: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

General Description

The MAX7408/MAX7411/MAX7412/MAX7415 5th-order, lowpass, elliptic, switched-capacitor filters (SCFs) operate from a single +5 V (MAX7408/MAX7411) or +3 V (MAX7412/MAX7415) supply. The devices draw only 1.2 mA of supply current and allow corner frequencies from 1 Hz to 15 kHz , making them ideal for low-power post-DAC filtering and anti-aliasing applications. They can be put into a low-power mode, reducing supply current to $0.2 \mu \mathrm{~A}$.
Two clocking options are available: self-clocking (through the use of an external capacitor) or external clocking for tighter cutoff-frequency control. An offset-adjust pin allows for adjustment of the DC output level.
The MAX7408/MAX7412 deliver 53dB of stopband rejection and a sharp rolloff with a transition ratio of 1.6. The MAX7411/MAX7415 achieve a sharper rolloff with a transition ratio of 1.25 while still providing 37 dB of stopband rejection. Their fixed response limits the design task to selecting a clock frequency.

Applications		
ADC Anti-Aliasing C		CT2 Base Stations
Post-DAC Filtering Sp		Processing
Selector Guide		
PART	TRANSITION RATIO	OPERATING VOLTAGE (V)
MAX7408	$r=1.6$	+5
MAX7411	$r=1.25$	+5
MAX7412	$r=1.6$	+3
MAX7415	$r=1.25$	+3

Typical Operating Circuit

Features

- 5th-Order, Elliptic Lowpass Filters
- Low Noise and Distortion: -80dB THD + Noise
- Clock-Tunable Corner Frequency (1Hz to 15kHz)
- Single-Supply Operation
+5V (MAX7408/MAX7411)
+3V (MAX7412/MAX7415)
- Low Power
1.2 mA (operating mode)
$0.2 \mu \mathrm{~A}$ (shutdown mode)
- Available in 8-Pin μ MAX/DIP Packages
- Low Output Offset: $\pm 4 \mathrm{mV}$

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX7408CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7408CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7408EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7408EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7411CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7411CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7411EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7411EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7412CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7412CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7412EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7412EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7415CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7415CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX7415EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX7415EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

Pin Configuration

TOP VIEW

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ABSOLUTE MAXIMUM RATINGS

VDD to GND	V
IN, OUT, COM, OS, CLK, SHDN	-0.3V to (VDD +0.3 V)
OUT Short-Circuit Duration	1 sec
Continuous Power Dissipation	
8-Pin DIP (derate $6.90 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\left.0^{\circ} \mathrm{C}\right)552 m W$
8 -Pin μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ}$	$70^{\circ} \mathrm{C}$)............ 330 mW

Operating Temperature Ranges MAX74__C_A. $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ MAX74_ _E_A $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX7408/MAX7411

$\left(V_{D D}=+5 \mathrm{~V}\right.$; filter output measured at OUT, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND , $f_{C L K}=100 \mathrm{kHz}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7408/MAX7411 (continued)

($V_{D D}=+5 \mathrm{~V}$; filter output measured at OUT, $10 \mathrm{k} \Omega$ II 50 pF load to $G N D$ at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND $f_{C L K}=100 \mathrm{kHz}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER REQUIREMENTS						
Supply Voltage	$V_{\text {DD }}$		4.5		5.5	V
Supply Current	IDD	Operating mode, no load		1.16	1.5	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND		0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC		70		dB
SHUTDOWN						
$\overline{\text { SHDN }}$ Input High	VSDH		4.5			V
$\overline{\text { SHDN }}$ Input Low	$\mathrm{V}_{\text {SDL }}$				0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$V_{\text {SHDN }}=0$ to $V_{\text {DD }}$		± 0.2	± 10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—MAX7412/MAX7415

