

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX8795A evaluation kit (EV kit) is a fully assembled and tested surface-mount printed-circuit board (PCB) that contains a step-up switching regulator, a positive charge pump postregulated by a high-voltage linear regulator, a negative charge pump postregulated by a high-voltage negative linear regulator, and five high-current operational amplifiers (op amps). The primary step-up converter is configured for a +14V output (VMAIN) and provides at least 500mA from a +4.5VDC supply voltage.

The positive and negative linear-regulator controllers postregulate the charge-pump outputs for TFT gate-on and gate-off supplies. The positive linear regulator is set to +25V output (VPOS) and provides at least 20mA. The negative linear regulator is set to -10V output (VNEG) and provides at least 50mA. Power to the positive charge-pump input comes from the step-up switching-regulator output, while power to the negative charge-pump input comes from the power ground.

The EV kit also features five high-performance op amps designed to drive the LCD backplane (VCOM). Power to the VCOM buffers comes from the step-up switching regulator output. The MAX8795A EV kit demonstrates low quiescent current and high efficiency for maximum battery life. High-frequency (1.2MHz) operation allows the use of tiny surface-mount components to minimize the thickness of LCD panel designs.

Features

- ♦ +4.5V to +5.5V Input Range
- **♦ Output Voltages**
 - +14V, 500mA (VMAIN)
 - +25V, 20mA (VPOS)
 - -10V, 50mA (VNEG)
- ◆ Adjustable Output Voltages (External Resistors)
- ♦ 1.2MHz Switching Frequency
- **♦ Five High-Performance Op Amps** 130mA (Typ) Short-Circuit Current (Buffers)
- **♦ Low-Profile Surface-Mount Components**
- **♦ Fully Assembled and Tested**

Ordering Information

PART	TEMP RANGE	IC PACKAGE
MAX8795AEVKIT+	0°C to +70°C*	32 Thin QFN (5mm x 5mm)

⁺Denotes a lead-free and RoHS-compliant EV kit.

Component List

DESIGNATION	QTY	DESCRIPTION
C1	1	100µF ±20%, 16V aluminum electrolytic capacitor SANYO 16ME100UAX (DxL = 6.3mm x 5mm)
C2, C3	2	10µF ±10%, 6.3V X5R ceramic capacitors (0805) TDK C2012X5R0J106K Taiyo Yuden JMK212BJ106MG
C4, C5, C6	3	4.7µF ±10%, 25V X7R ceramic capacitors (1206) TDK C3216X7R1E475K Taiyo Yuden TMK316BJ475KL
C7-C12, C16-C21	12	0.1µF ±10%, 50V X7R ceramic capacitors (0603) TDK C1608X7R1H104K Murata GRM188R71H104K
C13	0	Not installed, ceramic capacitor

DESIGNATION	QTY	DESCRIPTION
C14, C24	2	0.22µF ±10%, 50V X7R ceramic capacitors (0805) Taiyo Yuden UMK212BJ224KT TDK C2012X7R1H224K
C15	1	0.22µF ±10%, 16V X7R ceramic capacitor (0603) TDK C1608X7R1C224K Taiyo Yuden EMK107BJ224KA
C22	1	1.5nF ±10%, 50 X7R ceramic capacitor (0603) TDK C1608X7R1H152K Taiyo Yuden UMK107B152KZ
C23	1	0.033µF ±10%, 25V X7R ceramic capacitor (0603) Murata GRM188R71E333K or TDK C1608X7R1E333K

Maxim Integrated Products 1

^{*}This limited temperature range applies to the EV kit PCB only. The MAX8795A IC temperature range is -40°C to +85°C.

