: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Abstract

General Description The MAX7310 provides 8-bit parallel input/output port expansion for SMBus ${ }^{\text {TM }}$-compatible and ${ }^{2} \mathrm{C}$-compatible applications. The MAX7310 consists of an input port register, an output port register, a polarity inversion register, a configuration register, a bus timeout register, and an SMBus/l${ }^{2} \mathrm{C}$-compatible serial interface. The system master can invert the MAX7310 input data by writing to the active-high polarity inversion register. The system master can enable or disable bus timeout by writing to the bus timeout register. Any of the eight I/O ports may be configured as input or output. An active-low reset input sets the eight I/Os as inputs. Three address select pins configure one of 56 slave ID addresses.

The MAX7310 is available in 16-pin thin QFN, TSSOP, and QSOP packages and is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Applications
Servers
RAID Systems
Industrial Control
Medical Equipment
Instrumentation, Test Measurement

SMBus is a trademark of Intel Corp.

- 400kHz 2-Wire Interface
- 2.3V to 5.5V Operation
- Low Standby Current (1.7 $\mu \mathrm{A}$ typ)
- Bus Timeout for Lock-Up-Free Operation
- 56 Slave ID Addresses
- Polarity Inversion
- Eight I/O Pins that Default to Inputs on Power-Up
- 5V Tolerant Open-Drain Output on I/OO
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}, 0.8 \mathrm{~mm}$ Thin QFN Package
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operation

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 TSSOP	-
MAX7310AEE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 QSOP	-
MAX7310ATE	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Thin QFN	T1644-4

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

ABSOLUTE MAXIMUM RATINGS

I/O1-I/O7 as an Input . $\left(V_{S S}-0.3 V\right)$ to $\left(V_{D D}+0.3 V\right)$ I/OO as an Input. SCL, SDA, AD0, AD1, AD2, $\overline{R E S E T}$ (V SS -0.3 V) to +6 V .(VSS -0.3 V) to +6 V DC Current on I/OO $+400 \mu \mathrm{~A}$ DC Current on I/O1 to I/O7. $\pm 50 \mathrm{~mA}$ Maximum GND and $\mathrm{V}+$ Current. .180 mA	

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 16-Pin TSSOP (derate $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots \ldots457 \mathrm{~mW}$ 16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... 667 mW 16-Pin Thin QFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 1349 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=2.3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=0, \overline{\mathrm{RESET}}=\mathrm{V}+, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

2-Wire-Interfaced 8-Bit I/O Port Expander

 with Reset
DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=2.3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=0, \overline{\mathrm{RESET}}=\mathrm{V}+, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Leakage Current			-1	+1	$\mu \mathrm{~A}$	
Input Capacitance			10			pF

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=2.3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=0, \overline{\mathrm{RESET}}=\mathrm{V}+, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCL Clock Frequency	fSCL	(Note 2)			400	kHz
BUS Timeout	ttimeout		30		60	ms
Bus Free Time Between STOP and START Condition	tBUF	Figure 2	1.3			$\mu \mathrm{s}$
Hold Time (Repeated) START Condition	thD, STA	Figure 2	0.6			$\mu \mathrm{s}$
Repeated START Condition Setup Time	tSU, STA	Figure 2	0.6			$\mu \mathrm{s}$
STOP Condition Setup Time	tsu, STO	Figure 2	0.6			$\mu \mathrm{s}$
Data Hold Time	thd, DAT	Figure 2 (Note 3)			0.9	$\mu \mathrm{s}$
Data Setup Time	tsu, DAT	Figure 2	0.1			$\mu \mathrm{s}$
SCL Low Period	tıow	Figure 2	1.3			$\mu \mathrm{s}$
SCL High Period	tHIGH	Figure 2	0.7			$\mu \mathrm{s}$
SCL/SDA Fall Time (Transmitting)	tF_{F}	Figure 2 (Note 4)			250	ns
Pulse Width of Spike Supressed	tSP	(Note 5)		50		ns
PORT TIMING						
Output Data Valid	tpV	Figure 9			1	$\mu \mathrm{s}$
Input Data Setup Time	tps	Figure 10	29			$\mu \mathrm{s}$
Input Data Hold Time	tpH	Figure 10	0			$\mu \mathrm{S}$
RESET						
Reset Pulse Width			100			ns