$\left(V_{D D}=+3 V\right.$, filter output measured at OUT pin, $10 k \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND, $f_{C L K}=100 \mathrm{kHz} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
FILTER CHARACTERISTICS					
Corner-Frequency Range	f_{C}	(Note 1)	0.001 to 15		kHz
Clock-to-Corner Ratio	fCLK/fc		100:1		
Clock-to-Corner Tempco			10		ppm $/{ }^{\circ} \mathrm{C}$
Output Voltage Range			0.25	VDD -0.25	V
Output Offset Voltage	VofFSET	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {COM }}=\mathrm{V}_{\mathrm{DD}} / 2$		$\pm 4 \pm 25$	mV
DC Insertion Gain with Output Offset Removed		$\mathrm{V}_{\text {COM }}=\mathrm{V}_{\text {DD }} / 2$ (Note 2)	0	$\begin{array}{ll}0.2 & 0.4\end{array}$	dB
Total Harmonic Distortion plus Noise	THD+N	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=200 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{Vp}-\mathrm{p}, \\ & \text { measurement bandwidth }=22 \mathrm{kHz} \end{aligned}$		-79	dB
Offset Voltage Gain	Aos	OS to OUT		1	V/V
COM Voltage Range	$\mathrm{V}_{\text {com }}$		$\frac{V_{D D}}{2}-0.1$	$\frac{V_{D D}}{2} \quad \frac{V_{D D}}{2}+0.1$	V
Input Voltage Range at OS	Vos	Measured with respect to COM		± 0.1	V
Input Resistance at COM	Rcom		110	180	$\mathrm{k} \Omega$
Clock Feedthrough		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	mVp-p
Resistance Output Load Drive	RL		10	1	$\mathrm{k} \Omega$
Maximum Capacitive Load at OUT	CL		50	500	pF
Input Leakage Current at COM		$\overline{\text { SHDN }}=\mathrm{GND}, \mathrm{V}_{\text {COM }}=0$ to $\mathrm{V}_{\text {DD }}$		$\pm 0.2 \pm 10$	$\mu \mathrm{A}$
Input Leakage Current at OS		$\mathrm{V}_{\text {OS }}=0$ to $\mathrm{V}_{\text {D }}$		$\pm 0.2 \pm 10$	$\mu \mathrm{A}$

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7412/MAX7415 (continued)
($\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$, filter output measured at OUT pin, $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{OS}=\mathrm{COM}, 0.1 \mu \mathrm{~F}$ from COM to GND, $f_{C L K}=100 \mathrm{kHz} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCK						
Internal Oscillator Frequency	fosc	Cosc $=1000 \mathrm{pF}$ (Note 3)	19	27	34	kHz
Clock Output Current (Internal Oscillator Mode)	ICLK	$V_{\text {CLK }}=0$ or 3 V		± 12	± 20	$\mu \mathrm{A}$
Clock Input High	V_{IH}		2.5			V
Clock Input Low	VIL				0.5	V
POWER REQUIREMENTS						
Supply Voltage	VDD		2.7		3.6	V
Supply Current	IDD	Operating mode, no load		1.13	1.5	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND		0.2	1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	Measured at DC		70		dB
SHUTDOWN						
$\overline{\text { SHDN }}$ Input High	VSDH		2.5			V
$\overline{\text { SHDN }}$ Input Low	VSDL				0.5	V
$\overline{\text { SHDN }}$ Input Leakage Current		$V \overline{\text { SHDN }}=0$ to $V_{\text {DD }}$		± 0.2	± 10	$\mu \mathrm{A}$

ELLIPTIC FILTER ($r=1.6$) CHARACTERISTICS—MAX7408/MAX7412

($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ for MAX7408, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7412; filter output measured at OUT; $10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to GND at OUT; $\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$; $V_{C O M}=V_{O S}=V_{D D} / 2 ; f C L K=100 \mathrm{kHz} ; T_{A}=T_{\text {MIN }}$ to $T_{M A X}$; unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Gain with DC Gain Error Removed (Note 4)	$\mathrm{fin}=0.34 \mathrm{fc}$	-0.4	-0.2	0.4	dB
	$\mathrm{fin}^{\mathrm{N}}=0.63 \mathrm{f} \mathrm{C}$	-0.4	0.2	0.4	
	$\mathrm{fin}^{\mathrm{N}}=0.84 \mathrm{f} \mathrm{C}$	-0.4	-0.2	0.4	
	$\mathrm{fin}^{\mathrm{L}}=0.96 \mathrm{ff}$	-0.4	0.2	0.4	
	$\mathrm{fiN}_{\mathrm{I}}=\mathrm{f}$ C	-0.7	-0.2	0.2	
	$\mathrm{fin}^{\mathrm{N}}=1.60 \mathrm{fC}$		-53.4	-50	
	$\mathrm{fin}^{\mathrm{N}}=1.90 \mathrm{fC}$		-53.4	-50	
	$\mathrm{fin}^{\mathrm{N}}=4.62 \mathrm{f} \mathrm{C}$		-53.4	-50	

