imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

White LED Charge Pump with Mono Class D Audio Amp and Dual LDO

General Description

The MAX8821 integrates a charge pump for white LEDs, an audio loudspeaker amplifier, and two lownoise LDOs controlled by an I²C control interface. The high-efficiency, adaptive-mode inverting charge pump drives up to six LEDs with constant current for uniform brightness. The LED current is controlled by an I²C interface and adjusts from 0.1mA to 25.6mA per LED into 32 pseudo-logarithmic steps. Independent voltages for each LED maximize efficiency even with large LED forward voltage (V_F) mismatch. An internal temperature derating function reduces the current above +40°C to protect the LEDs.

The high-efficiency mono Class D audio amplifier delivers up to 2W into a 4Ω speaker from a 5V input supply. The amplifier features proprietary filterless Active Emissions Limiting (AEL) technology. AEL prevents high-frequency emissions resulting from conventional Class D free-wheeling behavior in the presence of an inductive load. The amplifier offers two modulation schemes: a fixed-frequency mode (FFM) and a spreadspectrum mode (SSM) that reduce EMI-radiated emissions due to the modulation frequency. The amplifier also has robust output protection and high power-supply rejection ratio (PSRR). Click-and-pop suppression is active during power-up/down, enable/disable, and for all mode changes. The amplifier's gain is adjustable through an I²C interface, from -3dB to +24dB in 10 3dB steps. Differential inputs improve common-mode noise rejection.

The LDOs in the MAX8821 are designed for low-noise operation. Each LDO output voltage can be individually programmed by the I²C interface. Both LDO1 and LDO2 have a high 70dB PSRR rating.

The MAX8821 includes soft-start, thermal shutdown, open-circuit, and short-circuit protections, and is available in a compact 28-pin, Thin QFN, 4mm x 4mm package (0.8mm max height).

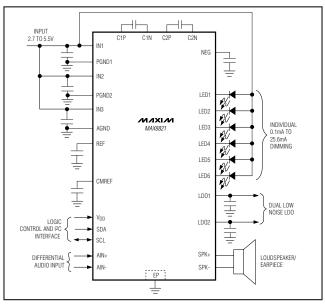
Applications

Cell Phones and Smartphones PDAs, Digital Cameras, Camcorders MP3 Players, GPS Devices

Features

 White LED Inverting Charge Pump Independent Adaptive Current Regulators for Each LED

6 Low-Dropout Current Regulators Flexible I²C Dimming Control for Each LED Ramp-Up/Down, Current Control for Each LED Low 70μA (typ) Quiescent Current T_A Derating Function Protects LEDs


- Mono 2W Class D Loudspeaker Amplifier 85% Efficiency (R_L = 8Ω, POUT = 600mW) Low 0.05% THD+N at 1kHz High 65dB PSRR at 1kHz Fully Differential Inputs -3dB to +24dB Gain Settings in 3dB Steps Integrated Click-and-Pop Suppression Low Quiescent Current
- ♦ Dual Low-Noise LDO 45µV_{RMS} Output Noise, 70dB PSRR Flexible I²C-Controlled Output Voltages 200mA and 300mA Output Current Drive

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX8821ETI+	-40°C to +85°C	28 Thin QFN 4mm x 4mm	T2844-1

+Denotes a lead-free package.

Typical Operating Circuit

M/IXI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

IN1, IN2, IN3, V _{DD} to AGND	
SCL, SDA to AGND	0.3V to (V _{DD} + 0.3V)
IN1, IN2, IN3 to NEG	0.3V to +6.0V
AGND to C2N	0.3V to +6.0V
C1P, C2P to AGND	0.3V to (V _{IN1} + 0.3V)
LED_, C1N, C2N to NEG	0.3V to (V _{IN1} + 0.3V)
LDO1, LDO2, REF to AGND	0.3V to (V _{IN3} + 0.3V)
CMREF, AIN+, AIN-, SPK+, SPK-	
to AGND	0.3V to (VIN2 + 0.3V)

