imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Multichannel Integrated Power Management IC

General Description

The MAX77752 is a highly-integrated power management solution including three step-down converters, a low-dropout linear regulator, two external regulators enable outputs, two dedicated load switch controllers, and an inrush-current limiter which can be configured as a third load switch controller using OTP. The MAX77752 provides a combination of high-performance power management components, high-accuracy monitoring, and a customized top-level controller that results in an efficient, size optimized solution.

The 40-pin, 5mm x 5mm x 0.8mm, 0.4mm pitch TQFN package is ideal for space constrained applications.

Numerous factory programmable options allow the device to be tailored for many variations of the end application.

Applications

- Solid-State Drive Systems
- Handheld Devices
- Gaming Consoles
- Drones
- Automation Systems
- Cameras

Simplified Block Diagram

Benefits and Features

- Highly Integrated
 - Three Buck Regulators
 - Integrated High-Accuracy Brownout Comparators
 - One Low-Dropout Linear Regulator
 Low-Input Voltage
 - Two Dedicated Load Switch Controllers
 - One Inrush-Current Limiter, Configurable to be Load Switch 3 Controller Using OTP
 - Two External Regulator Enable Outputs
 - Voltage Monitor for Backup Power Control
- Highly Flexible and Configurable
 - I²C-Compatible Interface
 - · Factory OTP Options Available
 - Flexible Power Sequencer
 - Configurable Sleep-State Control
- Small Size
 - 40-Pin, 5mm x 5mm x 0.8mm, 0.4mm Pitch TQFN
 - 70mm² Total Solution Size

Ordering Information appears at end of data sheet.

Multichannel Integrated Power Management IC

Absolute Maximum Ratings

юр	
IN_DRV to GND	0.3V to +16.0V
IN_SNS to GND (Note 1)	0.3V to +6.0V
INR_OUT to GND	0.3V to +6.0V
SYS to GND	0.3V to +6.0V
IN_PHUP to GND	0.3V to +6.0V
RESET_L to GND	0.3V to V _{SYS} +0.3V
LP_REQ to GND	0.3V to V _{SYS} +0.3V
LP_ACK to GND	0.3V to V _{SYS} +0.3V
LP_MODE to GND	0.3V to V _{SYS} +0.3V
WP_L to GND (Note 2)	0.3V to V _{H INT}
PGOOD to GND (Note 2)	0.3V to V _H INT
EREG_EN1 to GND (Note 2)	0.3V to V _H INT
EREG_EN2 to GND	0.3V to 6.0V
EREG_POK to GND	0.3V to V _{SYS} +0.3V
BLD_IO to GND (Note 2)	0.3V to +6.0V
WP_L Sink Current	35mA
RESET_L Sink Current	35mA
PGOOD Sink Current	35mA
EREG_EN1 Sink Current	35mA
EREG_EN2 Sink Current	35mA
LP_REQ Sink Current	35mA
DGND to GND	0.3V to +0.3V
LDO	
IN LDO to GND	0.3V to +6.0V
OUT LDO to GND	0.3V to VIN I DO+0.3V
-	<u>_</u>

Buck

INB1, INB2, INB3 to SYS	0.3V to +0.3V
INB1 to PGND1	0.3V to +6.0V
INB2 to PGND2	0.3V to +6.0V
INB3 to PGND3	0.3V to +6.0V
LX1 to PGND1 (Note 3)	0.3V to VINIB1+0.3V
LX2 to PGND2 (Note 3)	0.3V to VINB2+0.3V
LX3 to PGND3 (Note 3)	0.3V to VINB3+0.3V
LX1. LX2 RMS Current per pin (T ₁ = +	-110°C)
(RMS current per pin $(T_1 = +110^{\circ}C)$)	
LX3 RMS Current per pin (T ₁ = +110°	C)
(RMS current per pin $(T_1 = +110^{\circ}C)$)	
FBB1, FBB2, FBB3 to GND	0.3V to V _{SYS} +0.3V
PGND1, PGND2, PGND3 to GND	0.3V to +0.3V
2 _C	
SDA. SCL to GND0.3	V to VINI VIO 12C+0.3V
SDA Sink Current	
Load Switch	
LSW DRV1 to GND	0.3V to +16.0V
LSW DRV2 to GND	0.3V to +16.0V
FBLSW1 to GND	0.3V to Vsvs+0.3V
FBLSW2 to GND	0.3V to Vsvs+0.3V
Continuous Power Dissipation (Multilaye	r Board)
T _A = +70°C, derate 35.70mW/°C	,
above +70°C	mW to 2857.1mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	40°C to +150°C
Soldering Temperature (reflow)	+260°C

Note 1: IN_SNS voltage ramp rates greater than 2.8V/µs trigger the internal ESD device and should be avoided. The ESD device recovers if exposed to an excessive ramp rate.

Note 2: V_{H_INT} is the maximum voltage of V_{SYS} and V_{IN_PHUP} .

Note 3: The specified voltage limitation is for steady state conditions. Dead times of a few nano seconds exist during the dynamic BUCK regulator transitions from inductor charging to inductor discharging and vice versa. These dead times allow internal clamping diodes to PGNDx and INBx to forward bias (Vf~1V). When the LXx waveform is observed on a high-bandwidth oscilloscope (≥100MHz), the LXx transition edges are commonly seen with 1.5V spikes. These spikes are due to (1) the internal clamping diode forward voltage and (2) the high rate of current change through the current loop's inductance (V = L x di/dt). Designs must follow the recommended printed circuit board (PCB) layout in order to minimize this current loop's inductance.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

TQFN

PACKAGE CODE	T4055+1C			
Outline Number	21-0140			
Land Pattern Number	<u>90-0016</u>			
Thermal Resistance, Single-Layer Board:				
Junction to Ambient (θ_{JA})	45°C/W			
Junction to Case (θ _{JC})	2°C/W			
Thermal Resistance, Four-Layer Board:				
Junction to Ambient (θ_{JA})	28°C/W			
Junction to Case (θ _{JC})	2°C/W			

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics—Global Resources

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY CURRENT	^ 					
OFF State Quiescent Current	IQSYS_OFF	V _{SYSUVLO} < V _{SYS} < V _{SYS_RESET} (rising), OTP_INT_PU = 1, all regulators are disabled. This includes any central bias currents disabled (EREG_EN1 pulled to V _{SYS})		86	135	μΑ
DEVSLP State Quiescent Current		V _{SYS} = 3.3V, V _{SYS} > V _{SYS_RESET} , OTP_INT_PU = 0, PMIC in DEVSLP State, Buck2, Buck3, LDO enabled in low-power mode. No load on all regulators. All other regulators disabled		70	125	
	IQSYS_DEVSLP	V _{SYS} = 5V, V _{SYS} > V _{SYS_RESET} , OTP_INT_PU = 0, PMIC in DEVSLP state, Buck2, Buck3, LDO enabled in low-power mode. No load on all regulators. All other regulators disabled		90	155	- μA
Buck Quiescent Supply Current	IQSYS_BUCK	V _{SYS} = 5V, V _{SYS} > V _{SYS_RESET} , all bucks enabled in normal-power mode and skip mode		233	420	μA

