: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

General Description

The MAX7327, a 2-wire serial-interfaced peripheral, features 12 push-pull outputs and four configurable open-drain I/O ports with selectable internal pullups and transition detection. Ports are overvoltage protected to +6 V , independent of supply voltage.
The four I/O ports configured as inputs are continuously monitored for state changes (transition detection). State changes are indicated by the open-drain, +6V-tolerant INT output. The interrupt is latched, detecting transient changes. When the MAX7327 is subsequently accessed through the serial interface, any pending interrupt is cleared. The 12 push-pull and the four open-drain outputs are rated to sink 20 mA , and are capable of driving LEDs. The $\overline{\text { RST }}$ input clears the serial interface, terminating any ${ }^{2} \mathrm{C}$ communication to or from the MAX7327.
The MAX7327 uses two address inputs with four-level logic to allow $16 \mathrm{I}^{2} \mathrm{C}$ slave addresses. The slave address also determines the power-up logic state for the I/O ports, and enables or disables internal $40 \mathrm{k} \Omega$ pullups in groups of two ports.
The MAX7327 is one device in a family of pin-compatible port expanders with a choice of input ports, open-drain I/O ports, and push-pull output ports (see Table 1).
The MAX7327 is available in the 24-pin QSOP and TQFN packages, and is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Applications

Cell Phones	Notebooks
SAN/NAS	Satellite Radio
Servers	Automotive

Pin Configurations

Pin Configurations continued at end of data sheet.

Features

- 400kHz I²C Serial Interface
- +1.71V to +5.5V Operating Voltage
- 12 Push-Pull Output Ports, Rated at 20mA Sink Current
- 4 Open-Drain I/O Ports, Rated at 20mA Sink Current
- I/O Ports are Overvoltage Protected to +6V
- Selectable I/O Port Power-Up Default Logic States
- Transient Changes are Latched, Allowing Detection Between Read Operations
- INT Output Alerts Changes on Inputs
- AD0 and AD2 Inputs Select from 16 Slave Addresses
- Low 0.6 A (typ) Standby Current
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Temperature Range

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX7327AEG $+-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 QSOP	E24-1	
MAX7327ATG $+-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \mathrm{l}$$24 \mathrm{TQFN}-\mathrm{EP}^{* *}$ $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$	T2444-3		
MAX7327AATG $+-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$$24 \mathrm{TQFN}-E P^{* *}$ $(3.5 \mathrm{~mm} \times 3.5 \mathrm{~mm})$	T243A3-1		

+Denotes lead-free package.
${ }^{* *} E P=$ Exposed pad.

Selector Guide

PART	INPUTS	INTERRUPT MASK	OPEN- DRAIN OUTPUTS	PUSH-PULL OUTPUTS
MAX7324	8	Yes	-	8
MAX7325	Up to 8	-	Up to 8	8
MAX7326	4	Yes	-	12
MAX7327	Up to 4	-	Up to 4	12

Typical Application Circuit and Functional Diagram appear at end of data sheet.

I2C Port Expander with 12 Push-PuII Outputs and 4 Open-Drain I/Os

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage	V+	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		1.71		5.50	V
Power-On Reset Voltage	VPOR	V+ falling				1.6	V
Standby Current (Interface Idle)	ISTB	SCL and SDA and other digital inputs at V_{+}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		0.6	1.9	$\mu \mathrm{A}$
Supply Current (Interface Running)	I+	$\mathrm{fSCL}=400 \mathrm{kHz}$; other digital inputs at V_{+}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		23	55	$\mu \mathrm{A}$
Input High-Voltage SDA, SCL, ADO, AD2, $\overline{R S T}, ~ P 2-P 5$	V_{IH}	$\mathrm{V}+<1.8 \mathrm{~V}$		$0.8 \times \mathrm{V}+$			V
		$\mathrm{V}+\geq 1.8 \mathrm{~V}$		$0.7 \times \mathrm{V}+$			
Input Low-Voltage SDA, SCL, AD0, AD2, $\overline{R S T}, ~ P 2-P 5$	VIL	$\mathrm{V}+<1.8 \mathrm{~V}$		$\begin{aligned} & 0.2 \times V+ \\ & 0.3 \times V+ \\ & \hline \end{aligned}$			V
		$\mathrm{V}+\geq 1.8 \mathrm{~V}$					
Input Leakage Current SDA, SCL, AD0, AD2, $\overline{R S T}, ~ P 2-P 5$	IIH, IIL	SDA, SCL, AD0, AD2, $\overline{R S T}, ~ P 0-P 7$ at $\mathrm{V}+$ or GND, internal pullup disabled		-0.2		+0.2	$\mu \mathrm{A}$
Input Capacitance SDA, SCL, AD0, AD2, $\overline{R S T}, ~ P 2-P 5$					10		pF
Output Low VoltageO8-015, P0, P7	VOL	$\mathrm{V}+=1.71 \mathrm{~V}, \mathrm{ISINK}=5 \mathrm{~mA}$ (QSOP)			90	180	mV
		$\mathrm{V}+=1.71 \mathrm{~V}, \mathrm{ISINK}=5 \mathrm{~mA}$ (TQFN)			90	230	
		$\mathrm{V}+=2.5 \mathrm{~V}, \mathrm{ISINK}=10 \mathrm{~mA}$ (QSOP)			110	210	
		$\mathrm{V}+=2.5 \mathrm{~V}, \mathrm{ISINK}=10 \mathrm{~mA}$ (TQFN)			110	260	
		$\mathrm{V}+=3.3 \mathrm{~V}$, ISINK $=15 \mathrm{~mA}$ (QSOP)			130	230	
		$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{ISINK}=15 \mathrm{~mA}$ (TQFN)			130	280	
		$\mathrm{V}+=5 \mathrm{~V}, \mathrm{ISINK}=20 \mathrm{~mA}$ (QSOP)			140	250	
		$\mathrm{V}+=5 \mathrm{~V}, \mathrm{ISINK}=20 \mathrm{~mA}$ (TQFN)			140	300	
Output High VoltageO0, O1, O6-O15, P2-P5	VOH	$\mathrm{V}+=+1.71 \mathrm{~V}$, ISOURCE $=2 \mathrm{~mA}$		$V+-250 \quad V+-30$			mV
		$\mathrm{V}+=+2.5 \mathrm{~V}$, ISOURCE $=5 \mathrm{~mA}$		$\mathrm{V}+-360$	$V+-70$		
		$\mathrm{V}+=+3.3 \mathrm{~V}$, ISOURCE $=5 \mathrm{~mA}$		$V+-260 \quad V+-100$			
		$\mathrm{V}+=+5 \mathrm{~V}$, ISOURCE $=10 \mathrm{~mA}$		$\mathrm{V}+-360$	V+-120		
Output Low-Voltage SDA	Volsda	$\mathrm{ISINK}=6 \mathrm{~mA}$				250	mV
Output Low-Voltage $\overline{\text { INT }}$	Volint	ISINK $=5 \mathrm{~mA}$			130	250	mV
Port Input Pullup Resistor	RPU			25	40	55	$\mathrm{k} \Omega$