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

ELLIPTIC FILTER ($r=1.25$) CHARACTERISTICS—MAX7411/MAX7415

$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7411, $\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}$ for MAX7415; filter output measured at OUT; $10 \mathrm{k} \Omega$ II 50 pF load to GND at OUT ; $\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}$, $V_{C O M}=V_{O S}=V_{D D} / 2 ; f_{C L K}=100 \mathrm{kHz} ; T_{A}=T_{\text {MIN }}$ to $T_{M A X}$; unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Gain with DC Gain Error Removed (Note 4)	$\mathrm{fin}=0.38 \mathrm{fc}$	-0.4	-0.2	0.4	dB
	$\mathrm{fin}^{\mathrm{I}}=0.68 \mathrm{f} \mathrm{C}$	-0.4	0.2	0.4	
	$\mathrm{fin}^{\mathrm{N}}=0.87 \mathrm{f} \mathrm{C}$	-0.4	-0.2	0.4	
	$\mathrm{fin}^{\mathrm{I}}=0.97 \mathrm{f} \mathrm{C}$	-0.4	0.2	0.4	
	$\mathrm{fIN}=\mathrm{fC}$	-0.7	-0.2	0.2	
	$\mathrm{fin}_{\mathrm{I}}=1.25 \mathrm{f} \mathrm{C}$		-38.5	-34	
	$\mathrm{fin}^{\mathrm{N}}=1.43 \mathrm{fc}$		-37.2	-35	
	$\mathrm{fin}=3.25 \mathrm{f} \mathrm{C}$		-37.2	-35	

Note 1: The maximum f_{c} is defined as the clock frequency $\mathrm{f}_{\mathrm{CL}} \mathrm{K}=100 \cdot \mathrm{f}_{\mathrm{C}}$ at which the peak SINAD drops to 68 dB with a sinusoidal input at 0.2 fc .
Note 2: $D C$ insertion gain is defined as $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {IN }}$.
Note 3: fosc $(\mathrm{kHz}) \approx 27 \cdot 10^{3} / \operatorname{Cosc}(\operatorname{Cosc}$ in pF$)$.
Note 4: The input frequencies, f / N, are selected at the peaks and troughs of the ideal elliptic frequency responses.
$\left(V_{D D}=+5 V\right.$ for MAX7408/MAX7411, $V_{D D}=+3 V$ for MAX7412/MAX7415; fCLK $=100 k H z ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V\right.$ for MAX7408/MAX7411, $V_{D D}=+3 V$ for MAX7412/MAX7415; fCLK $=100 \mathrm{kHz} ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

MAX7411
TOTAL HARMONIC DISTORTION PLUS NOISE vs. INPUT SIGNAL AMPLITUDE

Table A. THD + Noise Test Conditions

LABEL	$\mathbf{f} \mathbf{N}$ $\mathbf{(H z)}$	$\mathbf{f c}$ $\mathbf{(k H z)}$	$\mathbf{f c L K}$ $\mathbf{(k H z)}$	MEASUREMENT BANDWIDTH (kHz)
A	200	1	100	22
B	1 k	5	500	80

5th-Order, Lowpass, Elliptic, Switched-Capacitor

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 \mathrm{~V}\right.$ for MAX7408/MAX7411, $V_{D D}=+3 V$ for MAX7412/MAX7415; $f C L K=100 k H z ; \overline{S H D N}=V_{D D} ; V_{C O M}=V_{O S}=V_{D D} / 2$; $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$; unless otherwise noted.)

MAX7412
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. INPUT SIGNAL AMPLITUDE

MAX7415
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. INPUT SIGNAL AMPLITUDE

INTERNAL OSCILLATOR FREQUENCY
vs. TEMPERATURE

INTERNAL OSCILLATOR PERIOD vs. LARGE CAPACITANCE (in nF)

DC OFFSET VOLTAGE vs. TEMPERATURE

INTERNAL OSCILLATOR FREQUENCY
vs. SUPPLY VOLTAGE

DC OFFSET VOLTAGE
vs. SUPPLY VOLTAGE

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

PIN	NAME	FUNCTION
1	COM	Common Input Pin. Biased internally at mid-supply. Bypass externally to GND with 0.1 $\mu \mathrm{F}$ capacitor. To override internal biasing, drive with an external supply.
2	IN	Filter Input
3	GND	Ground
4	VDD	Positive Supply Input, +5 V for MAX7408/MAX74111 or +3V for MAX7412/MAX7415
5	OUT	Filter Output
6	OS	Offset Adjust Input. To adjust output offset, bias OS with a resistive voltage-divider between an external supply and ground. Connect OS to COM if no offset adjustment is needed.
7	$\overline{\text { SHDN }}$	Shutdown Input. Drive low to enable shutdown mode; drive high or connect to VDD for normal operation. 8
CLK	Clock Input. Connect an external capacitor (Cosc) from CLK to GND to set the internal oscillator frequency. To override the internal oscillator, connect to an external clock.	