Note 1: All parameters are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Minimum SCL clock frequency is limited by the MAX7310 bus timeout feature, which resets the serial bus interface if either SDA or SCL is held low for a 30 ms minimum.
Note 3: A master device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIL of the SCL signal) in order to bridge the undefined region of SCL's falling edge.
Note 4: t_{F} measured between 90% to 10% of $\mathrm{V}+$.
Note 5: Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns .

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
Typical Operating Characteristics

I/00-I/07 OUTPUT SINK CURRENT vs. TEMPERATURE

I/O0-I/07 OUTPUT SINK CURRENT vs. SUPPLY VOLTAGE

SUPPLY CURRENT
vs. SUPPLY VOLTAGE

I/01-I/07 OUTPUT SOURCE CURRENT vs. TEMPERATURE

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Pin Description

PIN			
TSSOP/ QSOP	THIN QFN	NAME	
1	15	SCL	Serial Clock Line
2	16	SDA	Serial Data Line
3	1	AD0	Address Input 0
4	2	AD1	Address Input 1
5	3	AD2	Address Input 2
6	4	I/O0	Input/Output Port 0 (Open Drain)
7	5	I/O1	Input/Output Port 1
8	6	GND	Supply Ground
$9-14$	$7-12$	I/O2-I/O7	Input/Output Port 2-Input/Output Port 7
15	13	$\overline{R E S E T}$	External Reset (Active Low). Pull $\overline{\text { RESET low to configure I/O pins as inputs. Set } \overline{R E S E T}}$ high for normal operation.
16	14	V+	Supply Voltage. Bypass with a 0.047
-	PAD capacitor to GND.		
	Exposed pad	Exposed Pad on Package Underside. Connect to GND.	

Figure 1. MAX7310 Block Diagram

Detailed Description

The MAX7310 general-purpose input/output (GPIO) peripheral provides up to eight I/O ports, controlled through an $1^{2} \mathrm{C}$-compatible serial interface. The MAX7310 consists of an input port register, an output
port register, a polarity inversion register, a configuration register, and a bus timeout register. An active-low reset input sets the eight I/O lines as inputs. Three slave ID address select pins (AD0, AD1, and AD2) choose one of 56 slave ID addresses (Figure 1).

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Table 1 is the register address table. Tables $2-6$ list register 0 through register 4 information.

Serial Interface

Serial Addressing

The MAX7310 operates as a slave that sends and receives data through a 2 -wire interface. The interface uses a serial data line (SDA) and a serial clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master, typically a microcontroller, initiates all data transfers to and from the MAX7310, and generates the SCL clock that synchronizes the data transfer (Figure 2).
Each transmission consists of a start condition sent by a master, followed by the MAX7310 7-bit slave address plus an R/W bit, a register address byte, one or more data bytes, and finally a stop condition (Figure 3).

Start and Stop Conditions
Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a start (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it issues a stop (P) condition by transitioning SDA from low to high while

SCL is high. The bus is then free for another transmission (Figure 3).

Bit Transfer
One data bit is transferred during each clock pulse. The data on SDA must remain stable while SCL is high (Figure 4).

Acknowledge

The acknowledge bit is a clocked 9th bit, which the recipient uses as a handshake receipt of each byte of data (Figure 5). Thus, each byte transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX7310, the MAX7310 generates the acknowledge bit since the MAX7310 is the recipient. When the MAX7310 is transmitting to the master, the master generates the acknowledge bit.

Slave Address
The MAX7310 has a 7 -bit-long slave address (Figure 6). The 8th bit following the 7 -bit slave address is the R/W bit. Set this bit low for a write command and high for a read command.

Figure 2. 2-Wire Serial Interface Timing Diagrams

Figure 3. Start and Stop Conditions

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Figure 4. Bit Transfer

Figure 5. Acknowledge

Figure 6. Slave Address

The first bits (MSBs) of the MAX7310 slave address are always zero. Slave address bits AD2, AD1, and AD0 choose 1 of 56 slave ID addresses (Table 7).