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

PORT AND INTERRUPT INT TIMING CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Port Output Data Valid	tppV	$C_{L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{s}$
Port Input Setup Time	tPSU	$C_{L} \leq 100 \mathrm{pF}$	0			$\mu \mathrm{s}$
Port Input Hold Time	tph	$C_{L} \leq 100 \mathrm{pF}$	4			$\mu \mathrm{s}$
$\overline{\text { INT }}$ Input Data Valid Time	tIV	$C_{L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{S}$
	tIP	$C_{L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{S}$
$\overline{\text { INT Reset Delay Time from }}$ Acknowledge	tIR	$C \mathrm{~L} \leq 100 \mathrm{pF}$			4	$\mu \mathrm{s}$

TIMING CHARACTERISTICS

$\left(\mathrm{V}+=+1.71 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Serial-Clock Frequency	fSCL				400	kHz
Bus Free Time Between a STOP and a START Condition	tBUF		1.3			$\mu \mathrm{S}$
Hold Time (Repeated) START Condition	thD, STA		0.6			$\mu \mathrm{s}$
Repeated START Condition Setup Time	tSU, STA		0.6			$\mu \mathrm{s}$
STOP Condition Setup Time	tSU, STO		0.6			$\mu \mathrm{s}$
Data Hold Time	thd, DAT	(Note 2)			0.9	$\mu \mathrm{s}$
Data Setup Time	tSU, DAT		100			ns
SCL Clock Low Period	tlow		1.3			$\mu \mathrm{s}$
SCL Clock High Period	tHIGH		0.7			$\mu \mathrm{s}$
Rise Time of Both SDA and SCL Signals, Receiving	tR	(Notes 3, 4)		$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	300	ns
Fall Time of Both SDA and SCL Signals, Receiving	$\mathrm{tF}_{\text {F }}$	(Notes 3, 4)		$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	300	ns
Fall Time of SDA Transmitting	tF,TX	(Notes 3, 4)		$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	250	ns
Pulse Width of Spike Suppressed	tsp	(Note 5)		50		ns
Capacitive Load for Each Bus Line	Cb	(Note 3)			400	pF
$\overline{\text { RST Pulse Width }}$	tw		500			ns
$\overline{\text { RST }}$ Rising to START Condition Setup Time	tRST		1			$\mu \mathrm{s}$

Note 1: All parameters tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: A master device must provide a hold time of at least 300ns for the SDA signal (referred to $V_{I L}$ of the SCL signal) in order to bridge the undefined region of SCL's falling edge.
Note 3: Guaranteed by design.
Note 4: $\mathrm{Cb}_{b}=$ total capacitance of one bus line in pF . t_{R} and t_{F} measured between $0.3 \times \mathrm{V}+$ and $0.7 \times \mathrm{V}+$ with I IINK $\leq 6 \mathrm{~mA}$.
Note 5: Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns .

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT VOLTAGE LOW
vs. TEMPERATURE

OUTPUT VOLTAGE HIGH vs. TEMPERATURE

Pin Description

PIN		NAME	
QSOP	TQFN		FUNCTION
1	22	$\overline{\text { INT }}$	Active-Low Interrupt Output. INT is an open-drain output.
2	23	$\overline{R S T}$	Active-Low Reset Input. Drive $\overline{\text { RST }}$ low to clear the 2-wire interface.
3,21	24,18	AD2, AD0	Address Inputs. Select device slave address with AD0 and AD2. Connect AD0 and AD2 to either GND, V+, SCL, or SDA to give four logic combinations (see Tables 2 and 3).
$4,5,10$, $11,13-20$	$1,2,7,8$, $10-17$	O0, O1, O6-O15	Output Ports. O0, O1, O6-O15 are push-pull outputs rated at 20mA.
$6-9$	$3-6$	P2-P5	P2-P5 Open-Drain I/Os
12	9	GND	Ground
22	19	SCL	I2C-Compatible Serial Clock Input
23	20	SDA	I2C-Compatible Serial Data I/O
24	21	V+	Positive Supply Voltage. Bypass V+ to GND with a 0.047 F ceramic capacitor.
-	EP	EP	Exposed Pad. Connect exposed pad to GND.