IN1, IN2 to IN3	0.3V to +0.3V
PGND1, PGND2 to AGND	0.3V to +0.3V
SPK+, SPK- Short Circuit to PGND2 or IN2	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
28-Pin, Thin QFN 4mm x 4mm	
(derate 28.6mW/°C above +70°C)	2286mW
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS			ТҮР	MAX	UNITS	
V _{IN1} , V _{IN2} , V _{IN3} Operating Voltage			2.7		5.5	V	
V _{DD} Operating Range			1.5		5.5	V	
Undervoltage Lockout (UVLO) Threshold	V _{IN3} rising		2.25	2.45	2.65	V	
UVLO Hysteresis				100		mV	
V _{DD} Shutdown Threshold			0.450	0.865	1.350	V	
	V _{DD} = AGND	$T_A = +25^{\circ}C$		0.1	1		
IN1, IN2, IN3 Shutdown Supply Current	VDD = AGND	$T_A = +85^{\circ}C$		0.1			
(All Outputs Off)	$\lambda = -2.6 \lambda$	$T_A = +25^{\circ}C$		2	10	μA	
	$V_{DD} = 3.6V$	$T_A = +85^{\circ}C$		2			
	Charge pump inactive, 2 LEDs at 0.1mA setting, audio amplifier disabled, LDO1 and LDO2 disabled			70	120		
	LED driver disabled, audio amplifier disabled, and LDO1 and LDO2 enabled			170	250	μΑ	
No-Load Supply Current	Charge pump active, 1MHz switching, all LEDs at 25.6mA setting, audio amplifier disabled, LDO1 and LDO2 disabled			1.50	4.00	mA	
	LED driver disabled, audio amplifier enabled, LDO1 and LDO2 disabled			6.6	20		
Thermal Shutdown				+160		°C	
Thermal-Shutdown Hysteresis				20		°C	
CHARGE PUMP							
	SYNC = 0			1000			
0	SYNC = 1, SW_MODE = 00			550	650		
Switching Frequency (fsw)	SYNC = 1, SW_MODE = 01			700	825	kHz	
(ISW)	SYNC = 1, SW_MODE = 10			625 ± 25			

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CC	NDITIONS		MIN	ТҮР	MAX	UNITS	
Soft-Start Time					0.1		ms	
Regulation Voltage	(VIN1 - VNEG)				5		V	
Open-Loop NEG Output Resistance	(0.5 x V _{IN1} - V _{NEG}) / I _{NEG}	à			1.75	3.5	Ω	
Output Current	VIN1 = 3.2V, LED VFMAX	= 3.9V		154			mA	
NEG Discharge Resistance in Shutdown	All LEDs disabled				10		kΩ	
LED_ CURRENT REGULATORS								
Current Setting Range	ILED_			0.1		25.6	mA	
		$T_A = +25^{\circ}C$		-2	±1	+2		
Current Accuracy	25.6mA setting	$T_A = -40^{\circ}C$ to dera function start temp (enabled by I^2C)		-5		+5	%	
	0.1mA setting, $T_A = +25^\circ$	°C		-30	±5	+30		
Current-Derating-Function Start Temperature					+40		°C	
Current-Derating-Function Slope	$T_A = +40^{\circ}C \text{ to } +85^{\circ}C$				-1.67		%/°C	
	Charge pump inactive	Charge pump inactive			2.3	4.6	0	
RDSON	Charge pump active	Charge pump active				14	Ω	
Dropout Voltage	25.6mA setting (Note 2) Charge pump inactive Charge pump active		ctive		72	120	mV	
Diopout voltage			ive		120	360	IIIV	
Current Regulator Switchover Threshold	Charge pump inactive to V _{LED} falling	active,		125	150	175	mV	
Current Regulator Switchover Hysteresis					100		mV	
Leekeen Current in Chutdourn	All LEDs	LEDs $T_A = +25^{\circ}C$			0.01	1		
Leakage Current in Shutdown	disabled	$T_A = +85^{\circ}C$			0.1		μA	
			00		524			
Off Blink Time	B7, B6 or B3, B2, SYNC = 0,		01		1048			
	Table 11		10		2097		ms	
			11		4194			
			00		66			
On Blink Time	B5, B4 or B1, B0, SYNC = 0,		01		131		ms	
	Table 11		10		262		-	
		11		524				
	LEDRU: B7, B6 or B3,		00		262		4	
Ramp-Up/Down Time		LEDRD: B5, B4 or B1, B0			524		ms	
	SYNC = 0, 10 Tables 8, 9, 10 (Note 3) 11				1048			
			11		2097			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN1} = V_{IN2} = V_{IN3} = V_{DD} = 3.6V, V_{AGND} = V_{PGND1} = V_{PGND2} = 0V$, circuit of Figure 2, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER		CONDITIONS		MIN	ТҮР	МАХ	UNITS	
AUDIO AMPLIFIER	1							
Common-Mode Bias Voltage				0.95 x (V _{IN3} / 2)	V _{IN3} / 2	1.05 x (V _{IN3} / 2)	V	
Output Offset Voltage	$V_{AIN+} = V_{AIN-} = V_{IN3}$	/ 2, audio gain = 0)dB		±1		mV	
Common-Mode Input Voltage				0.5		V _{IN3} - 1.2V	V	
					-3			
					0			
					3			
					6			
Audio Gain	Table 15, B3:B0				9		dB	
	10010 10, 20.20				12		GD	
					15			
					18			
					21]	
					24			
Audio Gain Accuracy				-3		+3	%	
	Audio gain = -3dB				99.0	143.5	kΩ	
	Audio gain = 0dB				89.2	129.3		
	Audio gain = 3dB				78.4	113.7		
	Audio gain = 6dB				66.9	97.0		
Input Resistance	Audio gain = 9dB				55.5	80.5		
	Audio gain = 12dB				44.7	64.8		
	Audio gain = 15dB				35.2	51.0		
	Audio gain = 18dB	Audio gain = 18dB				39.0		
	Audio gain = 21dB	Audio gain = 21dB				29.3		
	Audio gain = 24dB			8.2	15.0	22.0		
Common-Mode Rejection Ratio	$V_{IN2} = V_{IN3} = 3.6V$				46		dB	
Common-Mode Rejection Hatto	$f = 1 kHz, V_{IN2} = V_{IN3}$	= 3.6V			46		uD	
Power-Supply Rejection Ratio	$V_{AIN+} = V_{AIN-} = V_{IN3}$	/ 2,	f = 217Hz		65		dB	
	100mV _{P-P} at V _{IN3}	- 1	f = 20kHz		50		GD	
		V _{IN3} = 3.6V	$R_L = 8\Omega$	0.36	0.5			
Output Power	f = 1 HHz	VIN3 - 0.0V	$R_L = 4\Omega$		0.85		W	
		$V_{IN3} = 5V$	$R_{L} = 8\Omega$ $R_{L} = 4\Omega$	0.8	1.1		**	
	. ,	VIN3 = 5V			2.0			
Total Harmonic Distortion Plus Noise	$ \begin{array}{l} {\sf R}_{\sf L} = 8\Omega, f = 1 {\sf kHz}, {\sf P}_{\sf OUT} = 0.25 {\sf W}, \\ {\sf V}_{\sf IN2} = {\sf V}_{\sf IN3} = 3.6 {\sf V} \end{array} $				0.05		%	