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
BIAS AND REFERENCE CU	RRENT GENER	ATOR	1				
Operating Voltage Range	V _{SYS}		2.6		5.5	V	
Quiescent Supply Current	I _{QCBRG}	V _{SYS} > V _{SYSUVLO} (rising)		25		μA	
Shutdown Supply Current		V _{SYS} < V _{SYSUVLO} (falling)		0.1		μA	
Bias Enable time	^t BIASOK			100		μs	
POR COMPARATOR (INTER	RNAL)						
Quiescent Supply Current	I _{QSYS_POR}			1		μA	
POR Undervoltage-Lockout Threshold	V _{POR}	V _{SYS} falling		1.33		V	
POR Threshold Hysteresis	V _{HYS_POR}	V _{SYS} rising		160		mV	
Response Time		100mV overdrive		300		μs	
	+	V _{SYS} rising across POR (1V to 2V)		100		110	
POR to UVLO Delay	^I PORUVLO	V _{SYS} falling across POR		50		μs	
SYS UNDERVOLTAGE-LOCKOUT COMPARATOR							
Quiescent Supply Current	I _{QSYS_UVLO}			1		μA	
SYS Undervoltage-Lockout Threshold	V _{SYSUVLO}	V _{SYS} falling	2.00	2.10	2.25	V	
SYS Undervoltage-Lockout Hysteresis	VINUVLO_HYS			400		mV	
SYS Undervoltage-Lockout Response Time	^t sysuvlo	100mV overdrive, falling edge		150		μs	
SYS RESET COMPARATOR							
Quiescent Supply Current	I _{QSYS_RESET}			3		μA	
Reset Falling Threshold Range	V _{SYS_RESET}	Programmed by SYSRST[3:0]	2650		4150	mV	
Reset Threshold Step Size				100		mV	
Reset Threshold Hysteresis Range	V _{SYSRESET_} HYS	Programmed by SYSRSTHYS[1:0]	150		300	mV	
Reset Threshold Hysteresis Step Size				50		mV	
Reset Comparator Response Time	^t sysreset			5		μs	
Reset Comparator Accuracy		SYSRSTTH[3:0] = 0x0, 0x1, 0x5, 0xA, 0xF	-2.5		+2.5	%	

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SYS BROWNOUT COMPAR	ATOR					
Brownout Falling Threshold Range	V _{SYS_BO}	Programmed by SYSBOTH[3:0]	2800		4300	mV
Brownout Threshold Step Size				100		mV
Brownout Threshold Hysteresis Range	V _{SYS_BO_HYS}	Programmed by SYSBOHYS[1:0]	150		300	mV
Brownout Threshold Hysteresis Step Size				50		mV
		SYS_BO_PR[1:0] = 0b00 (fast), PMIC not in DEVSLP state, 100mV under-drive with falling slew rate of 150mV/µs		1.04		
Brownout Comparator Response Time	tavaaa	SYS_BO_PR[1:0] = 0b01 (med-fast), PMIC not in DEVSLP state, 100mV under-drive with falling slew rate of 150mV/µs		1.14		
	USYSBO	SYS_BO_PR[1:0] = 0b10 (med-slow), PMIC not in DEVSLP state, 100mV under-drive with falling slew rate of 150mV/µs		1.30		μs
		SYS_BO_PR[1:0] = 0b11 (slow), PMIC not in DEVSLP state, 100mV under-drive with falling slew rate of 150mV/µs		1.68		
Brownout Comparator Response Time (DEVSLP)	t _{SYSBO}	PMIC in DEVSLP state, 100mV under- drive with falling slew rate of 150mV/µs		3.53		μs
		SYS_BO_PR[1:0] = 0b00 (fast), PMIC not in DEVSLP state		13.4		
Quiescent Supply Current		SYS_BO_PR[1:0] = 0b01 (med-fast), PMIC not in DEVSLP state		10.4		
Quescent Supply Current	'QSYS_BO	SYS_BO_PR[1:0] = 0b10 (med-slow), PMIC not in DEVSLP state		7.4		μ
		SYS_BO_PR[1:0] = 0b11 (slow), PMIC not in DEVSLP state		4.4		
Quiescent Supply Current (DEVSLP)	I _{QSYS_BO}	PMIC in DEVSLP state		1.3		μA
Brownout Comparator Accuracy		SYSBO[3:0] = 0x0, 0x1, 0x5, 0xA, 0xF, PMIC is not in DEVSLP state	-2.5		+2.5	%
Brownout Comparator Accuracy (DEVSLP)		SYSBO[3:0] = 0x0, 0x1, 0x5, 0xA, 0xF, PMIC is in DEVSLP state	-2.5		+2.5	%
Brownout Timer Period	t _{BO}	T_BO_EN = 1		100		ms

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
OSCILLATOR						
Clock Frequency	CLK32K	V _{SYS} = 5V		31.5		kHz
		V _{SYS} = 3.3V	-10		+10	0/
Oscillator Tolerance		V _{SYS} = 5V	-10		+10	70
WP_L OUTPUT (OPEN DRA	IN)					
WP_L Output-Voltage Low	V _{OL}	I _{SINK} = 2mA			0.4	V
WP_L Open Leakage		$V_{SYS} = V_{WP L} = 5.5V, T_A = +25^{\circ}C,$ OTP_INT_PU[0] = 0b0		0.001	1	
Current		V _{SYS} = V _{WP_L} = 5.5V, T _A = +85°C, OTP_INT_PU[0] = 0b0		0.01		μΑ
WP_L Falling Edge Time		$C_{WP_L} = 25pF, V_{WP_L} = 1.8V \ge 0$		25		ns
		WP_L_DLY[1:0] = 0b00 (based on an internal 31.5kHz clock)		0		μs
WP_L Output Deassert	^t wpdly	WP_L_DLY[1:0] = 0b01 (based on an internal 31.5kHz clock)		254		
Delay Time		WP_L_DLY[1:0] = 0b10 (based on an internal 31.5kHz clock)		508		
		WP_L_DLY[1:0] = 0b11 (based on an internal 31.5kHz clock)		1016		
WP_L Output Assert Delay Time				0		μs
WP_L Pullup Resistance	R _{PU_WP_L}	Pulled up to V _{IN_VIO} , OTP_INT_PU[0] = 0b1	50	100	170	kΩ
RESET_L OUTPUT (OPEN I	DRAIN)					
RESET_L Output-Voltage Low	V _{OL}	I _{SINK} = 2mA			0.4	V
RESET_L Open Leakage		V _{SYS} = V _{RESET_L} = 5.5V, T _A = +25°C, OTP_INT_PU[0] = 0b0		0.001	1	μA
Current		$V_{SYS} = V_{RESET_L} = 5.5V, T_A = +85^{\circ}C,$ OTP_INT_PU[0] = 0b0		0.01		
RESET_L Falling Edge Time		$C_{\text{RESET}_L} = 25 \text{pF}, V_{\text{RESET}_L} \text{ falling}$ from 1.8V ≥ 0		25		ns

