: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX7320 2-wire serial-interfaced peripheral features eight push-pull outputs with selectable power-up logic states.
The +5.5 V tolerant $\overline{\mathrm{RST}}$ input clears the serial interface, terminating any ${ }^{2}{ }^{2} \mathrm{C}$ communication to or from the MAX7320.

The MAX7320 uses two address inputs with four-level logic to allow $16 I^{2} \mathrm{C}$ slave addresses. The slave address also determines the power-up state level for the outputs in groups of four ports.
The MAX7320 supports hot insertion. The serial interface SDA, SCL, AD0, AD2, and RST remain high impedance in power-down ($\mathrm{V}+=0 \mathrm{~V}$) with up to +6 V asserted on them.
The MAX7320 is one device in a family of pin-compatible port expanders with a choice of input ports, open-drain I/O ports, and push-pull output ports (see Table 1).
The MAX7320 is available in 16-pin QSOP and 16-pin TQFN packages, and is specified over the automotive temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

Cell Phones/PDAs	Automotive
Satellite Radios	RAID
Notebooks	Servers

400kHz, +5.5V-Tolerant ${ }^{2}{ }^{2} \mathrm{C}$ Serial In +1.71 V to +5.5 V Operating Voltage				
Eight Push-Pull Output Ports with Selectable Power-Up Logic States				
$\overline{\text { RST }}$ Clears the Serial Interface, Terminating Any Serial Transaction to or from the MAX7320				
AD0 and AD2 Inputs Select from 16 Slave Addresses				
- Low 0.6 A ((typ) Standby Current				
- $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature Range				
Ordering Information				
PART	TEMP RANGE	PIN- PACKAGE	$\begin{aligned} & \text { TOP } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX7320AEE+	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	16 QSOP	-	E16-4
MAX7320ATE+	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	16 TQFN $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ $\times 0.8 \mathrm{~mm}$	ADB	T1633-4

+ Denotes lead-free package.
Pin Configurations, Typical Application Circuit, and Functional Diagram appear at end of data sheet.

Selector Guide

PART	INPUTS	INTERRUPT MASK	OPEN-DRAIN OUTPUTS	PUSH-PULL OUTPUTS
MAX7319	8	Yes	-	-
MAX7320	-	-	-	8
MAX7321	Up to 8	-	Up to 8	-
MAX7322	4	Yes	-	4
MAX7323	Up to 4	-	Up to 4	4
MAX7328*	Up to 8	-	Up to 8	-
		-		-

*Second source to PCF8574.
**Second source to PCF8574A.