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER		CONDITIONS	MIN	ТҮР	MAX	UNITS
		Fixed-frequency mode (FFM)		91		
Cignal to Naisa Datia	$R_L = 8\Omega$, $f = 1$ kHz,	Spread-spectrum mode (SSM)		89		٩D
Signal-to-Noise Ratio	$P_{OUT} = 0.25W,$ $V_{IN2} = V_{IN3} = 3.6V$	FFM A weighted		93		dB
		SSM A weighted		91		
	SW_MODE = 00		900	1100	1300	
Oscillator Frequency	SW_MODE = 01		1150	1400	1650	kHz
(fosc)	SW_MODE = 10			1250 ±50		KHZ
Differential Input Resistance	Shutdown mode only			100		kΩ
Output Current Limit	SPK+, SPK- short circuited to PGND2 or to IN2			2		Α
Wake-Up Delay After Short Circuit				110		μs
LDO1						•
Output Voltage VLDO1	$\begin{array}{l} 3.6V \leq V_{IN3} \leq 5.5V, \\ 1mA \leq I_{LDO1} \leq 300m. \end{array}$	A	1.164	1.200	1.236	V
Maximum Output Current			300			mA
Output Current Limit	$V_{LDO1} = 0V$		400	650	1000	mA
Dropout Voltage	I _{LDO1} = 200mA, T _A =	+25°C (Note 5)		150	300	mV
Line Regulation	V_{IN3} stepped from 3.4V to 5.5V, $I_{LDO1} = 150$ mA			2.4		mV
Load Regulation	I _{LDO1} stepped from 1mA to 300mA			25		mV
Power-Supply Rejection ΔVIN3/ΔVLDO1	10Hz to 10kHz, I _{LDO1} = 30mA			70		dB
Output Voltage Noise (RMS)	100Hz to 100kHz, I _{LDO1} = 30mA			45		μV _{RMS}

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	
		0000	1.164	1.2	1.236	
		0001	1.261	1.3	1.339	
		0010	1.455	1.5	1.545	
		0011	1.552	1.6	1.648	
		0100	1.746	1.8	1.854	
		0101	1.843	1.9	1.957	
		0110	1.940	2.0	2.060	
Programmable Output	I _{LDO1} = 50mA control bits B3:B0;	0111	2.231	2.3	2.369	V
Voltage	see Table 13	1000	2.425	2.5	2.575	V
		1001	2.522	2.6	2.678	
		1010	2.619	2.7	2.781	
		1011	2.716	2.8	2.884	1
		1100	2.813	2.9	2.987	
		1101	2.910	3.0	3.090	
		1110	3.007	3.1	3.193	
		1111	3.104	3.2	3.296	
Shutdown Output Impedance	LDO1 disabled through I ² C			1		kΩ
LDO2						
Output Voltage V _{LDO2}	$\begin{array}{l} 3.6V \leq V_{IN3} \leq 5.5V, \\ 1mA \leq I_{LDO2} \leq 200mA \end{array}$		1.455	1.500	1.545	V
Maximum Output Current			200			mA
Output Current Limit	$V_{LDO2} = 0V$		250	550	750	mA
Dropout Voltage	$I_{LDO2} = 133$ mA, $T_A = +25$ °C (Note 5)			100	200	mV
Line Regulation	V _{IN3} stepped from 3.4V to 5.5V, I _{LDO2} = 100mA			2.4		mV
Load Regulation	I _{LDO2} stepped from 1mA to 200mA			25		mV
Power-Supply Rejection ΔVIN3/ΔVLDO2	10Hz to10kHz, I _{LDO2} = 20mA			70		dB
Output Voltage Noise (RMS)	100Hz to100kHz, I _{LDO2} = 20mA		45		μV _{RMS}	