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
RESET_L Output Deassert		RST_L_DLY[1:0] = 0b00 (based on an internal 31.5kHz clock)		0		
	t	RST_L_DLY[1:0] = 0b01 (based on an internal 31.5kHz clock)		254		
Delay Time	RSTDLY	RST_L_DLY[1:0] = 0b10 (based on an internal 31.5kHz clock)		508		μs
		RST_L_DLY[1:0] = 0b11 (based on an internal 31.5kHz clock)		1016		
RESET_L Output Assert Delay Time				0		μs
RESET_L Pullup Resistance	R _{PU_RESET_L}	Pulled up to V _{IN_VIO,} OTP_INT_PU[0] = 0b1	50	100	170	kΩ
PGOOD OUTPUT (OPEN DE	RAIN)					
PGOOD Output-Voltage Low	V _{OL}	I _{SINK} = 2mA			0.4	V
PGOOD Open Leakage		V _{SYS} = V _{PGOOD} = 5.5V, T _A = +25°C, OTP_INT_PU[0] = 0b0		0.001	1	
Current		V _{SYS} = V _{PGOOD} = 5.5V, T _A = +85°C, OTP_INT_PU[0] = 0b0		0.01		μΑ
PGOOD Falling Edge Time		$C_{PGOOD} = 25 pF, V_{PGOOD} = 1.8 V \ge 0$		25		ns
		PG_DLY[1:0] = 0b00 (based on an internal 31.5kHz clock)		31.5		
PGOOD Output Assert	•	PG_DLY[1:0] = 0b01 (based on an internal 31.5kHz clock)		254		
Delay Time	^I PGOODDLY	PG_DLY[1:0] = 0b10 (based on an internal 31.5kHz clock)		508		μs
		PG_DLY[1:0] = 0b11 (based on an internal 31.5kHz clock)		1016		
PGOOD Output Deassert Delay Time				0		μs
PGOOD Pullup Resistance	R _{PU_PGOOD}	Pulled up to V _{IN_VIO} , OTP_INT_PU[0] = 0b1	50	100	170	kΩ

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LP_MODE INPUT						,
LP_MODE I/O Pad Operating Voltage	V _{SYS}		2.6		5.5	V
LP_MODE Input-Low Voltage	V _{IL}				0.4	V
LP_MODE Input-High Voltage	VIH		1.4			V
LP_MODE Input Hysteresis	V _{HYS}			50		mV
LP_MODE Input Leakage		$V_{SYS} = V_{IN_VIO} = 5.5V,$ $V_{LP_MODE} = 0V$ and 5.5V, $T_A = +25^{\circ}C$		0.001	1	
Current		$V_{SYS} = V_{IN_VIO} = 5.5V,$ $V_{LP_MODE} = 0V$ and 5.5V, $T_A = +85^{\circ}C$		0.01		μΑ
LP_MODE Debounce	^t LPMD_DBNC	Debounce applies to rising and falling edge. Does not account for oscillator tolerance (Note 4)		95	127	μs
LP_MODE I/O Pad Undervoltage Lockout	V _{SYSUVLO}	V _{SYS} falling		2.1		V
LP_MODE Mask Deassertion Timer	^t LPMD_MSK		16	20	25	ms
LP_ACK INPUT						
I/O Pad Operating Voltage	V _{SYS}		2.6		5.5	V
Input Low Voltage	V _{IL}				0.4	V
Input High Voltage	V _{IH}		1.4			V
Input Hysteresis	V _{HYS}			50		mV
		V _{SYS} = 5.5V, V _{LP_ACK} = 0V and 5.5V, T _A = +25°C, OTP_INT_PU[0] = 0b0		0.001	1	
		$V_{SYS} = 5.5V, V_{LP_ACK} = 0V \text{ and } 5.5V, T_A = +85^{\circ}C, OTP_INT_PU[0] = 0b0$		0.01		μΑ
LP_ACK Pullup Resistance	R _{PU_LP_ACK}	Pulled up to V _{IN_VIO,} OTP_INT_PU[0] = 0b1	50	100	170	kΩ

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LP_REQ OUTPUT (OPEN D	RAIN)					,
LP_REQ Output Voltage Low	V _{OL}	I _{SINK} = 2mA			0.4	V
LP REQ Open Leakage		V _{SYS} = V _{LP_REQ} = 5.5V, T _A = +25°C, OTP_INT_PU[0] = 0b0		0.001	1	
Current		V _{SYS} = V _{LP_REQ} = 5.5V, T _A = +85°C, OTP_INT_PU[0] = 0b0		0.01		μΑ
LP_REQ Falling Edge Time		$C_{LP_REQ} = 25pF, V_{LP_REQ} = 1.8V \ge 0$		25		ns
		LP_REQ_T_EN = 0, PMIC in master mode (OTP_SLP_MSTRSLV = 0), applies during DevSlp exit sequence		31.75		μs
LP_REQ Delay	'LPREQ_LOW	LP_REQ_T_EN = 1, PMIC in master mode (OTP_SLP_MSTRSLV = 0), applies during DevSlp exit sequence		20		ms
LP_REQ Pullup Resistance	R _{PU_LP_REQ}	Pulled up to V _{IN_VIO} , OTP_INT_PU[0] = 0b1	50	100	170	kΩ
EREG_ENx OUTPUT (OPEN	DRAIN)	· · · · ·				
EREG_EN1 Output-Voltage Low	V _{OL}	I _{SINK} = 2mA			0.4	V
EREG_EN2 Output-Voltage Low	V _{OL}	I _{SINK} = 10mA			0.4	V
EREG_ENx Open		$V_{SYS} = V_{EREG_ENx} = 5.5V, T_A = +25^{\circ}C,$ OTP_INT_PU[0] = 0b0		0.001	1	
Leakage Current		V _{SYS} = V _{EREG_ENx} = 5.5V, T _A = +85°C, OTP_INT_PU[0] = 0b0		0.01		μΑ
EREG_ENx Falling Edge Time		C _{EREG_ENx} = 25pF, V _{EREG_ENx} = 1.8V ≥ 0		25		ns
EREG_EN1 Pullup Resistance	R _{PU_EREG_} ENx	Pulled up to V _{H_INT} , OTP_INT_PU[0] = 0b1	50	100	170	kΩ
EREG_EN2 Pullup Resistance	R _{PU_EREG_} ENx	Pulled up to V _{IN_VIO} , OTP_INT_PU[0] = 0b1	50	100	170	kΩ
EREG_POK INPUT	1					,
I/O Pad Operating Voltage	V _{SYS}		2.6		5.5	V
Input Low Voltage	VIL				0.4	V
Input High Voltage	VIH		1.4			V
Input Hysteresis	V _{HYS}			50		mV

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		V _{SYS} = 5.5V, V _{EREG_POK} = 0V and 5.5V, T _A = +25°C, OTP_INT_PU[0] = 0b0		0.001	1	
input Leakage Current		V _{SYS} = 5.5V, V _{EREG_POK} = 0V and 5.5V, T _A = +85°C, OTP_INT_PU[0] = 0b0		0.01		
EREG_POK Pullup Resistance	R _{PU_EREG_} POK	Pulled up to V_{IN_VIO} , OTP_INT_PU[0] = 0b1	50	100	170	kΩ
THERMAL MONITORS						
Quiescent Supply Current	I _{QTM}			1.5		μA
Shutdown Supply Current				0.1		μA
Thermal Overload	T _{JOVLD}	T _J rising, 15°C hysteresis		165		°C
Response Time		5°C overdrive		10		μs
FLEXIBLE POWER SEQUE	NCER	1				,
Power-Up Sequence Enable Delay	^t FPSDON	Measured from internal FPSxEN = 1 to start of sequence (based on a 31.5kHz clock)		63.492		μs
Power-Down Sequence Enable Delay	^t FPSDOFF	Measured from internal FPSxEN = 0 to start of sequence (based on a 31.5kHz clock)		95.240		μs
		MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b000		31		
		MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b001		63		
		MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b010		127		
Flexible Power Sequencer	^t FPS PU,	MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b011		253		
Event Period	t _{FPS_PD}	MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b100		508		μs
		MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b101		984		
		MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b110		1936		
		MSTRxUPF[2:0] = MSTRxDNF[2:0] = 0b111		3904		