I²C Port Expander with Eight Push-Pull Outputs

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)	
Supply Voltage V+	-0.3V to +6V
O0-07...0.3V to V+ + 0.3V	
00-07 Output Current.. $\pm 25 \mathrm{~mA}$	
SDA Input Current... 10mA	
Total V+ Current.. 50 mA	
Total GND Current	. 100 mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage	V+		1.71		5.50	V
Power-On Reset Voltage	VPOR				1.6	V
Standby Current Voltage (Interface Idle)	IstB	SCL and SDA and other digital inputs at V+		0.6	1.5	$\mu \mathrm{A}$
Supply Current (Interface Running)	I+	fSCL $=400 \mathrm{kHz}$; other digital inputs at $\mathrm{V}+$		23	55	$\mu \mathrm{A}$
Input High-Voltage SDA, SCL, ADO, AD2, RST	V_{IH}	$\mathrm{V}+<1.8 \mathrm{~V}$	$0.8 \times \mathrm{V}+$			V
		$\mathrm{V}+\geq 1.8 \mathrm{~V}$	$0.7 \times \mathrm{V}+$			
Input Low-Voltage SDA, SCL, ADO, AD2, $\overline{R S T}$	VIL	$\mathrm{V}+<1.8 \mathrm{~V}$			$0.2 \times \mathrm{V}+$	V
		$\mathrm{V}+\geq 1.8 \mathrm{~V}$			$0.3 \times \mathrm{V}+$	
Input Leakage Current SDA, SCL, ADO, AD2, $\overline{R S T}$	IIH, IIL	SDA, SCL, ADO, AD2, $\overline{\mathrm{RST}}, \mathrm{OO}-07$ at $\mathrm{V}+$ or GND	-0.2		+0.2	$\mu \mathrm{A}$
Input Capacitance SDA, SCL, ADO, AD2, $\overline{R S T}$				10		pF
Output Low Voltage O0-07	Vol	$\mathrm{V}+=+1.71 \mathrm{~V}, \mathrm{IS}$ INK $=1 \mathrm{~mA}$		120	240	mV
		$\mathrm{V}+=+2.5 \mathrm{~V}, \mathrm{ISINK}=2 \mathrm{~mA}$		140	280	
		$\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{ISINK}=3 \mathrm{~mA}$		170	310	
		$\mathrm{V}+=+5 \mathrm{~V}$, ISINK $=5 \mathrm{~mA}$		220	380	
Output High Voltage O0-07	VOH	$\mathrm{V}+=+1.71 \mathrm{~V}$, ISOURCE $=1 \mathrm{~mA}$	$V+-250$	$V+-130$		mV
		$\mathrm{V}+=+2.5 \mathrm{~V}$, ISOURCE $=2 \mathrm{~mA}$	$V+-350$	$V+-200$		
		$\mathrm{V}+=+3.3 \mathrm{~V}$, ISOURCE $=3 \mathrm{~mA}$	$V+-290$	$V+-150$		
		$\mathrm{V}+=+5 \mathrm{~V}$, ISOURCE $=5 \mathrm{~mA}$	$\mathrm{V}+\mathrm{-} 380$	$V+-230$		
Output Low Voltage SDA	VolsDA	$\mathrm{ISINK}=6 \mathrm{~mA}$			250	mV

I²C Port Expander with Eight Push-Pull Outputs

PORT AND TIMING CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN \quad TYP	MAX	UNITS
Port Output Data Valid	tPPV	$C_{L} \leq 100 \mathrm{pF}$		4	$\mu \mathrm{~s}$

TIMING CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial Clock Frequency	fSCL				400	kHz
Bus Free Time Between a STOP and a START Condition	tBUF		1.3			$\mu \mathrm{s}$
Hold Time (Repeated) START Condition	thD, STA		0.6			$\mu \mathrm{s}$
Repeated START Condition Setup Time	tSU, STA		0.6			$\mu \mathrm{S}$
STOP Condition Setup Time	tSU, STO		0.6			$\mu \mathrm{s}$
Data Hold Time	thD, DAT	(Note 3)			0.9	$\mu \mathrm{s}$
Data Setup Time	tSU, DAT		100			ns
SCL Low to Data Out Valid	tVD, DAT	SCL low to SDA output valid			3.4	$\mu \mathrm{s}$
SCL Clock Low Period	tıow		1.3			$\mu \mathrm{s}$
SCL Clock High Period	thigh		0.7			$\mu \mathrm{S}$
Rise Time of Both SDA and SCL Signals, Receiving	tr	(Notes 2, 4)		$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	300	ns
Fall Time of Both SDA and SCL Signals, Receiving	tF	(Notes 2, 4)		$\begin{aligned} & 20+ \\ & 0.1 C_{b} \end{aligned}$	300	ns
Fall Time of SDA Transmitting	tF,TX	(Notes 2, 4)		$\begin{gathered} 20+ \\ 0.1 \mathrm{C}_{\mathrm{b}} \end{gathered}$	250	ns
Pulse Width of Spike Suppressed	tsp	(Note 5)		50		ns
Capacitive Load for Each Bus Line	Cb	(Note 2)			400	pF
$\overline{\text { RST Pulse Width }}$	tw		500			ns
$\overline{\text { RST }}$ Rising to START Condition Setup Time	tRST		1			$\mu \mathrm{S}$

Note 1: All parameters tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: A master device must provide a hold time of at least 300ns for the SDA signal (referred to VIL of the SCL signal) to bridge the undefined region of SCL's falling edge.
Note 4: $\mathrm{C}_{\mathrm{b}}=$ total capacitance of one bus line in pF . tr and t_{F} measured between $0.3 \times \mathrm{V}+$ and $0.7 \times \mathrm{V}+$, ISINK $\leq 6 \mathrm{~mA}$.
Note 5: Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns.