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

Detailed Description

MAX7319-MAX7329 Family Comparison

The MAX7324-MAX7327 family consists of four pincompatible, 16-port expanders that integrate the functions of the MAX7320 and one of either the MAX7319, MAX7321, MAX7322, or MAX7323.

Functional Overview

The MAX7327 is a general-purpose port expander operating from $\mathrm{a}+1.71 \mathrm{~V}$ to +5.5 V supply that provides 12 push-pull output ports with a 20 mA sink, 10 mA source drive capability, and four open-drain I/O ports with a 20 mA sink capability. The four open-drain outputs are overvoltage protected to +6 V .

The MAX7327 is set to two of 32 I $^{2} \mathrm{C}$ slave addresses (see Tables 2 and 3) using address inputs AD2 and ADO, and is accessed over an ${ }^{2} \mathrm{C}$ serial interface up to 400 kHz . Eight push-pull outputs use a different slave address from the other four push-pull outputs and the open-drain I/Os. The eight push-pull outputs, O8-O15, use the 101xxxx addresses while the four outputs O0, O1, O6, and O7 and the open-drain I/Os P2-P5 use addresses with 110xxxx. The $\overline{\mathrm{RST}}$ input clears the serial interface in case of a bus lockup, terminating any serial transaction to or from the MAX7327.
Any of the four open-drain ports can be configured as a logic input by setting the port output logic-high (logichigh for an open-drain output is high impedance). When the MAX7327 is read through the serial interface, the actual logic levels at the ports are read back.

Table 1. MAX7319-MAX7329 Family Comparison

PART	$\mathrm{I}^{2} \mathrm{C}$ SLAVE ADDRESS	INPUTS	INPUT INTERRUPT MASK	OPENDRAIN OUTPUTS	PUSHPULL OUTPUTS	CONFIGURATION
16-PORT EXPANDERS						
MAX7324	$\begin{aligned} & \text { 101xxxx } \\ & \text { and } \\ & 110 x x x x \end{aligned}$	8	Yes	-	8	8 inputs and 8 push-pull outputs version: 8 input ports with programmable latching transition detection interrupt and selectable pullups. 8 push-pull outputs with selectable default logic levels. Offers maximum versatility for automatic input monitoring. An interrupt mask selects which inputs cause an interrupt on transitions, and transition flags identify which inputs have changed (even if only for a transient) since the ports were last read.
MAX7325		Up to 8	-	Up to 8	8	8 I/O and 8 push-pull outputs version: 8 open-drain I/O ports with latching transition detection interrupt and selectable pullups. 8 push-pull outputs with selectable default logic levels. Open-drain outputs can level shift the logic-high state to a higher or lower voltage than $\mathrm{V}+$ using external pullup resistors, but pullups draw current when output is low. Any open-drain port can be used as an input by setting the open-drain output to logichigh. Transition flags identify which open-drain port inputs have changed (even if only for a transient) since the ports were last read.

I2C Port Expander with 12 Push-PulI Outputs and 4 Open-Drain I/Os

Table 1. MAX7319-MAX7329 Family Comparison (continued)

PART	$I^{2} \mathrm{C}$ SLAVE ADDRESS	INPUTS	INPUT INTERRUPT MASK	OPENDRAIN OUTPUTS	PUSHPULL OUTPUTS	CONFIGURATION
MAX7326	$\begin{aligned} & \text { 101xxxx } \\ & \text { and } \\ & 110 x x x x \end{aligned}$	4	Yes	-	12	4 input-only, 12 push-pull output versions: 4 input ports with programmable latching transition detection interrupt and selectable pullups. 12 push-pull outputs with selectable default logic levels. Offers maximum versatility for automatic input monitoring. An interrupt mask selects which inputs cause an interrupt on transitions, and transition flags identify which inputs have changed (even if only for a transient) since the ports were last read.
MAX7327		Up to 4	-	Up to 4	12	4 I/O, 12 push-pull output versions: 4 open-drain I/O ports with latching transition detection interrupt and selectable pullups. 12 push-pull outputs with selectable default logic levels. Open-drain outputs can level shift the logic-high state to a higher or lower voltage than V+ using external pullup resistors, but pullups draw current when output is low. Any open-drain port can be used as an input by setting the open-drain output to logichigh. Transition flags identify which open-drain port inputs have changed (even if only for a transient) since the ports were last read.
8-PORT EXPANDERS						
MAX7319	110xxxx	8	Yes	-	-	Input-only versions: 8 input ports with programmable latching transition detection interrupt and selectable pullups.
MAX7320	101xxxx	-	-	-	8	Output-only versions: 8 push-pull outputs with selectable power-up default levels.
MAX7321	110xxxx	Up to 8	-	Up to 8	-	I/O versions: 8 open-drain I/O ports with latching transition detection interrupt and selectable pullups.
MAX7322	110xxxx	4	Yes	-	4	4 input-only, 4 output-only versions: 4 input ports with programmable latching transition detection interrupt and selectable pullups. 4 push-pull outputs with selectable power-up default levels.