Detailed Description

The MAX7408/MAX7411/MAX7412/MAX7415 family of 5th-order, elliptic, lowpass filters provides sharp rolloff with good stopband rejection. All parts operate with a 100:1 clock-to-corner frequency ratio and a 15 kHz maximum corner frequency.
Most switched-capacitor filters (SCFs) are designed with biquadratic sections. Each section implements two pole-zero pairs, and the sections can be cascaded to produce higher order filters. The advantage to this approach is ease of design. However, this type of design is highly sensitive to component variations if any section's Q is high. The MAX7408/MAX7411/ MAX7412/MAX7415 use an alternative approach, which is to emulate a passive network using switched-capacitor integrators with summing and scaling. The passive network may be synthesized using CAD programs, or may be found in many filter books. Figure 1 shows a basic 5th-order ladder elliptic filter structure.
A switched-capacitor filter that emulates a passive ladder filter retains many of the same advantages. The component sensitivity of a passive ladder filter is low when compared to a cascaded biquadratic design,

Figure 1. 5th-Order Ladder Elliptic Filter Network
because each component affects the entire filter shape rather than a single pole-zero pair. In other words, a mismatched component in a biquadratic design has a concentrated error on its respective poles, while the same mismatch in a ladder filter design spreads its error over all poles.

Elliptic Characteristics
Lowpass elliptic filters such as the MAX7408/MAX7411/ MAX7412/MAX7415 provide the steepest possible rolloff with frequency of the four most common filter types (Butterworth, Bessel, Chebyshev, and elliptic). The high Q value of the poles near the passband edge combined with the stopband zeros allows for the sharp attenuation characteristic of elliptic filters, making these devices ideal for anti-aliasing and post-DAC filtering in single-supply systems (see the Anti-Aliasing and PostDAC Filtering section).
In the frequency domain, the first transmission zero causes the filter's amplitude to drop to a minimum level. Beyond this zero, the response rises as the frequency increases until the next transmission zero. The stopband begins at the stopband frequency, fs. At frequencies above fs, the filter's gain does not exceed the gain at fs. The corner frequency, fc , is defined as the point where the filter output attenuation falls just below the passband ripple. The transition ratio (r) is defined as the ratio of the stopband frequency to the corner frequency:

$$
r=\mathrm{fS} / \mathrm{fc}
$$

The MAX7408/MAX7412 have a translation ratio of 1.6 and typically 53 dB of stopband rejection. The MAX7411/MAX7415 have a transition ratio of 1.25 (providing a steeper rolloff) and typically 37 dB of stopband rejection.

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Figure 2. Elliptic Filter Response
Clock Signal
External Clock
These SCFs are designed for use with external clocks that have a 40% to 60% duty cycle. When using an external clock, drive the CLK pin with a CMOS gate powered from 0 to VDD. Varying the rate of the external clock adjusts the corner frequency of the filter:

$$
{ }^{\mathrm{f}} \mathrm{C}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}
$$

Internal Clock
When using the internal oscillator, the capacitance (COSC) on CLK determines the oscillator frequency:

$$
\operatorname{fosc}(\mathrm{kHz})=\frac{\mathrm{k}}{\operatorname{CoSC}(\mathrm{pF})}
$$

Since Cosc is in the low picofarads, minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. Varying the rate of the internal oscillator adjusts the filter's corner frequency by a 100:1 clock-to-corner frequency ratio. For example, an internal oscillator frequency of 100 kHz produces a nominal corner frequency of 1 kHz .

Input Impedance vs. Clock Frequencies

 The MAX7408/MAX7411/MAX7412/MAX7415's input impedance is effectively that of a switched-capacitor resistor (see the following equation), and is inversely proportional to frequency. The input impedance values determined by the equation represent the average input impedance, since the input current is not continuous. As a rule, use a driver with an output resistance less than 10% of the filter's input impedance.

