Bessel filter has a linear phase response, which works with the coefficients in Table 1.

$$
\begin{aligned}
& \mathrm{C} 5=\frac{\mathrm{b}}{\mathrm{a}(100 \mathrm{k})(\pi)\left(\mathrm{f}_{\mathrm{c}}\right)} \\
& \mathrm{C} 6=\frac{\mathrm{a}}{4(100 \mathrm{k})(\pi)\left(\mathrm{f}_{\mathrm{c}}\right)}
\end{aligned}
$$

where $f \mathrm{f}$ is the desired corner frequency.

300MHz to 450MHz ASK Receiver with Internal IF Filter

For example, to choose a Butterworth filter response with a corner frequency of 6 kHz :

$$
\begin{gathered}
\mathrm{C} 5=\frac{1.000}{(1.414)(100 \mathrm{k} \Omega)(3.14)(6 \mathrm{kHz})}=375 \mathrm{pF} \\
\mathrm{C} 6=\frac{1.414}{(4)(100 \mathrm{k} \Omega)(3.14)(6 \mathrm{kHz})}=186 \mathrm{pF}
\end{gathered}
$$

Choosing standard capacitor values changes C5 to 390 pF and C6 to 180pF, as shown in the Typical Application Circuit.
Table 1. Coefficients to Calculate C5
and C6

FILTER TYPE	a	b
Butterworth $(\mathrm{Q}=0.707)$	1.414	1.000
Bessel $(\mathrm{Q}=0.577)$	1.3617	0.618

Figure 2. Sallen-Key Lowpass Data Filter

Data Slicer

The data slicer takes the analog output of the data filter and converts it to a digital signal. This is achieved by using a comparator and comparing the analog input to a threshold voltage. One input is supplied by the datafilter output. Both comparator inputs are accessible off chip to allow for different methods of generating the slicing threshold, which is applied to the second comparator input.

The suggested data-slicer configuration uses a resistor (R1) connected between DSN and DSP with a capacitor (C4) from DSN to GND (Figure 3). This configuration averages the analog output of the filter and sets the threshold to approximately 50% of that amplitude. With this configuration, the threshold automatically adjusts as the analog signal varies, minimizing the possibility for errors in the digital data. The values of R1 and C4 affect how fast the threshold tracks to the analog amplitude. Be sure to keep the corner frequency of the RC circuit much lower than the lowest expected data rate.

Figure 3. Generating Data-Slicer Threshold
Note that a long string of zeros or ones can cause the threshold to drift. This configuration works best if a coding scheme (e.g., Manchester coding, which has an equal number of zeros and ones) is used.

Peak Detector

The peak-detector output (PDOUT), in conjunction with an external RC filter, creates a DC output voltage equal to the peak value of the data signal. The resistor provides a path for the capacitor to discharge, allowing the peak detector to dynamically follow peak changes of the data-filter output voltage. The peak detector can be used for at least two functions. First, it can serve as an RSSI for ASK modulation. Second, it can be used for faster data-slicer response by adding it to the threshold pin (DSN) on the data-slicer comparator (Figure 4). The two capacitors in this circuit should be equal, and the peak detector resistor should be approximately 10

300MHz to 450MHz ASK Receiver with Internal IF Filter

times larger than the resistor in the RC smoothing circuit between DSP and DSN. This circuit will provide an instantaneous jump of one-half of the DSP increase from "no signal" voltage to peak voltage, which then decays with the same time constant as that of the threshold build-up from the RC smoothing circuit. The DC slicing voltage at DSN is slightly higher (by the ratio of the two resistors in the circuit) than it would be without the speed-up circuit. Always provide a capacitive path from the PDOUT pin to ground when using the peak-detector output.

Figure 4. Using PDOUT for Faster Startup

Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. On high-frequency inputs and outputs, use controlled-impedance lines and keep them as short as possible to minimize losses and radiation. At high frequencies, trace lengths that are $\lambda / 10$ or longer act as antennas.

Keeping the traces short also reduces parasitic inductance. Generally, 1 in of a PCB trace adds about 20 nH of parasitic inductance. The parasitic inductance can have a dramatic effect on the effective inductance of a passive component. For example, a 0.5 in trace connecting a 100 nH inductor adds an extra 10nH of inductance or 10%.
To reduce the parasitic inductance, use wider traces and a solid ground or power plane below the signal traces. Also, use low-inductance connections to ground on all GND pins, and place decoupling capacitors close to all power-supply connections.
Table 2. Component Values

COMPONENT	$\mathrm{f}_{\mathrm{RF}}=315 \mathrm{MHz}$	$\mathrm{f}_{\mathrm{RF}}=433.92 \mathrm{MHz}$
C1	4.7 pF	2.7 pF
C2	100pF	100pF
C3	100pF	100pF
C4	$0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$
C5	390pF	390pF
C6	180pF	180pF
C7	$1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$
C8	$0.01 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$
C9	22pF	22 pF
C10	10pF	10pF
C11	$0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$
C12	220pF	220pF
C13	10pF	10pF
C14	10pF	10pF
C15	100pF	100pF
C16	$0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$
L1	100nH	47nH
L2	27 nH	15nH
R1	$22 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
Y1	9.8375 MHz	13.55375 MHz

300MHz to 450MHz ASK Receiver with Internal IF Filter

Chip Information
PROCESS: CMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
20 Thin QFN-EP	$T 2055+3$	$\underline{21-0140}$	$\underline{90-0008}$

300MHz to 450MHz ASK Receiver with Internal IF Filter

Revision History

REVISION NUMBER	REVISION DATE	PAGES CHANGED	
0	$3 / 09$	Initial release	-
1	$8 / 10$	Updated Absolute Maximum Ratings, TOCs 5, 11, and 12, Pin Description, Phase-Locked Loop (PLL) and Crystal Oscillator sections, and Typical Application Circuit	$2,5,6,8,9,12$