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

Table 1. MAX7319-MAX7329 Family Comparison (continued)

PART	I²C SLAVE ADDRESS	INPUTS	INPUT INTERRUPT MASK	OPEN- DRAIN OUTPUTS	PUSH- PULL OUTPUTS	CONFIGURATION
MAX7323	110xxxx	Up to 4	-	Up to 4	4	4 I/O, 4 output-only versions: 4 open-drain I/O ports with latching transition detection interrupt and selectable pullups. 4 push-pull outputs with selectable power-up default levels.
MAX7328 MAX7329	0100xxx 0111xxx	Up to 8	-	Up to 8	-	PCF8574-, PCF8574A-compatible versions: 8 open-drain I/O ports with nonlatching transition detection interrupt and pullups on all ports.

The four open-drain ports offer latching transition detection functionality when used as inputs. All input ports are continuously monitored for changes. An input change sets 1 of 4 flag bits that identify the changed input(s). All flags are cleared upon a subsequent read or write transaction to the MAX7327.
A latching interrupt output INT automatically flags data changes on any of the I/O ports used as inputs through an interrupt mask register. Data changes on any input port forces $\overline{\text { INT }}$ to a logic-low. The interrupt output INT is deasserted when the MAX7327 is next accessed through the serial interface.
Internal pullup resistors to V_{+}are selected by the address select inputs, ADO and AD2. Pullups are enabled on the input ports in groups of two (see Table 2). Use the slave address selection to ensure that I/O ports used as inputs are logic-high on power-up. I/O ports with internal pullups enabled default to a logic-high output state. I/O ports with internal pullups disabled default to a logic-low output state.
Output port power-up logic levels are selected by the address select inputs ADO and AD2. Ports default to logic-high or logic-low on power-up in groups of two (see Tables 2 and 3).

Initial Power-Up On power-up, the default states of the 12 push-pull output ports and the four open-drain I/O ports are set according to the ${ }^{2} \mathrm{C}$ slave address selection inputs, AD0 and AD2 (see Tables 2 and 3). For I/O ports used as inputs, ensure that the default states are logic-high; therefore, the I/O ports power up in the high-impedance state. All I/O ports configured with pullups enabled also have a logic-high default state. On power-
up, the transition detection logic is reset, and $\overline{\mathrm{NT}}$ is deasserted. The transition flags are cleared, indicating no data changes.

Power-On Reset (POR) The MAX7327 contains an integral POR circuit that ensures all registers are reset to a known state on power-up. When $V+$ rises above VPor (1.6 V max), the POR circuit releases the registers and 2-wire interface for normal operation. When V+ drops to less than VPOR, the MAX7327 resets all register contents to the POR defaults (Tables 2 and 3).
$\overline{\text { RST }}$ Input The active-low $\overline{\text { RST }}$ input operates as a hardware reset that voids any ${ }^{2} \mathrm{C}$ transaction involving the MAX7327, forcing the MAX7327 into the ${ }^{2}{ }^{2}$ C STOP condition. A reset does not affect the interrupt output (INT).

Standby Mode

When the serial interface is idle, the MAX7327 automatically enters standby mode drawing minimal supply current.

Slave Address, Power-Up Default Logic Levels, and Input Pullup Selection

Address inputs ADO and AD2 determine the MAX7327 slave address and select which inputs have pullup resistors. Pullups are enabled on the input ports in groups of two (see Table 2).
The MAX7327 slave address is determined on each $I^{2} \mathrm{C}$ transmission, regardless of whether the transmission is actually addressing the MAX7327. The MAX7327 distinguishes whether address inputs ADO and AD2 are connected to SDA or SCL instead of fixed-logic levels V_{+} or GND during the transmission. The MAX7327 slave

I2C Port Expander with 12 Push-PuII Outputs and 4 Open-Drain I/Os

address can be configured dynamically in the application without cycling the device supply.
On initial power-up, the MAX7327 cannot decode the address inputs ADO and AD2 fully until the first $I^{2} \mathrm{C}$ transmission. AD0 and AD2 initially appear to be connected to $\mathrm{V}+$ or GND. This is important because the address selection is used to determine the power-up default states of the output ports, I/O port initial logic state, and whether pullups are enabled. At power-up, the $I^{2} \mathrm{C}$ SDA and SCL bus interface lines are high impedance at the I/O pins of every device (master or slave) connected to the bus, including the MAX7327. This is guaranteed as part of the $I^{2} \mathrm{C}$ specification. Therefore, when address inputs ADO and AD2 are connected to SDA or SCL during power-up, they appear to be connected to $\mathrm{V}+$. The pullup selection logic uses ADO to select whether pullups are enabled for ports P2 and P3, and uses AD2 to select whether pullups are enabled for ports P4 and P5. The rule is that a logichigh, SDA, or SCL connection selects the pullups and sets the logic state to high. A logic-low deselects the
pullups and sets the default logic state to low. The pullup configuration is correct on power-up for a standard ${ }^{2}{ }^{2}$ C configuration, where SDA or SCL are pulled up to $\mathrm{V}+$ by the external $I^{2} \mathrm{C}$ pullup resistors.
There are circumstances where the assumption that SDA $=$ SCL $=V+$ on power-up is not true; for example, in applications in which there is legitimate bus activity during power-up. If SDA and SCL are terminated with pullup resistors to a different supply voltage to the MAX7327's supply voltage, and if that pullup supply rises later than the MAX7327's supply, then SDA or SCL may appear at power-up to be connected to GND. In such applications, use the four address combinations that are selected by connecting address inputs ADO and AD2 to $\mathrm{V}+$ or GND (shown in bold in Tables 2 and 3). These selections are guaranteed to be correct at power-up, independent of SDA and SCL behavior. If one of the other 12 address combinations is used, an unexpected combination of pullups might be asserted until the first $\mathrm{I}^{2} \mathrm{C}$ transmission (to any device, not necessarily the MAX7327) is put on the bus.