Multichannel Integrated Power Management IC

Electrical Characteristics—Global Resources (continued)

 $(V_{SYS} = 3.6V, V_{IO} = 1.8V, T_A = -40^{\circ}C$ to +85°C, limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		PD_DLY[1:0] = 0b00		0		
Power-Down Sequence	t	PD_DLY[1:0] = 0b01		1.0		
Delay	'PD_DLY	PD_DLY[1:0] = 0b10		1.5		1115
		PD_DLY[1:0] = 0b11		2.0		
BLD_IO						
Maximum Bleed Time	^t BLEED_MAX			20	22	ms
Minimum Bleed Time	^t BLEED_MIN			31.5		μs
Bleed Threshold		BLD_IO falling		90	100	mV
Bleed Resistance	R _{BLEED}	BLD_IO = 0.3V		20	27	Ω
BLD IQ Input Leakage		V_{SYS} = 5.5V, V_{BLD_IO} = 0V and 5.5V, T_{A} = +85°C		0.01		
Current		V_{SYS} = 5.5V, V_{BLD_IO} = 0V and 5.5V, T_{A} = +25°C		0.001	1	μΑ
ON/OFF CONTROLLER						
Hiccup Counter Limit	HICCUP_ CNT_LIM			7		counts
IN_PHUP						
Operating Voltage Range	V _{IN_PHUP}		2.4		5.5	V
IN_PHUP Supply Current	I _{IN_PHUP}	$V_{SYS} = V_{IN_PHUP} = 5.5V, T_A = +25^{\circ}C$		5.0		μA

Note 4: The LP_MODE debounce period has a variation due to the variability associated with quantizing an asynchronous input signal. Additionally, while measuring the period from a valid LP_MODE edge to a subsequent event, such as LP_REQ assertion, there is one more clock cycle (CLK32K) of delay observed in a real system.

Electrical Characteristics—Inrush Control

 $(V_{IN_SNS} = 5.0V)$, limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLY	1						
Supply Voltage Range	V _{IN}			2.1		5.5	V
IN Undervoltage-Lockout Threshold	V _{INUVLO}	V _{IN} rising			2.3	2.55	V
IN Undervoltage-Lockout Hysteresis	VINUVLO_HYS				200		mV
IN Undervoltage-Lockout Response Time	^t INUVLO	V _{IN} rising	(V _{IN} = V _{INUVLO} + 100mV)		39		μs
IN Overvoltage-Lockout Threshold	V _{INOVLO}	V _{IN} rising		5.70	5.87	6.10	V
IN Overvoltage-Lockout Hysteresis	VINOVLO_HYS				80		mV
IN Overvoltage-Lockout Response Time	^t INOVLO	V _{IN} rising	(V _{IN} = V _{INOVLO} + 50mV)		8		μs
Leakage	ILKG_VIN_DRV	V _{IN} = 5.5V T _A = +25°0	, V _{IN_DRV} = 0V and 11V, C		0.001	1	
		V _{IN} = 5.5V T _A = +85°0	′, V _{IN_DRV} = 0V and 11V , C		0.01		μΑ
	IQ_IN_SS	V _{IN_DRV} -V start state) 0b111 (800	/INR_OUT < V _{IN_SNS} (soft-), OTP_GDRV_FREQ =)kHz), V _{IN_SNS} = 3.3V		85		
Supply Current (Son-Start)		V _{IN_DRV} -V (soft-start = 0b111 (800	/INR_OUT < V _{IN_SNS} state), OTP_GDRV_FREQ = 0kHz), V _{IN_SNS} = 5V		138		μΑ
Supply Current (Steady-		V _{IN_DRV} -V (steady sta f _{GDRV} = 12	/INR_OUT = V _{IN_SNS} ate), t _{SS_DONE} expired, 2.5kHz, V _{IN_SNS} = 3.3V		26		
State)	^I IN	V _{IN_DRV} -V (steady sta f _{GDRV} = 12	/INR_OUT = V _{IN_SNS} ate), t _{SS_DONE} expired, 2.5kHz, V _{IN_SNS} = 5V		37		μΑ
NMOS SWITCH DRIVER	·		·				
Gate Drive ON Voltage	Vin_drv_on	V _{IN} = 5V	Voltage with respect to ground when external MOSFET is being driven to it's fully ON state	8.5		11	V
Gate Drive Current	IGDRV_INRUSH	V _{IN} = 3.3V setting	, 1X gate drive frequency	1.8	3.0	4.2	μΑ
4x Gate Drive Oscillator Frequency	fGDRV_4X	OTP_INR_ V _{IN} = 3.3V	_FREQ[2:0] = 0b111, ′, V _{IN} = 5V		720		kHz

Multichannel Integrated Power Management IC

Electrical Characteristics—Inrush Control (continued)

 $(V_{IN_SNS} = 5.0V)$, limits are 100% tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
2x Gate Drive Oscillator Frequency	fgdrv_2x	OTP_INR_FREQ[2:0] = 0b110, V _{IN} = 3.3V, V _{IN} = 5V		360		kHz	
1x Gate Drive Oscillator Frequency	fgdrv_1x	OTP_INR_FREQ[2:0] = 0b101 (nominal gate drive strength), $V_{IN} = 3.3V$, $V_{IN} = 5V$	120	180	240	kHz	
0.5x Gate Drive Oscillator Frequency	fGDRV_0.5X	OTP_INR_FREQ[2:0] = 0b100, V _{IN} = 3.3V, V _{IN} = 5V		90		kHz	
0.25x Gate Drive Oscillator Frequency	fgdrv_0.25X	OTP_INR_FREQ[2:0] = 0b011, V _{IN} = 3.3V, V _{IN} = 5V		45		kHz	
0.125x Gate Drive Oscillator Frequency	fGDRV_0.125X	OTP_INR_FREQ[2:0] = 0b010, V _{IN} = 3.3V, V _{IN} = 5V	15	23	32	kHz	
0.0625x Gate Drive Oscilla- tor Frequency	fgdrv_0.0625X	OTP_INR_FREQ[2:0] = 0b001, V _{IN} = 3.3V, V _{IN} = 5V		11.25		kHz	
0.03125x Gate Drive Oscil- lator Frequency	fGDRV_0.03125X	OTP_INR_FREQ[2:0] = 0b000, V _{IN} = 3.3V, V _{IN} = 5V		5.625		kHz	
Gate Drive Discharge Resistance	_	Resistance from INR_DRV to INR_OUT, V _{INR_DRV-INR_OUT} = 4V	74				
	∽GDRV_DIS	Resistance from INR_DRV to INR_OUT, V _{INR_DRV-INR_OUT} = 3.3V		100			
TIMING	I						
Start-Up Delay	t _{EN_INRUSH}	Time from V _{IN} rising above V _{INUVLO} to the internal charge pump being enabled. Duration is based on the gate drive oscillator frequency (f _{GDRV}) selected by OTP_INR_FREQ[2:0]		128		cycles of ^f GDRV	
Soft-Start Done Time	^t ss_1	Duration from MOSFET drive circuit being enabled (subsequent to startup delay) to the point when the IN_SS_DONE (internal signal) is asserted allowing a power-up sequence to occur. Based on default gate drive frequency (f _{GDRV}) selected by OTP_INR_FREQ[2:0]		512		cycles of ^f GDRV	
Gate Drive Idle Time	^t ss_done	Duration from MOSFET drive circuit being enabled (subsequent to the startup delay) to the point when the gate drive oscillator frequency folds back to the 12.5kHz setting (idle gate drive). Based on default gate drive frequency (f _{GDRV}) selected by OTP_INR_FREQ[2:0]		1024		cycles of f _{GDRV}	