Figure 3. Offset Adjustment Circuit
Estimate the input impedance of the filter by using the following formula:

$$
Z_{I N}=\frac{1}{\left(f_{C L K} \times C_{I N}\right)}
$$

where $\mathrm{f}_{\mathrm{CLK}}=$ clock frequency and $\mathrm{CIN}_{\mathrm{IN}}=1 \mathrm{pF}$.

Low-Power Shutdown Mode

The MAX7408/MAX7411/MAX7412/MAX7415 have a shutdown mode that is activated by driving $\overline{\text { SHDN }}$ low. In shutdown mode, the filter supply current reduces to $0.2 \mu \mathrm{~A}$, and the output of the filter becomes high impedance. For normal operation, drive $\overline{\text { SHDN }}$ high or connect to VDD.

Applications Information

Offset (OS) and Common-Mode (COM) Input Adjustment

COM sets the common-mode input voltage and is biased at mid-supply with an internal resistor-divider. If the application does not require offset adjustment, connect OS to COM. For applications where offset adjustment is required, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 3. For applications that require DC level shifting, adjust OS with respect to COM. (Note: Do not leave OS unconnected.) The output voltage is represented by these equations:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{COM}}\right)+\mathrm{V}_{\mathrm{OS}} \\
& \mathrm{~V}_{\mathrm{COM}}=\frac{\mathrm{V}_{\mathrm{DD}}}{2} \text { (typical) }
\end{aligned}
$$

where ($\left.\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{COM}}\right)$ is lowpass filtered by the SCF and OS is added at the output stage. See the Electrical

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Characteristics table for the input voltage range of COM and OS. Changing the voltage on COM or OS significantly from mid-supply reduces the dynamic range.

Power Supplies

The MAX7408/MAX7411 operate from a single +5 V supply and the MAX7412/MAX7415 operate from a single $+3 V$ supply. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor. If dual supplies are required, connect COM to the system ground and GND to the negative supply. Figure 5 shows an example of dual-supply operation. Single-supply and dual-supply performance are equivalent. For either single-supply or dual-supply operation, drive CLK and SHDN from GND (V- in dual supply operation) to VDD. Use the MAX7408/MAX7411 for ± 2.5, and use the MAX7412/MAX7415 for $\pm 1.5 \mathrm{~V}$. For $\pm 5 \mathrm{~V}$ dual-supply applications, see the MAX291/ MAX292/MAX295/MAX296 and MAX293/MAX294/ MAX297 data sheets.

Input Signal Amplitude Range

The optimal input signal range is determined by observing the voltage level at which the signal-to-noise plus distortion (SINAD) ratio is maximized for a given corner frequency. The Typical Operating Characteristics show the THD+Noise response as the input signal's peak-topeak amplitude is varied.

Anti-Aliasing and Post-DAC Filtering

When using the MAX7408/MAX7411/MAX7412/ MAX7415 for anti-aliasing or post-DAC filtering, synchronize the DAC (or ADC) and the filter clocks. If the

*CONNECT SHDN TO V- FOR LOW-POWER SHUTDOWN MODE.
Figure 5. Dual-Supply Operation
clocks are not synchronized, beat frequencies may alias into the desired passband.

Harmonic Distortion

Harmonic distortion arises from nonlinearities within the filter. These nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 1 lists typical harmonic distortion values with a $10 \mathrm{k} \Omega$ load at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Table 1. Typical Harmonic Distortion

FILTER	fCLK (kHz)	$\begin{gathered} \mathrm{fin} \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{gathered} V_{I N} \\ (V p-p) \end{gathered}$	TYPICAL HARMONIC DISTORTION (dB)			
				2nd	3rd	4th	5th
MAX7408	500	1k	4	TBD	TBD	TBD	TBD
	100	200		TBD	TBD	TBD	TBD
MAX7411	500	1k	4	TBD	TBD	TBD	TBD
	100	200		TBD	TBD	TBD	TBD
MAX7412	500	1k	2	TBD	TBD	TBD	TBD
	100	200		TBD	TBD	TBD	TBD
MAX7415	500	1k	2	TBD	TBD	TBD	TBD
	100	200		TBD	TBD	TBD	TBD

5th-Order, Lowpass, Elliptic, Switched-Capacitor Filters

Chip Information

TRANSISTOR COUNT: 1457

5th－Order，Lowpass，Elliptic， Switched－Capacitor Filters