Component List (continued)

DESIGNATION	QTY	DESCRIPTION	
C25	1	220pF ±10%, 50V X7R ceramic capacitor (0603) TDK C1608X7R1H221K	
C26-C29	0	Not installed, ceramic capacitors (0603)	
C30	1	68pF ±5%, 50V C0G ceramic capacitor (0603) TDK C1608C0G1H680J Taiyo Yuden UMK107CG680JZ	
D1	1	30V, 3A Schottky diode (M-Flat) Toshiba CMS02 30V, 2.2A Schottky diode Nihon EC20QS03L	
D2, D3	2	100V, 200mA dual ultra-fast diodes (SOT23) Fairchild MMBD4148SE (Top Mark: D4) Central Semiconductor CMPD1001S lead free (Top Mark: L21)	
JU1, JU2	2	2-pin headers	
L1	1	3.3µH, 2.5A low-profile inductor Sumida CDRH5D16NP-3R3 TOKO FDV0620-3R3M Würth S06100031	

DESIGNATION	QTY	DESCRIPTION
Q1	1	40V, 200mA pnp bipolar transistor (SOT23) Central Semiconductor CMPT3906, lead free (Top Mark: C2A) Fairchild MMBT3906 (Top Mark: 2A)
Q2	1	40V, 200mA npn bipolar transistor (SOT23) Central Semiconductor CMPT3904, lead free (Top Mark: C1A) Fairchild MMBT3904 (Top Mark: 1A)
R1	1	137kΩ ±1% resistor (0603)
R2	1	13.3kΩ ±1% resistor (0603)
R3	1	191kΩ ±1% resistor (0603)
R4	1	10kΩ ±1% resistor (0603)
R5, R6	2	6.8kΩ ±5% resistors (0603)
R7	1	324kΩ ±1% resistor (0603)
R8	1	31.6kΩ ±1% resistor (0603)
R9	1	180kΩ ±5% resistor (0603)
R10-R20	11	100kΩ ±5% resistors (0603)
R21	1	10Ω ±5% resistor (0603)
R22-R26	5	Not installed, resistors—short PC trace (0603)
R27	1	1 k Ω ±5% resistor (0603)
U1	1	MAX8795AETJ+ (32-pin TQFN, 5mm x 5mm)
_	1	Shunt, 0.1in centers
_	1	PCB: MAX8795A Evaluation Kit+

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Central Semiconductor Corp.	516-435-1110	www.centralsemi.com
Fairchild Semiconductor	408-822-2000	www.fairchildsemi.com
Murata Mfg. Co., Ltd.	770-436-1300	www.murata.com
Nihon Inter Electronics Corp.	661-867-2555	www.niec.co.jp
SANYO North America Corp.	619-661-6322	www.sanyodevice.com
Sumida Corp.	708-956-0666	www.sumida.com
Taiyo Yuden	800-348-2496	www.t-yuden.com
TDK Corp.	847-390-4373	www.component.tdk.com
TOKO America, Inc.	847-297-0070	www.tokoam.com
Toshiba America Electronic Components, Inc.	949-455-2000	www.toshiba.com/taec
Würth Electronik GmbH & Co., KG	201-785-8800	www.we-online.com

Note: Indicate that you are using the MAX8795A when contacting these component suppliers.

2 ______ /N/XI/M

Quick Start

Recommended Equipment

- 4.5V to 5.5VDC, 5A power supply
- · Digital multimeters

Procedure

The MAX8795A EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed.

- Connect the positive terminal of the DC power supply to the VIN pad. Connect the negative terminal of the DC power supply to the PGND pad.
- Verify that a shunt is placed across jumper JU1.
 Verify that there is no shunt placed across jumper JU2.
- 3) Turn on the power supply and verify that the stepup regulator output (VMAIN) is approximately +14V.
- 4) Verify that the positive linear-regulator output (VPOS) is approximately +25V.
- 5) Verify that the negative linear-regulator output (VNEG) is approximately -10V.
- 6) Verify that all buffer outputs (OUT1-OUT 5) are approximately +7V.

Detailed Description

The MAX8795A EV kit includes a high-performance boost converter, two linear-regulator controllers, and five high-current op amps optimized for complete TFT LCD power requirements. The main supply step-up switching circuit, which is powered from a +5V supply and switches at 1.2MHz, provides a +14V output with at least 500mA.