Multichannel Integrated Power Management IC

Electrical Characteristics—Current Sense Amplifier

 $(V_{SYS} = 3.3V, C_{LOAD} = 10pF, T_A = -40^{\circ}C$ to +85°C, limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS				
INPUT OVERCURRENT										
Input Overcurrent Threshold		2.25A setting, V _{SYS} = 3.3V	-6.5		+6.5	%				
CSA Debounce Timer		OTP_CSA_DBNC = 0		100		110				
		OTP_CSA_DBNC = 1		50		μs				
Overcurrent-Sense Comparator Threshold 1	V _{OC_THR}	Overcurrent limit, CSTH_OPT[1:0] = 0b00		30		mV				
Overcurrent-Sense Comparator Threshold 2	V _{OC_THR}	Overcurrent limit, CSTH_OPT[1:0] = 0b01		35		mV				
Overcurrent-Sense Comparator Threshold 3	V _{OC_THR}	Overcurrent-limit, CSTH_OPT[1:0] = 0b10		40		mV				
Overcurrent-Sense Comparator Threshold 4	V _{OC_THR}	Overcurrent limit, CSTH_OPT[1:0] = 0b11		45		mV				

Electrical Characteristics—Buck Regulators (BUCK1/2 - 2A Output)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS			
SUPPLY VOLTAGE AND CURRENT									
Input Voltage Range	V _{INBx}		2.6		5.5	V			
Shutdown Supply Current	IQSHDN_BUCKx	(Note 5)		0.1		μA			
	IQ SKIP NM	No switching, no load, (Note 6), V _{SYS} = 3.3V		19	30				
	BUCKx	No switching, no load, (Note 6), V _{SYS} = 5V		19	30	μΑ			
Sumply Ouissent Current	I _{Q_FPWM_} BUCKx	FPWM mode (switching at fixed frequency), no load, V _{SYS} = 3.3V		10					
Supply Quiescent Current		FPWM mode (switching at fixed frequency), no load, V _{SYS} = 5V		10		ma			
	IQ_SKIP_LPM_ BUCKx	Low-power mode (no switching), no load, (Note 6), V _{SYS} = 3.3V		5	9				
		Low-power mode (no switching), no load, (Note 6), V _{SYS} = 5V		5	9	μΑ			

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK1/2 - 2A Output) (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
OUTPUT VOLTAGE									
Output Voltage Range	VOUT_BUCKx	Programmable in 6.25mV steps with BUCK1VOUT[7:0] and BUCK2VOUT[7:0]	0.600		2.194	V			
	VOUT_ACC_NM_ BUCKx	FPWM mode, normal mode, no load, V _{OUT_BUCK1} = 1.800V	-2		+2				
Output Voltage Accuracy	VOUT_ACC_ LPM_BUCKx	Low-power mode, no load, V _{OUT_BUCK1} = 1.800V	-4		+4	0/2			
Oulput Voltage Accuracy	VOUT_ACC_NM_ BUCKx	FPWM mode, normal mode, no load, V _{OUT_BUCK2} = 1.200V	-2		+2	70			
	V _{OUT_ACC_} LPM_BUCKx	Low-power mode, no load, V _{OUT_BUCK2} = 1.200V	-4		+4				
Maximum Output Current	I _{OUT_MAX_} NM_BUCKx	RMS, normal mode, L = 1µH	2000			٣٨			
	I _{OUT_MAX_} LPM_BUCKx	RMS, low-power mode, L = 1μ H		10					
PMOS Peak Current Limit	h wo	V _{SYS} = 3.6V	2300	2875	4200	mA			
	LIMP	V _{SYS} = 5V	2300	2875	4200				
NMOS Valley Current Limit	h way	V _{SYS} = 3.6V		2125		mΔ			
	'LIMV	V _{SYS} = 5V		2125		11/2			
NMOS Negative Current		V _{SYS} = 3.6V		800		m۸			
Limit	LIMIN	V _{SYS} = 5V		800					
PERFORMANCE PARAMET	ERS								
Line Regulation		$V_{SYS} = V_{INBx} = 2.6V$ to 5.5V		0.2		%/V			
Load Regulation		Load = 0 to 1A, FPWM mode		0.125		%/A			
Load Transient Response		FPWM mode, V_{OUT_BUCKx} = default, L = 1µH, C _{OUT} = 12µF effective ΔI_{OUT} = 0.2A–2A, Δt = 3µs		88		m)/			
		Skip mode, V _{OUT BUCKx} = default, L = 1µH, C _{OUT} = $\overline{1}2\mu$ F effective ΔI_{OUT} = 10mA to 0.7A, Δt = 3µs,		90		ĨĨĨV			
Switching Frequency	fsw	V _{SYS} = 3.3V	1.8	2	2.2	MHz			
Dead Time	^t DEAD	V _{SYS} = 3.3V		2.0		ns			
Switching Frequency	fsw	V _{SYS} = 5V	1.8	2	2.2	MHz			

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK1/2 - 2A Output) (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Dead Time	^t DEAD	V _{SYS} = 5V		2.0		ns
Soft Start Slow Pate		Fixed for buck 1		6.5		m\//ue
Solt-Start Slew Rate		Fixed for buck 2		17		mv/µs
Output Voltage Ramp-Up Slew Rate		Fixed for buckx (Notes 5, 8, 9), $C_{OUT} = 22\mu F$		40		mV/μs
Output Voltage Ramp-Down Slew Rate		Fixed for buck 1, 2 (Notes 5, 8), $C_{OUT} = 22\mu$ F, BUCKxFPWMEN = 1 (x = 1, 2), no load		18		mV/µs
PMOS ON Peristance	Paulaan	$V_{SYS} = V_{INBUCKx} = 3.6V,$ $I_{OUT} = 150mA$		100	150	mO
	YON_PCH	V _{SYS} = V _{INBUCKx} = 5V, I _{OUT} = 150mA		100	150	11122
NMOS ON Resistance	Pour vou	$V_{SYS} = V_{INBUCKx} = 3.6V,$ $I_{OUT} = 150mA$		60	100	mO
	NON_NCH	V _{SYS} = V _{INBUCKx} = 5V, I _{OUT} = 150mA		60	100	11122
NMOS Zero-Crossing Threshold	I _{ZX}	Threshold to determine transition from PWM to SKIP mode		20		mA
Output Voltage Ripple in Skip Mode		V_{OUT_BUCKx} = 1.0V, L = 1µH, C _{OUT} = 12µF effective, no load (Note 5)		40		mV _{P-P}
Output Voltage Ripple in PWM Mode		$V_{OUT_BUCKx} = 1.0V, L = 1\mu H,$ $C_{OUT} = 12\mu F \text{ effective},$ $I_{LOAD} = 0.5 \times I_{OUT_MAX_BUCKx}$ (Note 5)		5		mV _{P-P}
	IL_LX_25C	V_{LXx} = 5.5V or 0V, T_A = +25°C		0.1	1	
LX Leakage	IL_LX_85C	V _{LXx} = 5.5V or 0V, T _A = +85°C (Note 5)		1		μA
Output Active Discharge Resistance	R _{DISCHG} _ BUCKx	Resistance from FBBx to PGNDx, output disabled, (Note 7)		100		Ω
Nominal Output Inductance	L _{NOM}			1.0		μH
Minimum Effective Output Capacitance	C _{OUT_EFF_MIN}	0mA < I _{OUT} < 2000mA	18			μF
Light Load Efficiency	Eff _{LIGHT}	Low-power mode, I_{OUT} = 0.5mA, V _{OUT_BUCKx} = 1.0V, L = 1µH, DCR _L = 50mΩ, C _{OUT} = 22µF (Note 5)		75		%