I^{2} C Port Expander with Eight Push-Pull Outputs

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
Typical Operating Characteristics

Pin Description

PIN		NAME	FUNCTION
QSOP	TQFN		
1,3	15, 1	AD0, AD2	Address Inputs. Select device slave address with ADO and AD2. Connect ADO and AD2 to either GND, $\mathrm{V}+$, SCL, or SDA to give four logic combinations (see Table 3).
2	16	$\overline{\mathrm{RST}}$	Reset Input, Active Low. Drive $\overline{\mathrm{RST}}$ low to clear the 2-wire interface.
4-7, 9-12	2-5, 7-10	O0-07	Output Ports. O0 to O7 are push-pull outputs.
8	6	GND	Ground
13	11	N.C.	No Connection. Not internally connected.
14	12	SCL	${ }^{2} \mathrm{C}$--Compatible Serial Clock Input
15	13	SDA	$1^{2} \mathrm{C}$-Compatible Serial Data I/O
16	14	V+	Positive Supply Voltage. Bypass V+ to GND with a $0.047 \mu \mathrm{~F}$ ceramic capacitor.
-	EP	EP	Exposed Pad. Connect exposed pad to GND.

I^{2} C Port Expander with Eight Push-Pull Outputs

Detailed Description

MAX7319-MAX7329 Family Comparison The MAX7319-MAX7323 family consists of five pincompatible, eight-port expanders. Each version is optimized for different applications. The MAX7328 and MAX7329 are second sources to the PCF8574 and PCF8574A.

The MAX7324-MAX7327 family consists of four pincompatible, 16-port expanders that integrate the functions of the MAX7320 and one of either the MAX7319, MAX7321, MAX7322, or MAX7323.

Functional Overview

The MAX7320 is a general-purpose port expander operating from $\mathrm{a}+1.71 \mathrm{~V}$ to +5.5 V supply that provides eight push-pull output ports. The MAX7320 is rated to sink a total of 100 mA and source a total of 50 mA from all eight combined outputs.
The MAX7320 is set to one of $16{ }^{2} \mathrm{C}$ C slave addresses (0×50 to 0×5 F) using address select inputs AD0 and AD2, and is accessed over an I ${ }^{2}$ C serial interface up to 400 kHz . Note the MAX7320 offers a different range of $\mathrm{I}^{2} \mathrm{C}$ slave addresses than the MAX7319, MAX7321, MAX7322, and MAX7323 (these expanders use the address range 0x60 to 0x6F).

Table 1. MAX7319-MAX7329 Family Comparison

PART	$\mathrm{I}^{2} \mathrm{C}$ SLAVE ADDRESS	INPUTS	INPUT INTERRUPT MASK	OPENDRAIN OUTPUTS	PUSHPULL OUTPUTS	APPLICATION
8-PORT EXPANDERS						
MAX7319	110xxxx	8	Yes	-	-	Input-only versions: Eight input ports with programmable latching transition detection interrupt and selectable pullups. Offers maximum versatility for automatic input monitoring. An interrupt mask selects which inputs cause an interrupt on transitions, and transition flags identify which inputs have changed (even momentarily) since the ports were last read.
MAX7320	101xxxx	-	-	-	8	Output-only versions: Eight push-pull outputs with selectable power-up default states. Push-pull outputs offer faster rise time than opendrain outputs, and require no pullup resistors.
MAX7321	110xxxx	Up to 8	-	Up to 8	-	I/O versions: Eight open-drain I/O ports with latching transition detection interrupt and selectable pullups. Open-drain outputs can level shift the logic-high state to a higher or lower voltage than $\mathrm{V}+$ using external pullup resistors. Any port can be used as an input by setting the open-drain output to logic-high. Transition flags identify which inputs have changed (even momentarily) since the ports were last read.
MAX7322	110xxxx	4	Yes	-	4	Four input-only, four output-only versions: Four input ports with programmable latching transition detection interrupt and selectable pullups. Four push-pull outputs with selectable power-up default levels.