For regulated TFT gate-on supply, the EV kit employs a positive single-stage charge pump and a linear postregulator that provides +25V output (VPOS) and supplies at least 20mA. For regulated TFT gate-off supply, the EV kit employs a negative single-stage charge pump and a linear postregulator that provides -10V output and supplies at least 50mA.

The EV kit also features five high-current op amps that are ideal for driving the capacitive backplane of TFT LCD panels. Each buffer is set to one-half of the main supply output through external resistor-dividers.

__Jumper Selection

Dummy Load for the High-Voltage Switch Output (COM)

The MAX8795A EV kit features a capacitive dummy load of 1.5nF (C22) at the COM output pad to simulate a panel load to test the switch matrix. Jumper JU1 selects and deselects the dummy load. Table 1 lists jumper JU1 options.

Table 1. Jumper JU1 Functions

SHUNT POSITION	DUMMY LOAD (C22)	EV KIT FUNCTION
Installed	Connected to COM	Testing mode (no panel)
Not installed*	Unconnected	Normal operation (panel load)

^{*}Default position.

High-Voltage Switch Control Input (CTL)

Using a 2-pin jumper (JU2), the MAX8795A EV kit features an option to control the high-voltage switches between SRC, COM, and DRN. The switch between the SRC and COM pins, and the switch between the COM and DRN pins can also be controlled by an external TTL logic source connected to the CTL pad. See Table 2 for switch states and refer to the *Switch-Control Block* section in the MAX8795A IC data sheet for further information about the high-voltage switches connected to the COM pin.

Table 2. Jumper JU2 Functions

SHUNT POSITION	CTL PIN	MAX8795A COM OUTPUT
Installed	Connected to VIN	COM connected to SRC (+25V)
Not installed*	Connected to GND through resistor R10	COM connected to DRN (+14V)
Not installed	Connected to external TTL source	TTL = logic-low (COM connected to DRN)
Not installed		TTL = logic-high (COM connected to SRC)

^{*}Default position.

Output Voltage Selection

Step-Up Switching-Regulator Output Voltage (VMAIN)

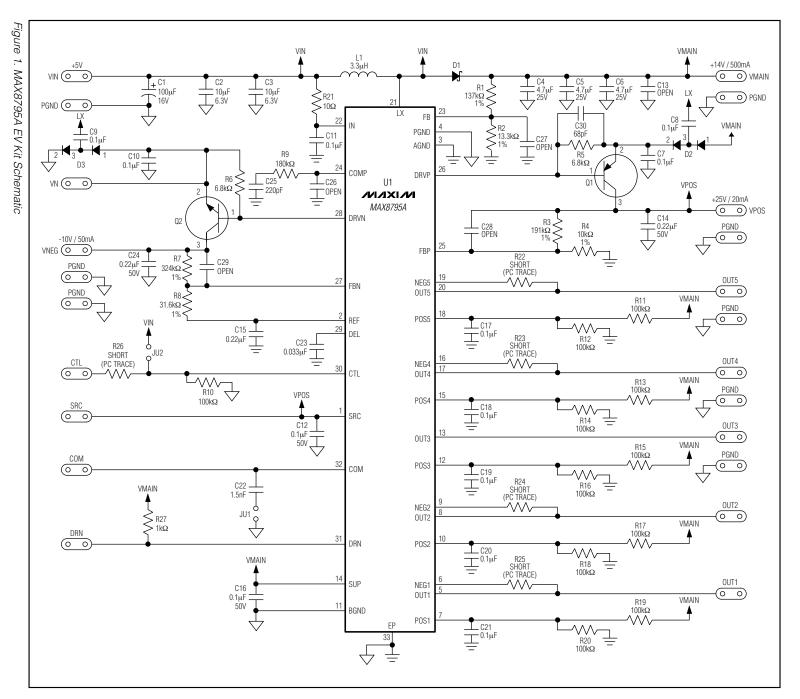
The MAX8795A EV kit's step-up switching-regulator output, limited by the built-in 20V n-channel MOSFET, is set to +14V through feedback resistors R1 and R2. To generate output voltages other than +14V (1.2 x V_{IN} to +18V), select different external voltage-divider resistors (R1 or R2). Refer to the *Output-Voltage Selection* section in the MAX8795A IC data sheet for instructions on selecting the feedback resistors.