Registers
The register address byte is the first byte to follow the address byte during a read/write transmission. The reg-
ister address byte acts as a pointer to determine which register is written or read.
The input port register is a read-only port. It reflects the incoming logic levels of the I/O ports, regardless of whether the pin is defined as an input or an output by the configuration register. Writes to the input port register are ignored.

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Table 1. Register Address

REGISTER ADDRESS (hex)	FUNCTION	PROTOCOL
0×00	Input port register	Read byte.
0×01	Output port register	Read/write byte.
0×02	Polarity inversion register	Read/write byte.
0×03	Configuration register	Read/write byte.
0×04	Timeout register	Read/write byte.
$0 \times F F$	Reserved register	Factory reserved. Do not write to this register.

Table 2. Register 0-Input Port Register

BIT	17	16	15	14	13	12	11	10

The output port register sets the outgoing logic levels of the I/O ports, defined as outputs by the configuration register. Reads from the output port register reflect the value that is in the flip-flop controlling the output selection, not the actual I/O value, which may differ if the output is overloaded.

The polarity inversion register enables polarity inversion of ports defined as inputs by the configuration register. Set the bit in the polarity inversion register (write with a 1) to invert the corresponding port pin's polarity. Clear the bit in the polarity inversion register (write with a zero) to retain the corresponding port pin's original polarity.
The configuration register configures the directions of the ports. Set the bit in the configuration register to enable the corresponding port pin as an input with a high-impedance output driver. Clear the bit in the configuration register to enable the corresponding port pin as an output.
Set bit TO to enable the bus timeout function and low to disable the bus timeout function. Enabling the timeout feature resets the serial bus interface when SCL stops either high or low during a read or write access to the MAX7310. If either SCL or SDA is low for more than 30 ms min and 60 ms max after the start of a valid serial transfer, the interface resets itself. Resetting the serial bus interface sets up SDA as an input. The MAX7310 then waits for another start condition.

Standby

The MAX7310 goes into standby when all pins are set to $\mathrm{V}+$ or GND. Standby supply current is typically $1.7 \mu \mathrm{~A}$.

Table 3. Register 1—Output Port Register

BIT	O7	O6	O5	$\mathbf{O 4}$	$\mathbf{O 3}$	$\mathbf{O 2}$	$\mathbf{0 1}$	$\mathbf{O 0}$
Default	0	0	0	0	0	0	0	0

Table 4. Register 2—Polarity Inversion Register

BIT	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0
Default	1	1	1	1	0	0	0	0

Table 5. Register 3-Configuration Register

BIT	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0
Default	1	1	1	1	1	1	1	1

Table 6. Register 4-Timeout Register

BIT	T7	T6	T5	T4	T3	T2	T1	T0
Default	\times	1						

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Table 7. MAX7310 Address Map