I^{2} C Port Expander with Eight Push-Pull Outputs

Table 1. MAX7319-MAX7329 Family Comparison (continued)

PART	$\mathrm{I}^{2} \mathrm{C}$ SLAVE ADDRESS	INPUTS	INPUT INTERRUPT MASK	OPENDRAIN OUTPUTS	PUSHPULL OUTPUTS	APPLICATION
MAX7323	110xxxx	Up to 4	-	Up to 4	4	Four I/O, four output-only versions: Four open-drain I/O ports with latching transition detection interrupt and selectable pullups. Four push-pull outputs with selectable power-up default levels.
$\begin{aligned} & \text { MAX7328 } \\ & \text { MAX7329 } \end{aligned}$	0100xxx 0111xxx	Up to 8	-	Up to 8	-	PCF8574-, PCF8574A-compatible versions: Eight open-drain I/O ports with nonlatching transition detection interrupt and pullups on all ports. All ports power up as inputs (or logic-high outputs). Any port can be used as an input by setting the open-drain output to logic-high.
16-PORT EXPANDERS						
MAX7324	$\begin{aligned} & \text { 101xxxx } \\ & \text { and } \\ & 110 x x x x \end{aligned}$	8	Yes	-	8	Software equivalent to a MAX7320 plus a MAX7321.
MAX7325		Up to 8	-	Up to 8	8	Software equivalent to a MAX7320 plus a MAX7319.
MAX7326		4	Yes	-	12	Software equivalent to a MAX7320 plus a MAX7322.
MAX7327		Up to 4	-	Up to 4	12	Software equivalent to a MAX7320 plus a MAX7323.

Table 2. Read and Write Access to Eight-Port Expander Family

PART	${ }^{1}{ }^{2} \mathrm{C}$ SLAVE ADDRESS	INPUTS	INTERRUPT MASK	OPEN- DRAIN OUTPUTS	PUSH- PULL OUTPUTS	${ }^{2} \mathrm{C}$ C DATA WRITE	$I^{2} \mathrm{C}$ DATA READ
MAX7319	110xxxx	8	Yes	-	-	<17-I0 interrupt mask>	<17-I0 port inputs> <17-I0 transition flags>
MAX7320	101xxxx	-	-	-	8	<O7-O0 port outputs>	<O7-00 port inputs>
MAX7321	110xxxx	Up to 8	-	Up to 8	-	<P7-P0 port outputs>	<P7-P0 port inputs> <P7-P0 transition flags>
MAX7322	110xxxx	4	Yes	-	4	<07, O6 outputs, 15-I2 interrupt mask, O1, O0 outputs>	<O7, O6, I5-I2, O1, O0 port inputs> $<0,0, \mathrm{I} 5-\mathrm{I} 2$ transition flags, $0,0>$
MAX7323	110xxxx	Up to 4	-	Up to 4	4	<port outputs>	<O7, O6, P5-P2, O1, O0 port inputs> $<0,0$, P5-P2 transition flags, $0,0>$
MAX7328	0100xxx	Up to 8	-	Up to 8	-	<P7-P0 port outputs>	<P7-P0 port inputs>
MAX7329	0111xxx	Up to 8	-	Up to 8	-	<P7-P0 port outputs>	<P7-P0 port inputs>