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK1/2 - 2A Output) (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Typical Load Efficiency	Effiout_typ	$\begin{split} I_{OUT} &= 0.25 \text{ x } I_{OUT_MAX_BUCKx}, \\ V_{OUT_BUCKx} &= 1.0V, L = 1 \mu H, \\ DCR_L &= 50 \text{m}\Omega, C_{OUT} = 22 \mu \text{F} \text{ (Note 5)} \end{split}$		85		%
Maximum Load Efficiency	EFF _{IOUT_MAX}	$\label{eq:out_constraints} \begin{array}{l} I_{OUT} = I_{OUT}_MAX_BUCKx,\\ V_{OUT} = 1.0V, \ L = 1\mu H,\\ DCR_L = 50m\Omega, \ C_{OUT} = 22\mu F\\ (Note 5) \end{array}$		70		%
Turn-On Delay Time	^t ON_DLY_BUCKx	EN signal to LX switching with bias ON		30		μs
Maximum Duty Cycle		V _{OUT_BUCKx} / V _{IN_BUCKx} expressed as %		90		%
BROWNOUT COMPARATO	R					
Output Brownout		Normal-power mode, falling threshold, BUCKx_BO_THR[1:0] = 0b00		75		
		Normal-power mode, falling threshold, BUCKx_BO_THR[1:0] = 0b01		80		0/
Threshold	VBO_BUCKx	Normal-power mode, falling threshold, BUCKx_BO_THR[1:0] = 0b10		85		%
		Normal-power mode, falling threshold, BUCKx_BO_THR[1:0] = 0b11		90.7		
Output Brownout Accuracy		Normal-power mode. V _{OUT_BUCKx} = 1.0V (VOUT_BUCKx[7:0] = 0 x 40)	-4.0		+4.0	%
Output Brownout Threshold (Low-Power Mode)	V _{BO_BUCKx}	Falling threshold, low-power mode		86.0		%
Output Brownout Accuracy		Low-power mode. V _{OUT_BUCKx} = 1.0V (VOUT_BUCKx[7:0] = 0 x 40)	-4		+4	%
Output Brownout Hysteresis Range	V _{BO_HYS} _ BUCKx	2-bit control over I ² C. Max rising threshold limited to 96%	5		20	%
Brownout Voltage Hystere- sis Programming Step Size		Programmable with BUCKx_BO_HYS[1:0]		5		%
Output Brownout Hysteresis (Low-Power Mode)	V _{BO_HYS} _ BUCKx_LPM			5		%

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK1/2 - 2A Output) (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Brownout Response Time	^t во_вискх	BUCKx_BO_PR[1:0] = 0b00 (fast), buck in normal-power mode, 100mV under-drive with falling slew rate of 150mV/µs. Time from V _{OUT_BUCKx} falling to PGOOD pin falling		1.04		
		BUCKx_BO_PR[1:0] = 0b01 (med- fast), buck in normal-power mode, 100mV under-drive with falling slew rate of 150mV/µs. Time from V _{OUT_} BUCKx falling to PGOOD pin falling		1.14		
		BUCKx_BO_PR[1:0] = 0b10 (med- slow), buck in normal-power mode, 100mV under-drive with falling slew rate of 150mV/µs. Time from V _{OUT_} BUCKx falling to PGOOD pin falling		1.30		μs
		BUCKx_BO_PR[1:0] = 0b11 (slow), buck in normal-power mode, 100mV under-drive with falling slew rate of 150mV/µs. Time from V _{OUT_BUCKx} falling to PGOOD pin falling		1.68		
		Buck in low-power mode, 100mV under-drive with falling slew rate of 150mV/µs. Time from V _{OUT_BUCKx} falling to PGOOD pin falling		3.18		
		Normal-power mode, BUCKx_BO_PR[1:0] = 0b00 (fast)		13.4		
	I _{QNM} BO	Normal-power mode, BUCKx_BO_PR[1:0] = 0b01 (med-fast)		10.4		
Output Brownout Supply Current	BUCKx	Normal-power mode, BUCKx_BO_PR[1:0] = 0b10 (med-slow)		7.4		μA
		Normal-power mode, BUCKx_BO_PR[1:0] = 0b11 (slow)		4.4		
	I _{QLPM_BO_} BUCKx	Low-power mode		1.3		

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK1/2 - 2A Output) (continued)

(V_{SYS} = 3.6V, T_A = -40°C to +85°C, limits are 100% tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
OV COMPARATOR						
Output OV Trip Level	VOUTBUCKx_OV	Rising edge, BUCKx_OV_THR = 1, referenced to output voltage setting		116.6		%
Output OV Hysteresis		BUCKx_OV_THR = 1		9.1		%
Output OV Trip Level	VOUTBUCKx_OV	Rising edge, BUCKx_OV_THR = 0, referenced to output voltage setting		108.3		%
Output OV Hysteresis		BUCKx_OV_THR = 0		2.8		%
Output OV Trip Level (Low-Power Mode)	VOUTBUCKx_OV	Rising edge, low-power mode		108.3		%
Output OV hysteresis (Low-Power Mode)		Low-power mode		2.8		%
Output Over-Voltage Response Time	^t OV_BUCKx	Normal-power mode, 100mV over- drive with rising slew rate of 150mV/ µs. Time from V _{OUT_BUCKx} rising to PGOOD pin falling (Note 5)		1.68		μs
Output Over-Voltage Supply current	IQ_OV_BUCKx	Normal-power mode		4.4		μA
Output Over-Voltage Response Time (Low-Power Mode)	^t ov_buckx	Low-power mode, 100mV over-drive with rising slew rate of 150mV/µs. Time from V _{OUT_BUCKx} rising to PGOOD pin falling (Note 5)		3.18		μs
Output Over-Voltage Supply Current (Low-Power Mode)	IQ_OV_BUCKx	Low-power mode		1.3		μA

Note 5: Design guidance only and is not production tested.

Note 6: Individual buck Iq is not production tested. It is covered by a combined test by turning on all bucks.

Note 7: There is an n-channel MOSFET in series with the output active-discharge resistance. This NMOS requires V_{SYS} > 1.2V to be enhanced.

Note 8: The ramp down slew rate when the output voltage is decreased through I^2C is a function of the negative current limit and the output capacitance. With no load, forced PWM mode and 22μ F output capacitor, the ramp-down slew rate is $dv/dt = i / C = 0.4A / 22\mu$ F = 18mV/µs.

Note 9: DVS and soft-start ramp rates can be expected to vary by up to 30%.