Table 2. MAX7327 Address Map for Outputs 00, 01, 06, 07, and Ports P2-P5

PIN CONNECTION		DEVICE ADDRESS							PORTS POWER-UP DEFAULT								40k Ω INPUT PULLUPS ENABLED							
AD2	ADO	A6	A5	A4	A3	A2	A1	A0	07	06	P5	P4	P3	P2	01	00	07	06	P5	P4	P3	P2	01	00
SCL	GND	1	1	0	0	0	0	0	1	1	1	1	0	0	0	0			Y	Y	-	-		
SCL	V+	1	1	0	0	0	0	1	1	1	1	1	1	1	1	1			Y	Y	Y	Y		
SCL	SCL	1	1	0	0	0	1	0	1	1	1	1	1	1	1	1			Y	Y	Y	Y		
SCL	SDA	1	1	0	0	0	1	1	1	1	1	1	1	1	1	1			Y	Y	Y	Y		
SDA	GND	1	1	0	0	1	0	0	1	1	1	1	0	0	0	0			Y	Y	-	-		
SDA	V+	1	1	0	0	1	0	1	1	1	1	1	1	1	1	1			Y	Y	Y	Y		
SDA	SCL	1	1	0	0	1	1	0	1	1	1	1	1	1	1	1			Y	Y	Y	Y		
SDA	SDA	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1			Y	Y	Y	Y		
GND	GND	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0			-	-	-	-		
GND	V+	1	1	0	1	0	0	1	0	0	0	0	1	1	1	1			-	-	Y	Y		
GND	SCL	1	1	0	1	0	1	0	0	0	0	0	1	1	1	1			-	-	Y	Y		
GND	SDA	1	1	0	1	0	1	1	0	0	0	0	1	1	1	1			-	-	Y	Y		
V+	GND	1	1	0	1	1	0	0	1	1	1	1	0	0	0	0			Y	Y	-	-		\%
V+	V+	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1			\mathbf{Y}	Y	Y	Y		2
V+	SCL	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1			Y	Y	Y	Y		
V+	SDA	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1			Y	Y	Y	Y		

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

Table 3. MAX7327 Address Map for Outputs O8-O15

		DEVICE ADDRESS							OUTPUTS POWER-UP DEFAULT							
AD2	ADO	A6	A5	A4	A3	A2	A1	A0	015	014	013	012	011	010	09	08
SCL	GND	1	0	1	0	0	0	0	1	1	1	1	0	0	0	0
SCL	V+	1	0	1	0	0	0	1	1	1	1	1	1	1	1	1
SCL	SCL	1	0	1	0	0	1	0	1	1	1	1	1	1	1	1
SCL	SDA	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1
SDA	GND	1	0	1	0	1	0	0	1	1	1	1	0	0	0	0
SDA	V+	1	0	1	0	1	0	1	1	1	1	1	1	1	1	1
SDA	SCL	1	0	1	0	1	1	0	1	1	1	1	1	1	1	1
SDA	SDA	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1
GND	GND	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
GND	V+	1	0	1	1	0	0	1	0	0	0	0	1	1	1	1
GND	SCL	1	0	1	1	0	1	0	0	0	0	0	1	1	1	1
GND	SDA	1	0	1	1	0	1	1	0	0	0	0	1	1	1	1
V+	GND	1	0	1	1	1	0	0	1	1	1	1	0	0	0	0
V+	V+	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1
V+	SCL	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1
V+	SDA	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1

I/O Port Inputs

I/O port inputs switch at CMOS logic levels as determined by the expander's supply voltage, and are overvoltage tolerant to +6 V , independent of the expander's supply voltage.

I/O Port Input Transition Detection

All I/O ports configured as inputs are monitored for changes since the expander was last accessed through the serial interface. The state of the ports is stored in an internal "snapshot" register for transition monitoring. The snapshot is continuously compared with the actual input conditions, and if a change is detected for any port input, INT is asserted to signal a state change. The input ports are sampled (internally latched into the snapshot register) and the old transition flags cleared during the ${ }^{2} \mathrm{C}$ acknowledge of every MAX7327 read and write access. The previous port transition flags are read through the serial interface as the second byte of a 2-byte read sequence.

A long read sequence (more than 2 bytes) can be used to poll the expander continuously without the overhead of resending the slave address. If more than 2 bytes are read from the expander, the expander repeatedly returns the 2 bytes of input port data followed by the transition flags. The inputs are repeatedly resampled and the transition flags repeatedly reset for each pair of bytes read. All changes that occur during a long read sequence are detected and reported.
The INT output is not reasserted during a read sequence to avoid recursive reentry into an interrupt service routine. Instead, if a data change occurs that would normally cause the $\overline{\mathrm{INT}}$ output to be set, the $\overline{\mathrm{INT}}$ assertion is delayed until the STOP condition. INT is not reasserted upon a STOP condition if the changed input data is read before the STOP occurs. The INT logic ensures that unnecessary interrupts are not asserted, yet data changes are detected and reported no matter when the change occurs.