I²C Port Expander with Eight Push-Pull Outputs

Table 3. MAX7320 Address Map

PIN CONNECTION		DEVICE ADDRESS							OUTPUTS POWER-UP DEFAULT							
AD2	ADO	A6	A5	A4	A3	A2	A1	A0	07	06	05	04	03	02	01	00
SCL	GND	1	0	1	0	0	0	0	1	1	1	1	0	0	0	0
SCL	V+	1	0	1	0	0	0	1	1	1	1	1	1	1	1	1
SCL	SCL	1	0	1	0	0	1	0	1	1	1	1	1	1	1	1
SCL	SDA	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1
SDA	GND	1	0	1	0	1	0	0	1	1	1	1	0	0	0	0
SDA	V+	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1
SDA	SCL	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1
SDA	SDA	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1
GND	GND	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
GND	V+	1	0	1	1	0	0	1	0	0	0	0	1	1	1	1
GND	SCL	1	0	1	1	0	1	0	0	0	0	0	1	1	1	1
GND	SDA	1	0	1	1	0	1	1	0	0	0	0	1	1	1	1
V+	GND	1	0	1	1	1	0	0	1	1	1	1	0	0	0	0
V+	V+	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1
V+	SCL	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1
V+	SDA	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1

The $\overline{\text { RST }}$ input clears the serial interface in case of a hung bus, terminating any serial transaction to or from the MAX7320.
When the MAX7320 is read through the serial interface, the actual logic states at the ports are read back.
Output port power-up logic states are selected by the address select inputs ADO and AD2. Ports default to logic-high or logic-low on power-up in groups of four (see Table 3).
$\overline{\text { RST }}$ Input The $\overline{\text { RST }}$ input voids any ${ }^{12} \mathrm{C}$ transaction involving the MAX7320 and forces the MAX7320 into the I ${ }^{2}$ C STOP condition. A reset does not change the contents of the output register. $\overline{\text { RST }}$ is overvoltage tolerant to +5.5 V .

Standby Mode

When the serial interface is idle, the MAX7320 automatically enters standby mode, drawing minimal supply current.

Slave Address and Power-Up Default Logic States
Address inputs ADO and AD2 determine the MAX7320 slave address and set the power-up output logic states. Power-up logic states are set in groups of four (see Table 3). The MAX7320 uses a different range of slave
addresses (101 xxxx) than the MAX7319, MAX7321, MAX7322, and MAX7323 (110xxxx).
The MAX7320 slave address is determined on each $I^{2} \mathrm{C}$ transmission, regardless of whether the transmission is actually addressing the MAX7320. The MAX7320 distinguishes whether address inputs ADO and AD2 are connected to SDA or SCL instead of fixed logic levels $V+$ or GND during this transmission. This means that the MAX7320 slave address can be configured dynamically in the application without cycling the device supply.
On initial power-up, the MAX7320 cannot decode the address inputs ADO and AD2 fully until the first $I^{2} \mathrm{C}$ transmission. ADO and AD2 initially appear to be connected to $\mathrm{V}+$ or GND. This is important because the address selection determines the power-up logic levels of the output ports. However, at power-up, the I ${ }^{2} \mathrm{C}$ SDA and SCL bus interface lines are high impedance at the pins of every device (master or slave) connected to the bus, including the MAX7320. This is guaranteed as part of the I2C specification. Therefore, address inputs ADO and AD2 that are connected to SDA or SCL normally appear at power-up to be connected to V_{+}. The powerup output state selection logic uses ADO to select the power-up state for ports O3-O0, and uses AD2 to select the power-up state for ports O7-O4. The rule is that a logic-high, SDA, or SCL connection selects a

I²C Port Expander with Eight Push-Pull Outputs

Figure 1. 2-Wire Serial-Interface Timing Details
logic-high power-up state, and a logic-low selects a logic-low power-up state for each set of four ports (see Table 3). The output power-up logic level configuration is correct for a standard ${ }^{2} \mathrm{C}$ configuration, where SDA or SCL appear to be connected to $\mathrm{V}+$ by the external ${ }^{2}{ }^{2} \mathrm{C}$ pullups.
There are circumstances where the assumption that SDA $=$ SCL $=\mathrm{V}+$ on power-up is not true; for example, in true hot-swap applications in which there is legitimate bus activity during power-up. Also, if SDA and SCL are terminated with pullup resistors to a different supply voltage than the MAX7320's supply, and if that pullup supply rises later than the MAX7320's, then SDA or SCL may appear at power-up to be connected to GND. In such applications, use the four address combinations that are selected by connecting address inputs AD0 and AD2 to GND or V+ (shown in bold in Table 3). These selections are guaranteed to be correct at power-up, independent of SDA and SCL behavior. If one of the other 12 address combinations is used, be aware that unexpected port power-up default states may occur until the first I ${ }^{2} \mathrm{C}$ transmission (to any device, not necessarily the MAX7320).