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK3 - 3A Output)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SUPPLY VOLTAGE AND	CURRENT					
Input Voltage Range	V _{INBUCK3}		2.6		5.5	V
Shutdown Supply Current	I _{QSHDN_} BUCK3	(Note 10)		0.1		μA
	IQ_SKIP_NM_ BUCK3	No switching, no load (Note 10)		26	40	μA
Supply Quiescent Current	IQ_FPWM_ BUCK3	FPWM mode, no load (Note 10)		10		mA
	IQ_SKIP_LPM_ BUCK3	Low-power mode (no switching), no load (Note 10)		10	19	μA
OUTPUT VOLTAGE						
Output Voltage Range	V _{OUT_BUCK3}	l ² C programmable in 10mV Steps (BUCK3VOUT[6:0] = 0x01 to 0x7F)	0.26		1.52	V
Output Voltage Accuracy	V _{OUT_ACC_} NM_BUCK3	FPWM mode, normal mode, no load, T _A = +25°C, V _{OUT_BUCK3} = 1.0V	-2		+2	%
	V _{OUT_ACC_} LPM_BUCK3	Low-power mode, no load, T _A = +25°C, V _{OUT_BUCK3} = 1.000V	-4		+4	
PERFORMANCE PARAM	IETERS		•			
Switching Frequency	fow	V _{SYS} = 3.3V	1.8	2	2.2	MHz
	ISVV	V _{SYS} = 5V	1.8	2	2.2	
Line Regulation		V _{INBUCK3} = 2.6V to 5.5V, V _{OUT_BUCK3} = 1.0V		0.2		%/V
Load Regulation		V _{OUT_BUCK3} = 1.0V, (Note 10), load = 0 to 1A, FPWM mode		0.125		%/A
Load Transient Re-		Skip mode, V_{OUT} = default, L = 1µH, C_{OUT} = 28µF effective ΔI_{OUT} = 20mA to 500mA, Δt = 0.8µs (Note 10)		45		mV
		Skip mode, V_{OUT} = default, L = 1µH, C _{OUT} = 28µF effective ΔI_{OUT} = 20mA to 3A, Δt = 4.8µs (Note 10)		70		
Soft-Start Slew Rate		BUCK3SSRAMP = 0		2.5		m\//us
		BUCK3SSRAMP = 1		10		1117/µ3
Output Voltage Ramp-Up/Down Slew Rate (DVS)				10		mV/µs

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK3 - 3A Output) (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		V _{SYS} = V _{INBUCK3} = 5V, I _{OUT} = 150mA		60	90	
PMOS ON Resistance	KON_PCH	V _{SYS} = V _{INBUCK3} = 3.6V, I _{OUT} = 150mA		60	90	mΩ
	B	V _{SYS} = V _{INBUCK3} = 5V, I _{OUT} = 150mA		35	60	m0
NIMOS ON Resistance	ron_nch	$V_{SYS} = V_{INBUCK3} = 3.6V, I_{OUT} = 150mA$		35	60	11122
NMOS Zero-Crossing	IZX_SKIP	SKIP mode		20		m۸
Threshold	IZX_PWM	PWM mode		20		ma
Output Voltage Ripple In Skip Mode		V_{OUT_BUCK3} = 1.0V, L = 1µH, C _{OUT} = 28µF effective, no load (Note 10)		15		mV
Output Voltage Ripple In PWM Mode		$V_{OUT_BUCK3} = 1.0V, L = 1\mu H,$ $C_{OUT} = 28\mu F$ effective, $I_{LOAD} = 0.5 \times I_{OUT_MAX_BUCK3}$ (Note 10)		5		mV
LX Leakage	I _{L_LX_25C}	V _{LXBUCK1} = 5.5V or 0V, T _A = +25°C		0.1	1	
	IL_LX_85C	V _{LXBUCK1} = 5.5V or 0V, T _A = +85°C (Note 10)		1		μA
Output Active Discharge Resistance	R _{DISCHG} BUCK3	Resistance from FBB3 to PGND3, output disabled		100		Ω
Nominal Output Inductance	L _{NOM}			1.0		μH
Minimum Effective Output Capacitance	C _{OUT_EFF_} MIN	0mA < I _{OUT} < 3000mA		28		μF
Turn-On Delay Time	^t ON_DLY_ BUCK1	EN signal to LX switching with bias ON		200		μs
Light Load Efficiency	Eff _{LIGHT}	Low-power mode, $I_{OUT} = 0.5mA$, $V_{OUT_BUCKx} = 1.0V$, L = 1µH, $DCR_L = 50m\Omega$, $C_{OUT} = 3 \times 22\mu F$ (Note 10)		75		%
Typical Load Efficiency	Effiout_typ	$\label{eq:lour_states} \begin{array}{l} I_{OUT} = 0.25 \ x \ I_{OUT_MAX_BUCKx}, \\ V_{OUT_BUCKx} = 1.0 \ V, \ L = 1 \mu H, \\ DCR_L = 50 m \Omega, \ C_{OUT} = 3 \ x \ 22 \mu F \ (Note \ 10) \end{array}$		88		%
Maximum Load Efficiency	EFFIOUT_MAX	$I_{OUT} = I_{OUT} MAX_BUCKx$, $V_{OUT} = 1.0V$, L = 1µH, DCRL = 50m Ω , C _{OUT} = 3 x 22µF (Note 10)		77		%

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK3 - 3A Output) (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
OUTPUT CURRENT		·				
Maximum Output	IOUT_MAX_ NM_BUCK3	RMS, normal mode	3000			mΔ
Current	IOUT_MAX_ LPM_BUCK3	RMS, low-power mode		10		ШA
PMOS Peak Current Limit	I _{LIMP}	$T_A = -40^{\circ}C$ to +85°C, $V_{SYS} = 3.6V$	3825	4250	4675	mA
NMOS Valley Current Limit	I _{LIMV}			3750		mA
NMOS (Negative) Current Limit	I _{LIMN}			2000		mA
BROWNOUT COMPARA	TOR					
Output Brownout		Normal-power mode, falling threshold, BUCK3_BO_THR[1:0] = 0b00		77		
		Normal-power mode, falling threshold, BUCK3_BO_THR[1:0] = 0b01		81		0/
Threshold	VBO_BUCK3	Normal-power mode, falling threshold, BUCK3_BO_THR[1:0] = 0b10		85.7		70
		Normal-power mode, falling threshold, BUCK3_BO_THR[1:0] = 0b11		91		
Output Brownout Ac- curacy		Normal-power mode. V _{OUT_BUCK3} = 1.0V (VOUT_BUCK3[7:0] = 0x4B)	-4.5		+4.5	%
Output Brownout Threshold (Low-Power Mode)	V _{BO_} BUCКх	Falling threshold, low-power mode		86.0		%
Output Brownout Accuracy		Low-power mode, V _{OUT_BUCK3} = 1.0V (VOUT_BUCK3[7:0] = 0x4B)	-4		+4	%
Output Brownout Hysteresis Range	V _{BO_HYS_} BUCKx	2-Bit control over I ² C. Max rising threshold limited to 96%	5		20	%
Brownout Voltage Hysteresis Programming Step Size		Programmable with BUCKx_BO_HYS[1:0]		5		%
Output Brownout Hysteresis (Low-Power Mode)	V _{BO_HYS_} BUCKx_LPM			5		%