I2C Port Expander with 12 Push-PuII Outputs and 4 Open-Drain I/Os

Serial Interface

Serial Addressing

The MAX7327 operates as a slave that sends and receives data through an ${ }^{2}{ }^{2} \mathrm{C}$ interface. The interface uses a serial-data line (SDA) and a serial-clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). The master initiates all data transfers to and from the MAX7327 and generates the SCL clock that synchronizes the data transfer (Figure 1).
SDA operates as both an input and an open-drain output. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SDA. SCL operates only as an input. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SCL if there are multiple masters on the 2-wire interface, or if the master in a sin-gle-master system has an open-drain SCL output.
Each transmission consists of a START condition sent by a master, followed by the MAX7327's 7-bit slave
addresses plus $R \bar{W}$ bits, one or more data bytes, and finally a STOP condition (Figure 2).

START and STOP Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, the master issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 2).

Bit Transfer
One data bit is transferred during each clock pulse. The data on SDA must remain stable while SCL is high (Figure 3).

Figure 1. 2-Wire Serial Interface Timing Details

Figure 2. START and STOP Conditions

Figure 3. Bit Transfer

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

Abstract

Acknowledge The acknowledge bit is a clocked 9th bit the recipient uses to acknowledge receipt of each byte of data (Figure 4). Each byte transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX7327, the MAX7327 generates the acknowledge bit because the device is the recipient. When the MAX7327 is transmitting to the master, the master generates the acknowledge bit because the master is the recipient.

Slave Address

The MAX7327 has two different 7-bit slave addresses (Figure 5). The addresses are different to communicate to the eight push-pull outputs, 08-015, or the other eight I/Os. The eighth bit following the 7-bit slave address is the R/W bit. It is low for a write command, and high for a read command.
The first (A6), second (A5), and third (A4) bits of the MAX7327 slave address are always 1, 1, and 0 (O0, O1, P2-P5, O6, O7) or 1, 0, and 1 (O8-O15). Connect AD0 and AD2 to GND, $V+$, SDA, or SCL to select slave address bits A3, A2, A1, and A0. The MAX7327 has 16 possible slave addresses (Tables 2 and 3), allowing up to 16 MAX7327 devices on an $I^{2} \mathrm{C}$ bus.

Figure 4. Acknowledge

Accessing the MAX7327
The MAX7327 is a combination of MAX7320 and MAX7323. The group A of eight ports (O0, O1, P2-P5, O6, and O7) corresponding to those of the MAX7323 and the group B of eight ports (O8-O15) corresponding to those of the MAX7320 are read/write separately through their own addresses as shown by Tables 2 and 3, respectively.
A single-byte read from the group A ports of the MAX7327 returns the status of the four I/O ports and the four output ports (read back as inputs), and clear both the internal transition flags and the INT output when the master acknowledges the slave address byte.
A 2-byte read from the group A ports of the MAX7327 returns the status of the four I/O ports and the four output ports (as for a single byte read), followed by the four transition flags for the four I/O ports. The internal transition flags and the INT output are cleared automatically when the master acknowledges the slave address byte (but the previous transition flag data is sent as the second byte).
A multibyte read (more than 2 bytes before the $1^{2} \mathrm{C}$ STOP bit) from the group A ports of the MAX7327 repeatedly returns the port data, alternating with the transition flags. As the port data is resampled for each transmission, and the transition flags are reset each time, a multibyte read continuously returns the current data and identifies any changing I/O ports.
If a port input data change occurs during the read sequence, then INT is reasserted during the I2C STOP bit. The MAX7327 does not generate another interrupt during a single-byte or multibyte MAX7327 read routine. Input port data is sampled during the preceding $1^{2} \mathrm{C}$ acknowledge bit (the acknowledge bit for the $\mathrm{I}^{2} \mathrm{C}$ slave address in the case of a single-byte or 2-byte read).

Figure 5. Slave Address

I2C Port Expander with 12 Push-PuII Outputs and 4 Open-Drain I/Os

A single-byte read from the group B ports of the MAX7327 returns the status of the eight output ports, read back as inputs.
A 2-byte read from the group B ports of the MAX7327 repeatedly returns the status of the eight output ports, read back as inputs.
A multibyte read (more than 2 bytes before the $I^{2} \mathrm{C}$ STOP bit) from the group B ports of the MAX7327 repeatedly returns the status of the eight output ports, read back as inputs.
A single-byte write to the group A or B ports of the MAX7327 sets the logic state of all eight ports.
A multibyte write to the group A or B ports of the MAX7327 repeatedly sets the logic state of all eight ports.

Reading the MAX7327
A read from the group A ports of the MAX7327 starts with the master transmitting the port group's slave address with the R/W bit set to high. The MAX7327 acknowledges the slave address, and samples the status of the ports during the acknowledge bit. INT goes high during the slave address acknowledge. The master can then issue a STOP condition after the acknowledge. The snapshot is taken, and the INT status remains unchanged, if the master terminates the serial transition with a no-acknowledge.
When the master reads one byte from the group A ports of the MAX7327 and subsequently issues a STOP condition (Figure 6), the MAX7327 transmits the current port data, clears the change flags, and resets the tran-

Figure 6. Reading Group A Ports of the MAX7327 (1 Data Byte)

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

sition detection. INT deasserts during the slave acknowledge. The new snapshot data is the current port data transmitted to the master, and therefore, port changes occuring during the transmission are detected. INT remains high until the STOP condition.
When the master reads 2 bytes from the group A ports of the MAX7327 and subsequently issues a STOP condition (Figure 7), the MAX7327 transmits the current port data, followed by the change flags. The change flags are then cleared, and transition detection is reset. INT goes high (high impedance if an external pullup resistor is not fitted) during the slave acknowledge. The new snapshot data is the current port data transmitted to the master, and therefore, port changes occuring during the transmission are detected. INT remains high until the STOP condition.