Positive Linear-Regulator Output Voltage (VPOS)

The MAX8795A EV kit's positive linear-regulator output is set to +25V by feedback resistors R3 and R4. To generate output voltages other than +25V (+1.25V to nearly the positive charge-pump output voltage), select different external voltage-divider resistors (R3 or R4).

Refer to the *Output-Voltage Selection* section in the MAX8795A IC data sheet for instructions on selecting the resistors.

Negative Linear-Regulator Output Voltage (VNEG)


The MAX8795A EV kit's negative linear-regulator output is set to -10V by feedback resistors R7 and R8. To generate output voltages other than -10V (0 to nearly the negative charge-pump output), select different external voltage-divider resistors (R7 or R8). Refer to the *Output-Voltage Selection* section in the MAX8795A IC data sheet for instructions on selecting the resistors.

Op-Amp Output Voltages (OUT1-OUT5)

The MAX8795A EV kit's op amps (OUT1-OUT5) are designed to drive the LCD backplane. Using external voltage-divider resistors, each op amp is configured to one-half of VMAIN's output voltage. To generate output voltages other than +7V, select different external voltage-divider resistors (R11-R20).

! ______/VIXI/V

A2678XAM :e916ulav3

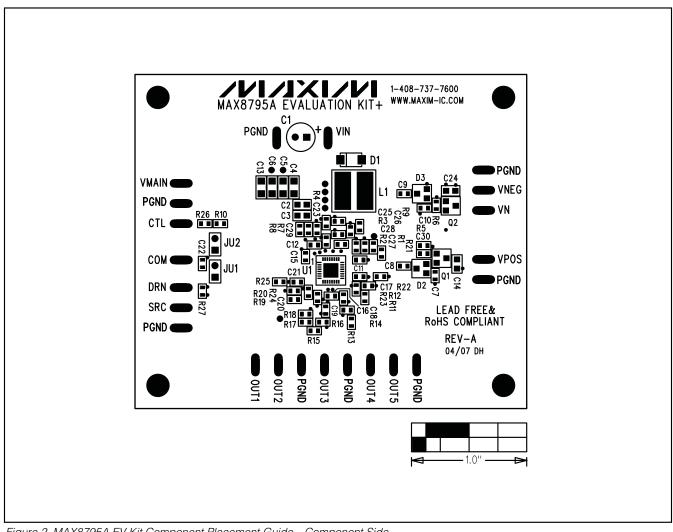


Figure 2. MAX8795A EV Kit Component Placement Guide—Component Side

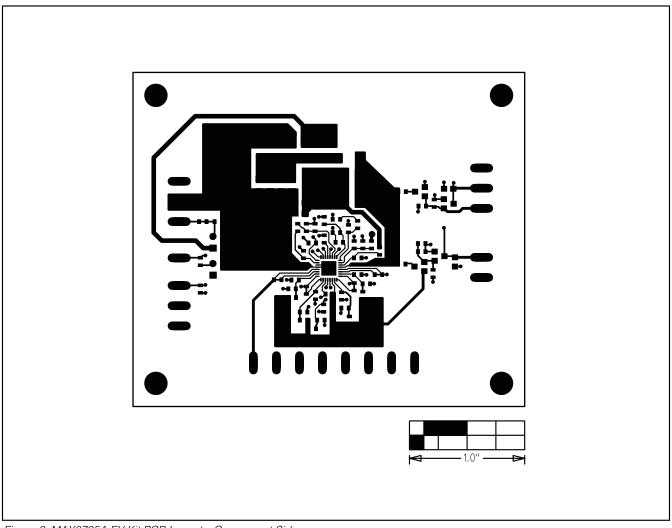


Figure 3. MAX8795A EV Kit PCB Layout—Component Side

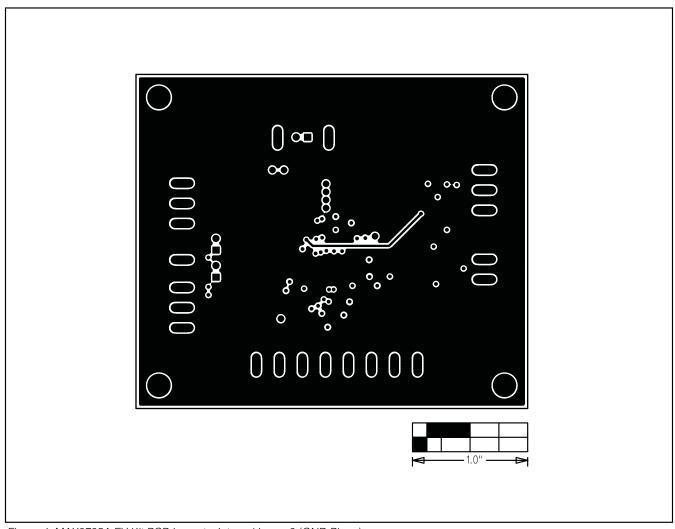


Figure 4. MAX8795A EV Kit PCB Layout—Internal Layer 2 (GND Plane)

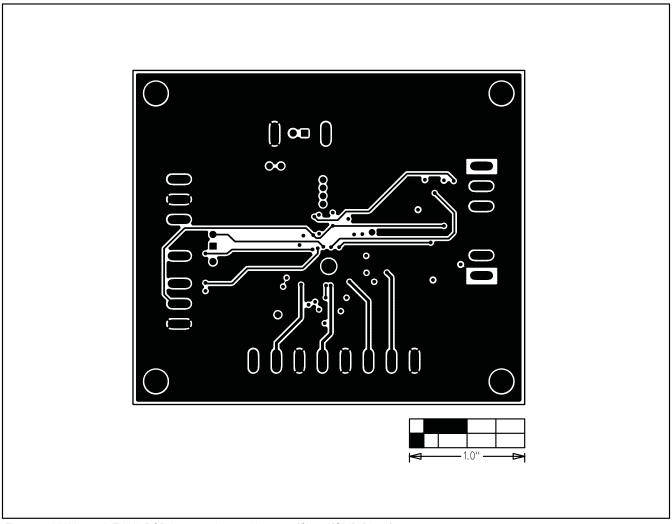


Figure 5. MAX8795A EV Kit PCB Layout—Internal Layer 3 (Signal/GND Plane)

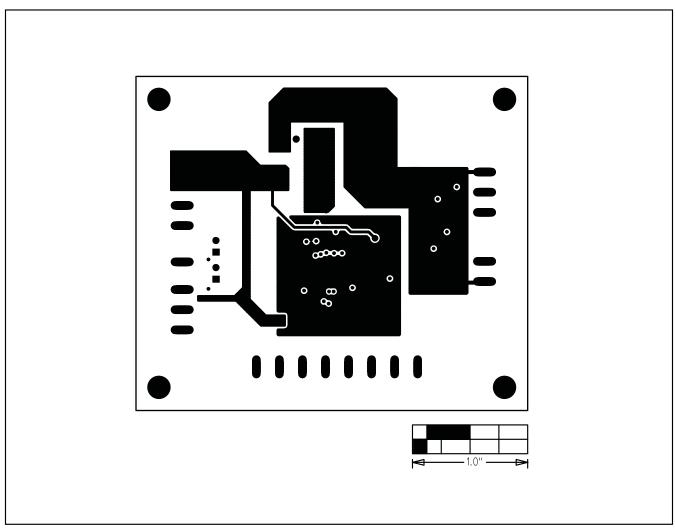


Figure 6. MAX8795A EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.