Electrical Characteristics—Buck Regulators (BUCK3 - 3A Output) (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Brownout Response Time	^t BO_BUCKx	BUCKx_BO_PR[1:0] = 0b00 (fast), buck in normal-power mode, 100mV under-drive with falling slew rate of 150mV/µs. Time from V _{OUT_BUCKx} falling to PGOOD pin falling		1.04		
		$\begin{array}{l} BUCKx_BO_PR[1:0] = 0b01 \ (med-fast), \\ buck \ in \ normal-power \ mode, \ 100 mV \ under- \\ drive \ with \ falling \ slew \ rate \ of \ 150 mV/\mu s. \\ Time \ from \ V_{OUT_BUCKx} \ falling \ to \ PGOOD \\ pin \ falling \end{array}$		1.14		
		BUCKx_BO_PR[1:0] = 0b10 (med-slow), buck in normal-power mode, 100mV under-drive with falling slew rate of 150mV/µs. Time from V _{OUT_BUCKx} falling to PGOOD pin falling		1.30		μs
		$\begin{array}{l} BUCKx_BO_PR[1:0] = 0b11 \ (slow), \ buck \\ in normal-power mode, \ 100mV \ under-drive \\ with falling slew rate of \ 150mV/\mus. \ Time \\ from \ V_{OUT_BUCKx} \ falling to \ PGOOD pin \\ falling \end{array}$		1.68		
		Buck in Low-power mode, 100mV under- drive with falling slew rate of 150mV/µs. Time from V _{OUT_BUCKx} falling to PGOOD pin falling		3.18		
Output Brownout Supply Current	I _{QNM_BO_} BUCKx I _{QLPM_BO_} BUCKx	Normal-power mode, BUCKx_BO_PR[1:0] = 0b00 (fast)		13.4		
		Normal-power mode, BUCKx_BO_PR[1:0] = 0b01 (med-fast)		10.4		
		Normal-power mode, BUCKx_BO_PR[1:0] = 0b10 (med-slow)		7.4		μA
		Normal-power mode, BUCKx_BO_PR[1:0] = 0b11 (slow)		4.4		
		Low-power mode		1.3		

Multichannel Integrated Power Management IC

Electrical Characteristics—Buck Regulators (BUCK3 - 3A Output) (continued)

 $(V_{SYS} = 5.0V, T_A = -40^{\circ}C$ to +85°C, Limits are 100% tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
OV COMPARATOR							
Output OV Trip Level	VOUTBUCK3_ OV	Rising edge, BUCK3_OV_THR = 1		117.1		%	
Output OV hysteresis		BUCK3_OV_THR = 1		8.6		%	
Output OV Trip Level	V _{OUTBUCKx} _ OV	Rising edge, BUCK3_OV_THR = 0		108.5		%	
Output OV Hysteresis		BUCK3_OV_THR = 0		3.9		%	
Output OV Trip Level (Low-Power Mode)	VOUTBUCK3_ OV	Rising edge, low-power mode		108.3		%	
Output OV Hysteresis (Low-Power Mode)		Low-power mode		3.9		%	
Output Over-Voltage Response Time	^t ov_вискз	Buck in normal-power mode, 100mV over- drive with rising slew rate of $150mV/\mu s$. Time from V _{OUT_BUCK3} rising to PGOOD pin falling (Note 10)		1.68		μs	
Output Over-Voltage Supply current	IQ_OV_BUCKx	Buck in normal-power mode		4.4		μA	
Output Over-Voltage Response Time (Low-Power Mode)	^t OV_BUCKx	Buck in low-power mode, 100mV over-drive with rising slew rate of 150mV/µs. Time from V _{OUT_BUCKx} rising to PGOOD pin falling (Note 10)		3.18		μs	
Output Over-Voltage Supply current (Low-Power Mode)	IQ_OV_BUCK3	Buck in low-power mode		1.3		μΑ	

Note 10: Design guidance only and is not production tested.

Multichannel Integrated Power Management IC

Electrical Characteristics—Load Switch Driver (LSW1/2)

 $(V_{SYS} = 3.6V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ Limits are 100\% tested at } T_A = +25^{\circ}C. \text{ Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested. x is used to represent multiple instances of similar resources, for this section x = 1, 2 unless specified for e.g., LSWx represents LSW1, LSW2.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS		
POWER SUPPLY								
Supply Current	ISYS_LSW_SS	$V_{INLSWx} = V_{SYS} = 5V, LSWxDRV_FREQ=0b111 (800kHz), C_{OUTLSWx} = 20\mu F$		68		μΑ		
Supply Voltage Range	V _{SYS}		2.6		5.5	V		
Supply Current	ISYS_LSW_SS	$V_{INLSWx} = V_{SYS} = 3.3V,$ LSWxDRV_FREQ = 0b111 (1.6MHz), C _{OUTLSWx} = 20µF		43		μΑ		
		$V_{INLSWx} = V_{SYS} = 5V,$ LSWxDRV_FREQ = 0b101 (400kHz), C _{OUTLSWx} = 20µF		20				
Leakage	ILKG_LSWx_DRV	VSYS = 5.5V, V_{LSWx_DRV} = 0V and 11V, T _A = +25°C		0.001	1	- μΑ		
		V_{SYS} = 5.5V, V_{LSWx_DRV} =0 V and 11V, T _A = +85°C		0.01				
NMOS SWITCH DRIVER								
Gate Drive Voltage	V _{LSWx_DRV}	V _{SYS} = 5V	8.5		11	V		
Gate Drive Current	ILSWx_DRV	V _{SYS} = 3.3V, 1X gate drive frequency setting (LSWx_DRV_FREQ[2:0] = 0b101), C _{OUTLSWx} = 20μF	1.85	3.7	5.55	μΑ		
4x Gate Drive Oscillator Frequency	fLSWx_DRV_4X	LSWxDRV_FREQ[2:0] = 0b111, V _{SYS} = 3.3V, V _{SYS} = 5V		1600		kHz		
2x Gate Drive Oscillator Frequency	fLSWx_DRV_2X	LSWx_DRV_FREQ[2:0] = 0b110, V _{SYS} = 3.3V, V _{SYS} = 5V		800		kHz		
1x Gate Drive Oscillator Frequency	fLSWx_DRV_1X	LSWx_DRV_FREQ[2:0] = 0b101 (nominal gate drive strength), V _{SYS} = 3.3V, V _{SYS} = 5V	200	400	600	kHz		
0.5x Gate Drive Oscillator Frequency	fLSWx_DRV_0.5X	LSWx_DRV_FREQ[2:0] = 0b100, V _{SYS} = 3.3V, V _{SYS} = 5V		200		kHz		
0.25x Gate Drive Oscillator Frequency	f _{LSWx_} DRV_0.25X	LSWx_DRV_FREQ[2:0] = 0b011, V _{SYS} = 3.3V, V _{SYS} = 5V		100		kHz		
0.125x Gate Drive Oscillator Frequency	f _{LSWx} _ DRV_0.125X	LSWx_DRV_FREQ[2:0] = 0b010, V _{SYS} = 3.3V, V _{SYS} = 5V	25	50	75	kHz		
0.0625x Gate Drive Oscillator Frequency	f _{LSWx} _ DRV_0.0625X	LSWx_DRV_FREQ[2:0] = 0b001, V _{SYS} = 3.3V, V _{SYS} = 5V		25		kHz		