A read from the group B ports of the MAX7327 starts with the master transmitting the group's slave address with the R/W bit set high. The MAX7327 acknowledges the slave address, and samples the logic state of the output ports during the acknowledge bit. The master can read one or more bytes from the group B ports of the MAX7327 and then issues a STOP condition (Figure 8). The MAX7327 transmits the current port data, read back from the actual port outputs (not the port output latches) during the acknowledge. If a port is forced to a logic state other than its programmed state, the readback reflects this. If driving a capacitive load, the readback port level verification algorithms may need to take the RC rise/fall time into account.
Typically, the master reads one byte from the group B ports of the MAX7327, then issues a STOP condition (Figure 8). However, the master can read two or more

Figure 7. Reading Group A Ports of the MAX7327 (2 Data Bytes)

Figure 8. Reading Group B Ports of MAX7327

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

bytes from the group B ports of the MAX7327, then issues a STOP condition. In this case, the MAX7327 resamples the port outputs during each acknowledge and transmits the new data each time.

Writing to the MAX7327

A write to the group A or B ports of the MAX7327 starts with the master transmitting the group's slave address with the R / \bar{W} bit set low. The MAX7327 acknowledges the slave address, and samples the ports during the acknowledge bit. INT goes high (high impedance if an external pullup resistor is not fitted) during the slave acknowledge only when it writes to the group A ports. The master can now transmit one or more bytes of data. The MAX7327 acknowledges these subsequent bytes of data and updates the corresponding group's ports with each new byte until the master issues a STOP condition (Figure 9).

Applications Information

Port Input and I2C Interface Level Translation from Higher or Lower Logic Voltages
The MAX7327's SDA, SCL, AD0, AD2, RST, INT, and the four I/O ports P2-P5 are overvoltage protected to +6 V , independent of $\mathrm{V}+$. This allows the MAX7327 to operate from a lower supply voltage, such as +3.3 V , while the I2C interface and/or some of the four I/O ports are driven from a higher logic level, such as +5 V .
The MAX7327 can operate from a higher supply voltage, such as +3 V , while the $\mathrm{I}^{2} \mathrm{C}$ interface and/or some
of the four I/O ports P2-P5 are driven from a lower logic level, such as +2.5 V . For $\mathrm{V}+<1.8 \mathrm{~V}$, apply a minimum voltage of $0.8 \times \mathrm{V}+$ to assert a logic-high on any input. For a $\mathrm{V}+\geq 1.8 \mathrm{~V}$, apply a voltage of $0.7 \times \mathrm{V}+$ to assert a logic-high. For example, a MAX7327 operating from a +5 V supply may not recognize a +3.3 V nominal logichigh. One solution for input-level translation is to drive MAX7327 inputs from open-drain outputs. Use a pullup resistor to $V+$ or a higher supply to ensure a high logic voltage greater than $0.7 \times V+$.

Port Output Signal Level Translation

The open-drain output architecture allows for level translation to higher or lower voltages than the MAX7327's supply. Use an external pullup resistor on any output to convert the high-impedance logic-high condition to a positive voltage level. The resistor can be connected to any voltage up to +6 V , and the resistor value chosen to ensure no more than 20 mA to be sunk in logic-low condition. For interfacing CMOS inputs, a pullup resistor value of $220 \mathrm{k} \Omega$ is a good starting point. Use a lower resistance to improve noise immunity, in applications where power consumption is less critical, or where a faster rise time is needed for a given capacitive load.
Each of the 12 push-pull output ports has protection diodes to $\mathrm{V}+$ and GND. When a port output is driven to a voltage higher than $V+$ or lower than GND, the appropriate protection diode clamps the output to a diode drop above $V+$ or below GND. When the MAX7327 is powered down $(\mathrm{V}+=0 \mathrm{~V})$, every output port's protection

Figure 9. Writing the MAX7327

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

diodes to $\mathrm{V}+$ and GND continue to appear as a diode clamp from each output to GND (Figure 10).
Each of the four I/O ports P2-P5 has a protection diode to GND (Figure 11). When a port output is driven to a voltage lower than GND, the protection diode clamps the output to a diode drop below GND.
Each of the four I/O ports P2-P5 also has a $40 \mathrm{k} \Omega$ (typ) pullup resistor that can be enabled or disabled. When a port input is driven to a voltage higher than V_{+}, the body diode of the pullup enable switch conducts and the $40 \mathrm{k} \Omega$ pullup resistor is enabled. When the MAX7327 is powered down ($\mathrm{V}+=0 \mathrm{~V}$), each I/O port appears as a $40 \mathrm{k} \Omega$ resistor in series with a diode connected to 0 V . Input ports are protected to +6 V under any of these circumstances (Figure 11).

Driving LED Loads

When driving LEDs from one of the 12 push-pull outputs, a resistor must be fitted in series with the LED to limit the LED current to no more than 20mA. Connect the LED cathode to the MAX7327 port, and the LED anode to $\mathrm{V}+$ through the series current-limiting resistor, $R_{\text {LED }}$. Set the port output low to light the LED. Choose the resistor value according to the following formula:

$$
\text { RLED }=\left(V_{S U P P L Y}-V_{L E D}-V_{O L}\right) / I_{L E D}
$$

where:
RLED is the resistance of the resistor in series with the LED (Ω).
VSUPPLY is the supply voltage used to drive the LED (V).
VLED is the forward voltage of the LED (V).