ELECTRICAL CHARACTERISTICS (continued)

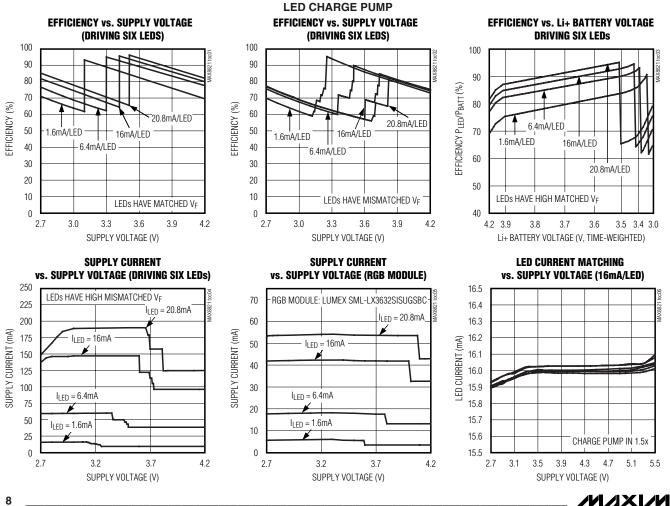
PARAMETER	CO	NDITIONS		MIN	TYP	MAX	UNITS
			0000	1.455	1.5	1.545	
			0001	1.552	1.6	1.648	
			0010	1.746	1.8	1.854	
			0011	1.940	2.0	2.060	
			0100	2.134	2.2	2.266	
			0101	2.231	2.3	2.369	
	$I_{LDO2} = 50 \text{mA}$		0110	2.328	2.4	2.472	
Programmable Output	control bits		0111	2.425	2.5	2.575	v
Voltage	B3:B0;		1000	2.522	2.6	2.678	v
	see Table 14		1001	2.619	2.7	2.781	
			1010	2.716	2.8	2.884	
			1011	2.813	2.9	2.987	
			1100	2.910	3.0	3.090	
			1101	3.007	3.1	3.193	
			1110	3.104	3.2	3.296	_
			1111	3.201	3.3	3.399	
Shutdown Output Impedance	LDO2 disabled through I ² C				1		kΩ
I ² C INTERFACE (Figu	re 8)						
Logic Input High Voltage				0.7 x V _{DD}			V
Logic Input Low Voltage						0.3 x V _{DD}	V
		T _A = +25°	С	-1	0.01	+1	
Logic Input Current	$V_{IL} = 0V \text{ or } V_{IH} = V_{DD}$	T _A = +85°	С		0.1		μA
SDA Output Low Voltage	I _{SDA} = 3mA				0.03	0.4	V
I ² C Clock Frequency						400	kHz
Bus-Free Time Between START and STOP	^t BUF			1.3			μs
Hold Time Repeated START Condition	thd_sta			0.6	0.1		μs
SCL Low Period	tLOW			1.3	0.2		μs
SCL High Period	thigh			0.6	0.2		μs
Setup Time Repeated START Condition	tsu_sta			0.6	0.1		μs

ELECTRICAL CHARACTERISTICS (continued)

(VIN1 = VIN2 = VIN3 = VDD = 3.6V, VAGND = VPGND1 = VPGND2 = 0V, circuit of Figure 2, TA = -40°C to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$ (Note 1)

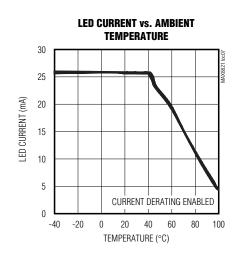
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
SDA Hold Time	thd_dat	0	-0.01		μs
SDA Setup Time	tsu_dat	100	50		ns
Setup Time for STOP Condition	tsu_sto	0.6	0.1		μs

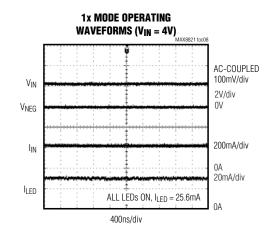
Note 1: Limits are 100% production tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range are guaranteed by design. Note 2: Dropout voltage is defined as the LED_ to GND voltage when the current into LED_ drops 10% from the value at $V_{LED} = 0.5V$.