Port Outputs

Write one byte to the MAX7320 to set all output port states simultaneously.

Serial Interface Serial-Addressing

The MAX7320 operates as a slave that sends and receives data through an ${ }^{2} \mathrm{C}$ interface. The interface uses a serial data line (SDA) and a serial clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master initiates all data trans-

Figure 2. START and STOP Conditions
fers to and from the MAX7320, and generates the SCL clock that synchronizes the data transfer (Figure 1).
SDA operates as both an input and an open-drain output. A pullup resistor, $4.7 \mathrm{k} \Omega$ (typ), is required on SDA. SCL operates only as an input. A pullup resistor, $4.7 \mathrm{k} \Omega$ (typ), is required on SCL if there are multiple masters on the 2wire interface, or if the master in a single-master system has an open-drain SCL output.
Each transmission consists of a START condition sent by a master, followed by the MAX7320's 7-bit slave address plus R/W bit, one or more data bytes, and finally a STOP condition (Figure 2).

START and STOP Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, the master issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 2).

Bit Transfer

One data bit is transferred during each clock pulse. The data on SDA must remain stable while SCL is high (Figure 3).

I^{2} C Port Expander with Eight Push-Pull Outputs

Abstract

Acknowledge The acknowledge bit is a clocked 9th bit the recipient uses to acknowledge receipt of each byte of data (Figure 4). Each byte transferred effectively requires 9 bits. The master generates the ninth clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX7320, the device generates the acknowledge bit because the MAX7320 is the recipient. When the MAX7320 is transmitting to the master, the master generates the acknowledge bit because the master is the recipient.

Slave Address

The MAX7320 has a 7-bit slave address (Figure 5). The 8th bit following the 7 -bit slave address is the $R \bar{W}$ bit. It is low for a write command, and high for a read command.
The 1st (A6), 2nd (A5), and 3rd (A4) bits of the MAX7320 slave address are always 1, 0, and 1. Connect ADO and AD2 to GND, $\mathrm{V}+$, SDA, or SCL to select the slave address bits A3, A2, A1, and A0. The MAX7320 has 16 possible slave addresses (Table 3), allowing up to 16 MAX7320 devices on an $I^{2} \mathrm{C}$ bus.
Note the MAX7320 offers a different range of $1^{2} \mathrm{C}$ slave addresses from the MAX7319, MAX7321, MAX7322 and MAX7323, for which 1st (A6), 2nd (A5), and 3rd (A4) bits of the slave address are always 1,1 , and 0 .

Accessing the MAX7320

A single-byte read from the MAX7320 returns the status of the eight output ports, read back as inputs.
A 2-byte read repeatedly returns the status of the eight output ports, read back as inputs.
A multibyte read (more than 2 bytes before the $I^{2} \mathrm{C}$ STOP bit) repeatedly returns the status of the eight output ports, read back as inputs.
A single-byte write to the MAX7320 sets the logic state of all eight outputs.
A multibyte write to the MAX7320 repeatedly sets the logic state of all eight outputs.

Reading from the MAX7320

A read from the MAX7320 starts with the master transmitting the MAX7320's slave address with the R/ \bar{W} bit set high. The MAX7320 acknowledges the slave address, and samples the logic state of the output ports during the acknowledge bit. The master can read one or more bytes from the MAX7320 and then issue a STOP condition (Figure 6). The MAX7320 transmits the

Figure 3. Bit Transfer

Figure 4. Acknowledge
current port data, read back from the actual port outputs (not the port output latches) during the acknowledge. If a port is forced to a logic state other than its programmed state, the read back reflects this. If driving a capacitive load, readback port level verification algorithms may need to take the RC rise/fall time into account.
Typically, the master reads one byte from the MAX7320, then issues a STOP condition (Figure 6). However, the master can read 2 or more bytes from the MAX7320, then issue a STOP condition. In this case, the MAX7320 resamples the port outputs during each acknowledge and transmits the new data each time.