VOL is the output low voltage of the MAX7327 when sinking lled (V).
lLED is the desired operating current of the LED (A).
For example, to operate a 2.2 V red LED at 10 mA from a +5 V supply:

$$
\text { RLED }=(5-2.2-0.1) / 0.01=270 \Omega
$$

Driving Load Currents Higher than 20mA

 The MAX7327 can be used to drive loads such as relays that draw more than 20 mA by paralleling outputs. Use at least one output per 20 mA of load current; for example, a 5 V 330 mW relay draws 66 mA , and therefore, requires four paralleled outputs. Any combination of outputs can be used as part of a load-sharing design because any combination of ports can be set or cleared at the same time by writing to the MAX7327. Do not exceed a total sink current of 100 mA for the device.The MAX7327 must be protected from the negative voltage transient generated when switching off inductive loads (such as relays), by connecting a reversebiased diode across the inductive load. Choose the peak current for the diode to be greater than the inductive load's operating current.

Power-Supply Considerations

The MAX7327 operates with a supply voltage of +1.71 V to +5.5 V . Bypass the supply to GND with a ceramic capacitor of at least $0.047 \mu \mathrm{~F}$ as close as possible to the device. For the TQFN version, additionally connect the exposed pad to GND.

Figure 11. MAX7327 Open-Drain I/O Port Structure

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

MAX7327

Functional Diagram

Pin Configurations (continued)

Typical Application Circuit

Chip Information
PROCESS: BiCMOS

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMDN DIMENSIDNS															
PKG	12L 4×4			16L 4×4			20L 4×4			24L 4×4			28L 4×4		
REF.	MIN.	NDM.	MAX.												
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
Al	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05
A2	0.20 REF														
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
e	0.80 BSC.			0.65 BSC.			0.50 BSC.			0.50 BSC.			0.40 BSC.		
K	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50
N	12			16			20			24			28		
ND	3			4			5			6			7		
NE	3			4			5			6			7		
Nedec	VGGB			WGGC			WGGD-1			WGGD-2			WGGE		

$\begin{aligned} & \text { PKG, } \\ & \text { CDDES } \end{aligned}$	EXPDSED PAD VARIATIDNS						
	D2			E2			DOWN BONDS ALLIVED
	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	
T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	NO
T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	NO
T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	NO
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	NO
T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	NO

NOTES:

. DMMENSIONNG \& TOLERANCING COWFORN TO ASME YI4.5N-1994.
all dimensions are in mlumeters. ancles are in degress.
N IS THE TOTAL MMMER OF TERUNALS.
4 THE TERMNAL "1 IDENTIRER AND TERMINL NUMBERNG COMENTION SHAL CONFORM TO JESO 95-1 SPP-012. DETALLS OF TERMNAL 1 IIENTFIER ARE OPTIONAL, BUT MUST EE LOCATED WTHHN THE ZONE NDICATED. THE TERUNGL $\$ 1$ IDENIFIER MAY BE ETHER A MOLD OR MARKED FEATURE.
S. DMEESION b APPLES TO METALLIED TERMINAL ANO IS MEASURED BETWEEN 0.25 mm AND 0.30 mm
© nd and ne refer to the number of terminus on each d and e side respectively.
7. DEPOPULATON IS POSSIBLE N A STMMETRICAL FASHION.
8. COPLANARITY APPLLES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWNG CONFORUS TO JEDEC MO220, EXCEPT FOR T2444-3, T2444-4 AND T2844-1.
© marking is for package orientation reference only.
11. COPLANARTY SHALL NOT EXCEED 0.08 mm
12. WARPAGE SHALL NOT EXCEENO 0.10 mm
4. lead centerunes to be at true postion as defned by basic dimension "e", to.05. 14. NUMEER of LEADS SHOWN ARE FOR REEERENCE ONLY
-drawing nat to scale-

侟DALLAS		
	mownol mina	

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

I2C Port Expander with 12 Push-Pull Outputs and 4 Open-Drain I/Os

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. the terminal \#1 identifier and terminal numbering convention SHALL CONFORM TO JESD 95-1 SPP-012. DETALL OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, bUT MUST BE LOCATED WITHIN THE ZONE indicated. the terminal \#1 identifier may be either a mold OR MARKED FEATURE.
(5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
5. nd and ne refer to the number of terminals on each d and e SIDE RESPECTVELY.
6. dEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
8. REFER TO JEDEC MO-220 EXCEPT D2, E2, \& L DIMENSIONS.
9. WARPAGE SHALL NOT EXCEED 0.10 mm .
© MARKING IS FOR PACKAGE ORIENTATION PURPOSE ONLY.

COMMON DIMENSION				NOTE
REF.	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	
A1	0	-	0.05	
A3	0.20 REF			
b	0.15	0.20	0.25	
D	3.40	3.50	3.60	
E	3.40	3.50	3.60	
e	0.40 BSC .			
K	0.25	-	-	
L	0.30	0.35	0.40	
N	24			
ND	6			
NE	6			

EXPOSED PAD VARIATIONS							
	D2				E2		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
T243A3-1	2.20	2.30	2.40	2.20	2.30	2.40	

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