AD2	AD1	ADO	A6	A5	A4	A3	A2	A1	A0
GND	SCL	GND	0	0	0	1	0	0	0
GND	SCL	V+	0	0	0	1	0	0	1
GND	SDA	GND	0	0	0	1	0	1	0
GND	SDA	V+	0	0	0	1	0	1	1
V+	SCL	GND	0	0	0	1	1	0	0
V+	SCL	V+	0	0	0	1	1	0	1
V+	SDA	GND	0	0	0	1	1	1	0
V+	SDA	V+	0	0	0	1	1	1	1
GND	GND	SCL	0	0	1	0	0	0	0
GND	GND	SDA	0	0	1	0	0	0	1
GND	V+	SCL	0	0	1	0	0	1	0
GND	V+	SDA	0	0	1	0	0	1	1
V+	GND	SCL	0	0	1	0	1	0	0
V+	GND	SDA	0	0	1	0	1	0	1
V+	V+	SCL	0	0	1	0	1	1	0
V+	V+	SDA	0	0	1	0	1	1	1
GND	GND	GND	0	0	1	1	0	0	0
GND	GND	V+	0	0	1	1	0	0	1
GND	V+	GND	0	0	1	1	0	1	0
GND	V+	V+	0	0	1	1	0	1	1
V+	GND	GND	0	0	1	1	1	0	0
V+	GND	V+	0	0	1	1	1	0	1
V+	V+	GND	0	0	1	1	1	1	0
V+	V+	V+	0	0	1	1	1	1	1
SCL	SCL	SCL	0	1	0	0	0	0	0
SCL	SCL	SDA	0	1	0	0	0	0	1
SCL	SDA	SCL	0	1	0	0	0	1	0
SCL	SDA	SDA	0	1	0	0	0	1	1
SDA	SCL	SCL	0	1	0	0	1	0	0
SDA	SCL	SDA	0	1	0	0	1	0	1
SDA	SDA	SCL	0	1	0	0	1	1	0
SDA	SDA	SDA	0	1	0	0	1	1	1
SCL	SCL	GND	0	1	0	1	0	0	0
SCL	SCL	V+	0	1	0	1	0	0	1
SCL	SDA	GND	0	1	0	1	0	1	0
SCL	SDA	V+	0	1	0	1	0	1	1
SDA	SCL	GND	0	1	0	1	1	0	0
SDA	SCL	V+	0	1	0	1	1	0	1
SDA	SDA	GND	0	1	0	1	1	1	0
SDA	SDA	V+	0	1	0	1	1	1	1

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Table 7. MAX7310 Address Map (continued)

AD2	AD1	AD0	A6	A5	A4	A3	A2	A1	A0
SCL	GND	SCL	0	1	1	0	0	0	0
SCL	GND	SDA	0	1	1	0	0	0	1
SCL	V+	SCL	0	1	1	0	0	1	0
SCL	V+	SDA	0	1	1	0	0	1	1
SDA	GND	SCL	0	1	1	0	1	0	0
SDA	GND	SDA	0	1	1	0	1	0	1
SDA	V+	SCL	0	1	1	0	1	1	0
SDA	V+	SDA	0	1	1	0	1	1	1
SCL	GND	GND	0	1	1	1	0	0	0
SCL	GND	V+	0	1	1	1	0	0	1
SCL	V+	GND	0	1	1	1	0	1	0
SCL	V+	V+	0	1	1	1	0	1	1
SDA	GND	GND	0	1	1	1	1	0	0
SDA	GND	V+	0	1	1	1	1	0	1
SDA	V+	GND	0	1	1	1	1	1	0
SDA	V+	V+	0	1	1	1	1	1	1

Applications Information

Power-Supply Consideration
The MAX7310 operates from a supply voltage of 2.3 V to 5.5 V . Bypass the power supply to GND with a $0.047 \mu \mathrm{~F}$ capacitor as close to the device as possible. For the QFN version, connect the underside exposed pad to GND.

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Figure 7. Simplified Schematic of I/OO

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Figure 8. Simplified Schematic of I/O1-I/O7

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Figure 9. Write to Output Port Register Through Write-Byte Protocol

Figure 10. Read Input Port Register Through Receive-Byte Protocol

2－Wire－Interfaced 8－Bit I／O Port Expander with Reset

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

notes：
1．DIMENSIONING \＆TOLERANCING CONFORM TO ASME Y14．5M－1994
2．ALL dimensions are in millimeters．Angles are in degrees．
3．N IS THE TOTAL NUMBER OF TERMINALS．
4．TIE TERMINAL \＄1 IDENTIFIER AND TERMINAL NUMBERING CONVENTON SHALL CONFORM TO

S．DIMENSION b APPLIES TO METALIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm
6．ND and ne refer to the number of terminals on each d and e side respectively．
7．DEPOPULATION IS POSSIELE IN A SYMMETRICAL FASHON．
8．COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WEL AS THE TERMNALS．
9．DRAWING CONFORMS TO JEDEC MO220，EXCEPT FOR T2444－1，T2444－3 AND T2444－4．

2-Wire-Interfaced 8-Bit I/O Port Expander with Reset

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