Writing to the MAX7320

A write to the MAX7320 starts with the master transmitting the MAX7320's slave address with the $R \bar{W} \bar{W}$ bit set low. The MAX7320 acknowledges the slave address and samples the ports during the acknowledge bit. The master can transmit one or more bytes of data. The MAX7320 acknowledges each subsequent byte of data and updates the output ports until the master issues a STOP condition (Figure 7).

I^{2} C Port Expander with Eight Push-Pull Outputs

SDA

Figure 5. Slave Address

Figure 6. Reading the MAX7320

Figure 7. Writing to the MAX7320

I^{2} C Port Expander with Eight Push-Pull Outputs

Functional Block Diagram

GND

Applications Information

Hot Insertion

SDA, SCL, AD0, AD2, and $\overline{\mathrm{RST}}$ are overvoltage protected to +6 V independent of $\mathrm{V}+$. This allows the MAX7320 to be operated from a lower supply voltage, such as +3.3 V , while the $\mathrm{I}^{2} \mathrm{C}$ interface is driven from a higher logic level, such as +5 V .
Each of the output ports, $\mathrm{O} 0-\mathrm{O} 7$, has a protection diode to $V+$ and to GND (Figure 8). When a port output is driven to a voltage higher than V + or lower than GND, the appropriate protection diode clamps the output to a diode drop above $\mathrm{V}+$ or below GND. When the MAX7320 is powered down ($\mathrm{V}+=0 \mathrm{~V}$), each output port appears as a diode connected to GND (Figure 8).

Power-Supply Considerations

The MAX7320 operates with a supply voltage of +1.71 V to +5.5 V over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Bypass V+ to GND with a ceramic capacitor of at least $0.047 \mu \mathrm{~F}$ as close to the device as possible. For the TQFN version, additionally connect the exposed pad to GND.

Figure 8. Output Port Structure

I^{2} C Port Expander with Eight Push-Pull Outputs

Compatibility with MAX6965, MAX7315, and MAX7316
The MAX7320 is subset pin compatible with the MAX6965, MAX7315, and MAX7316. The pin differences are shown in Table 4. The MAX7320 is not software compatible with MAX6965, MAX7315, or MAX7316. In many cases it is possible to design a PC board to work with all these port expanders, providing design flexibility.

Table 4. MAX7320, MAX6965, MAX7315, and MAX7316 Pin Compatibility

PIN-PACKAGE		PIN FUNCTION		
$\mathbf{1 6}$ QSOP	$\mathbf{1 6}$ TQFN	MAX7320	MAX7315	MAX6965 AND MAX7316
1	15	AD0	AD0	BLINK
2	16	$\overline{\text { RST }}$	AD1	$\overline{\text { RST }}$
3	1	AD2	AD2	AD0

Typical Application Circuit

Pin Configurations

Chip Information
PROCESS: BiCMOS
Connect EP to GND

I^{2} C Port Expander with Eight Push-Pull Outputs

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

EXPOSED PAD VARIATIONS								
PKGCODES	D2			E2			PIN ID	JEDEC
	MIN.	NOM.	MAX.	MIN.	NOM.	max.		
TQ833-1	0.25	0.70	1.25	0.25	0.70	1.25	$0.35 \times 45^{\circ}$	WEEC
T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633-5	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS
THE TERMINAL \#1 IDENTIIIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO LIHIN THE ZONE INDICATED. THE TERMLL MARKED FEATURE.
S. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm from terminal tip.
© ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
4. DEPOPULATION IS POSSIBLE IN A SYMMEIRICAL FASHION
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS
6. DRAWING CONFORMS TO JEDEC MO220 REVISION C.
Q MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. WARPAGE NOT TO EXCEED 0.10 mm .
-DRAWING NOT TO SCALE-

I^{2} C Port Expander with Eight Push-Pull Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
 implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad