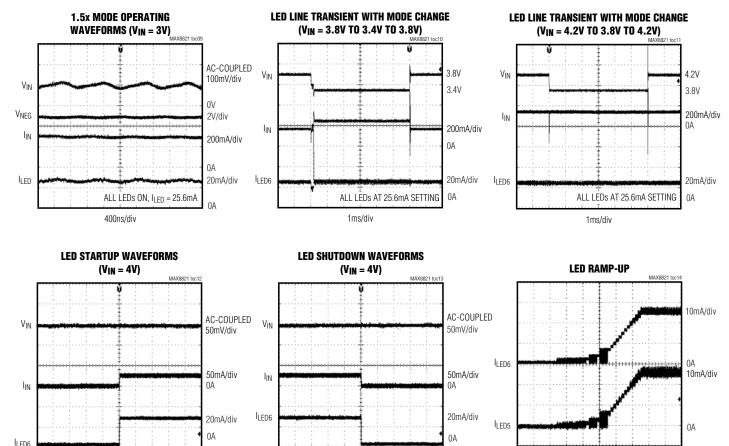

Note 3: Ramp-up time is from 0mA to full scale; ramp-down time is from full scale to 0mA.

Note 4: Output power is specified by a combination of a functional output current test and characterization analysis. Note 5: The dropout voltage is defined as VIN - VOUT when VOUT is 100mV below the nominal value of VOUT. The specification only

applies when $V_{OUT} \ge 3.0V$.


Typical Operating Characteristics


 $(V_{IN1} = V_{IN2} = V_{IN3} = V_{DD} = 3.6V, V_{AGND} = V_{PGND1} = V_{PGND2} = 0V$, circuit of Figure 2, $T_A = +25^{\circ}$ C, unless otherwise noted.)

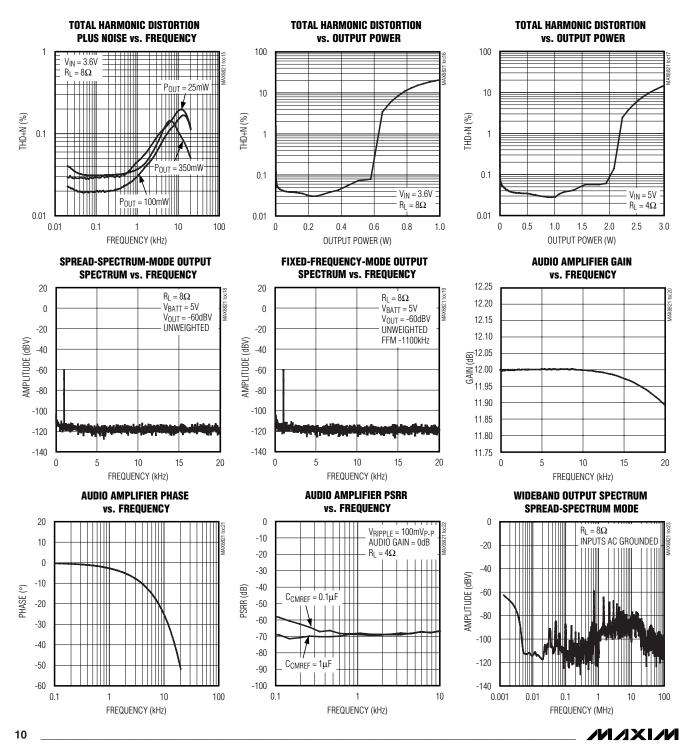


Typical Operating Characteristics (continued)

 $(V_{IN1} = V_{IN2} = V_{IN3} = V_{DD} = 3.6V, V_{AGND} = V_{PGND1} = V_{PGND2} = 0V$, circuit of Figure 2, $T_A = +25^{\circ}C$, unless otherwise noted.)

1ms/div

1ms/div

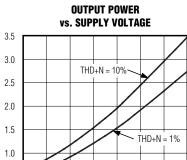

9

400ms/div

Typical Operating Characteristics (continued)

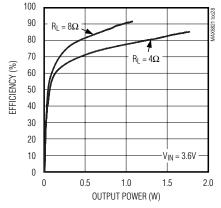
 $(V_{IN1} = V_{IN2} = V_{IN3} = V_{DD} = 3.6V, V_{AGND} = V_{PGND1} = V_{PGND2} = 0V$, circuit of Figure 2, $T_A = +25^{\circ}$ C, unless otherwise noted.)

CLASS D AMP

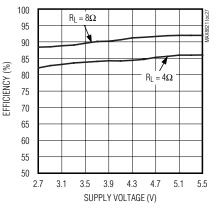


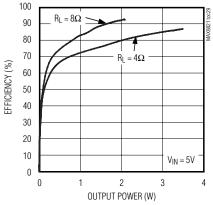
OUTPUT POWER (W)

Typical Operating Characteristics (continued)


 $(V_{IN1} = V_{IN2} = V_{IN3} = V_{DD} = 3.6V, V_{AGND} = V_{PGND1} = V_{PGND2} = 0V$, circuit of Figure 2, $T_A = +25^{\circ}C$, unless otherwise noted.)

1.0 0.5 0 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 SUPPLY VOLTAGE (V)

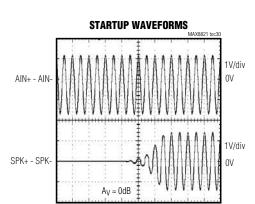

EFFICIENCY vs. OUTPUT POWER

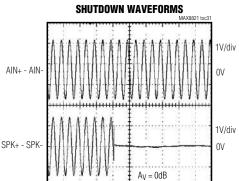

vs. SUPPLY VOLTAGE 2.5 2.0 THD+N = 10% 1.5 1.0 THD+N = 1% 0.5 $R_L=8\Omega$ 0 3.1 3.5 3.9 4.3 4.7 5.1 5.5 2.7 SUPPLY VOLTAGE (V)

OUTPUT POWER

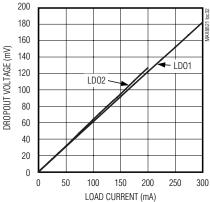
EFFICIENCY vs. SUPPLY VOLTAGE

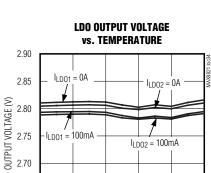
EFFICIENCY vs. OUTPUT POWER




OUTPUT POWER (W)

_Typical Operating Characteristics (continued)


 $(V_{IN1} = V_{IN2} = V_{IN3} = V_{DD} = 3.6V, V_{AGND} = V_{PGND1} = V_{PGND2} = 0V$, circuit of Figure 2, $T_A = +25^{\circ}C$, unless otherwise noted.)


DUAL LDOs

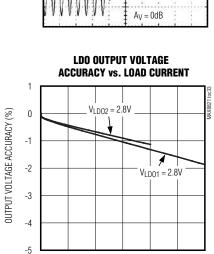
LDO DROPOUT VOLTAGE vs. Load current

2.65

2.60

-40

-15


10

TEMPERATURE (°C)

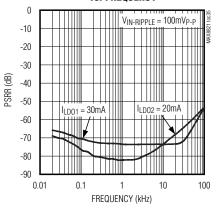
35

60

85

150 200

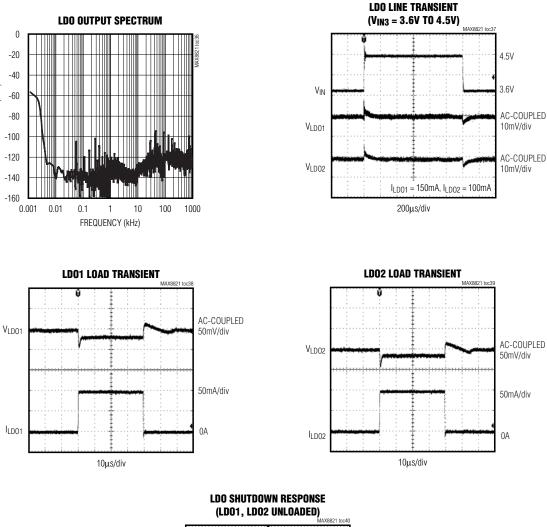
LOAD CURRENT (mA)

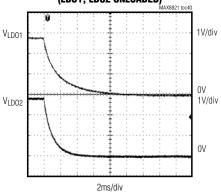

50

100

0

250


300



Typical Operating Characteristics (continued)

 $(V_{IN1} = V_{IN2} = V_{IN3} = V_{DD} = 3.6V, V_{AGND} = V_{PGND1} = V_{PGND2} = 0V, \text{ circuit of Figure 2, } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

AMPLITUDE (dBV)

Pin Description

	1	
PIN	NAME	FUNCTION
1	V _{DD}	I ² C Input Supply Voltage. The V _{DD} supply range is 1.5V to 5.5V. Drive V _{DD} high to enable the I ² C control. Drive V _{DD} low to place the IC into shutdown mode.
2	CMREF	Audio Common-Mode Reference Voltage. Bypass CMREF with a 0.1μ F ceramic capacitor to AGND as close as possible to the IC.
3	AIN+	Noninverting Audio Input
4	AIN-	Inverting Audio Input
5	PGND2	Audio Amplifier Power Ground. Connect PGND2 to the system ground plane.
6	SPK-	Audio Amplifier Negative Output
7	SPK+	Audio Amplifier Positive Output
8	IN2	Audio Amplifier Output Buffer Supply Voltage Input. The input voltage range is 2.7V to 5.5V. Connect IN2 directly to IN1 and IN3. Bypass IN2 to PGND2 with a 1μ F ceramic capacitor as close as possible to the IC. IN2 is high impedance during shutdown.
9	LDO2	200mA LDO Output. Bypass LDO2 to AGND with a 1 μ F ceramic capacitor. LDO2 is disabled through the I ² C interface.
10	LDO1	300mA LDO Output. Bypass LDO1 to AGND with a 2.2 μ F ceramic capacitor. LDO1 is disabled through the I ² C interface.
11	SCL	I ² C Clock Input. Data is read on the rising edge of V _{SCL} .
12	SDA	I ² C Data Input. Data is read on the rising edge of V _{SCL} .
13	AGND	Analog Ground. Connect AGND to the system ground plane. AGND is also internally connected to the exposed paddle.
14	REF	Reference Bypass. Bypass REF with a 0.1µF ceramic capacitor to AGND as close as possible to the IC.
15–20	LED1– LED6	LED Current Regulators. Current flowing into LED_ is based upon the internal I ² C registers. Connect LED_ to the cathodes of the external LEDs. LED_ is high impedance during shutdown. If unused, short LED_ to IN1 to disable the regulator.
21	NEG	Charge-Pump Negative Output. Connect a 1μ F ceramic capacitor from NEG to AGND. In shutdown, an internal $10k\Omega$ resistor connects NEG to AGND.
22	C2N	Transfer Capacitor 2 Negative Connection. Connect a 1µF ceramic capacitor from C2P to C2N.
23	C1N	Transfer Capacitor 1 Negative Connection. Connect a 1µF ceramic capacitor from C1P to C1N.
24	C2P	Transfer Capacitor 2 Positive Connection. Connect a 1µF ceramic capacitor from C2P to C2N.
25	C1P	Transfer Capacitor 1 Positive Connection. Connect a 1µF ceramic capacitor from C1P to C1N.
26	IN1	Charge-Pump Supply Voltage Input. The input voltage range is 2.7V to 5.5V. Connect IN1 directly to IN2 and IN3. Bypass IN1 to PGND1 with a 2.2µF ceramic capacitor as close as possible to the IC. IN1 is high impedance during shutdown.
27	PGND1	Charge-Pump Power Ground. Connect PGND1 to the system ground plane.
28	IN3	Input Voltage Supply for LDO1, LDO2, REF, Class D Preamplifier, and Class D Amplifier Modulator Core. The input voltage range is 2.7V to 5.5V. Connect IN3 directly to IN1 and IN2. Bypass IN3 to AGND with a 2.2µF ceramic capacitor as close as possible to the IC. IN3 is high impedance during shutdown.
_	EP	Exposed Paddle. Connect the exposed paddle to AGND directly under the IC. Exposed paddle is internally connected to AGND.

MAX8821

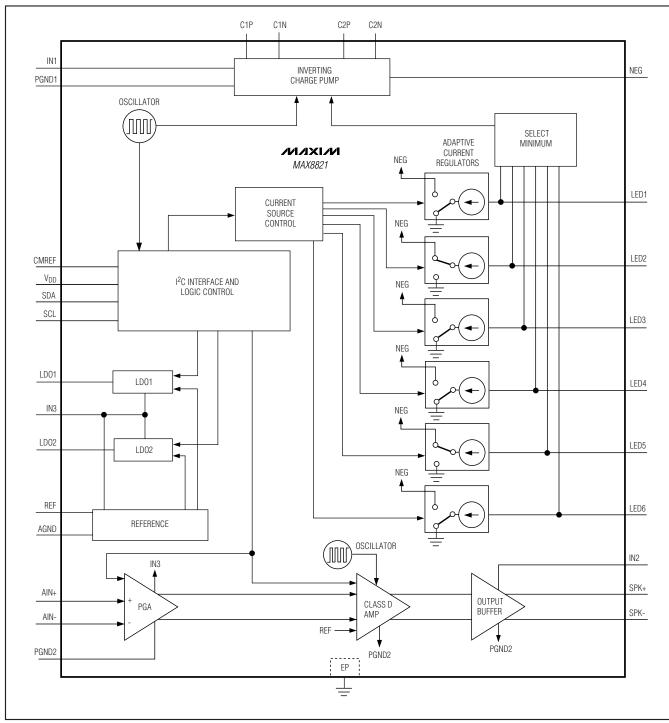


Figure 1. Block Diagram

MAX8821

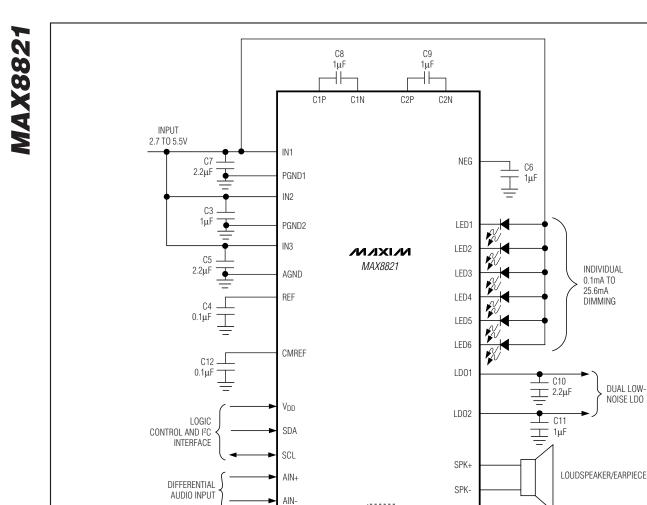


Figure 2. Typical Application Circuit

Detailed Description

. EΡ

The MAX8821 integrates a charge pump for white LED display backlighting, an audio loudspeaker amplifier, and dual LDO for camera functions. It includes softstart, thermal shutdown, open-circuit and short-circuit protections for the white LEDs, audio amplifier, and LDOs. Figure 1 is the block diagram, and Figure 2 shows the typical application circuit.

LED Charge Pump

The MAX8821 features an inverting charge pump and six current regulators capable of 25.6mA each to drive six LEDs. The current regulators are matched to within ±1% (typ), providing uniform white LED brightness for LCD backlight applications. To maximize efficiency, the current regulators operate with as little as 0.15V voltage drop. Individual white LED current regulators conduct current to GND or NEG to extend usable battery life. In the case of mismatched forward voltage of white LEDs, only the white LEDs requiring higher voltage are switched to direct current to NEG instead of GND, further raising efficiency and reducing battery current drain. The regulation scheme is optimized to ensure low EMI and low input ripple. The on-chip ambient temperature derating function safely allows bright 25.6mA

INDIVIDUAL

0.1mA TO 25.6mA

DIMMING

DUAL LOW-

NOISE LDO

full-scale output current while automatically reducing current gradually above +40°C in accordance with popular LED ratings. The on-chip derating feature can be enabled, or disabled, using the I²C interface.

Current Regulator Switchover

When V_{IN} is higher than the forward voltage of the white LED plus the 0.15V headroom of the current regulator, the LED current returns through ground. If this condition is satisfied for all six white LEDs the charge pump remains inactive. When the input voltage drops so that the current regulator head room cannot be maintained for any of the individual white LEDs, the inverting charge pump activates and generates a voltage on NEG that is no greater than 5V below V_{IN}. Each current regulator contains circuitry that detects when it is in dropout and switches that current regulator return path from GND to NEG. Since this is done on an LED-by-LED basis, the LED current is switched for only the individual LED requiring higher voltage, thus minimizing power consumption.

Ramp-Up and Ramp-Down Function

The LED drivers in the MAX8821 provide ramp-up and ramp-down of LED current for smooth transitions between different brightness settings. A controlled ramp is used when the LED current level is changed, when the LEDs are enabled, and when the LEDs are disabled. The LED currents ramp up and down smoothly on a pseudo-log scaling of the LED current sources (Figures 3 and 4). Each LED source has an individual ramp control making it possible to ramp different LEDs at different rates. The ramp-up and ramp-down (t_{RAMP}) LED current times are controlled by the LED_RU and LED_RD control bits (Tables 8, 9, and 10). The LED_RP_EN bit enables and disables the ramps. The MAX8821 increases/decreases the current one step every t_{RAMP}/32 until the desired current is reached.

Blink Timer

The current regulators for LED5 and LED6 feature a blink function. The OFF and ON time for LED5 and LED6 can be set using the I^2C interface (Table 11). See Figure 5.

Combining Blink Timer and Ramp Function

To combine the ramp function together with the blink timer for LED5 and/or LED6, special timing considerations need to be fulfilled. It is recommended to keep the ramp-up timer shorter than the ON blink timer and the ramp-down timer shorter than the OFF blink timer. Failing to comply with these timing constraints results in the LED_ not reaching the programmed current (LED_[4:0], Tables 6 and 7) during the ON time and the LED_ current not returning to 0mA during the off time. See the following equations to ensure proper operation:

$$t_{ON_BLINK} \ge \frac{!LED_RU}{32} (LED_[4:0]+1)$$
$$t_{OFF_BLINK} \ge \frac{t_{LED_RD}}{32} (LED_[4:0]+1)$$

where LED_[4:0] is the programmed current set by $I^{2}C$ (see Tables 6 and 7).

Figure 6 shows combining ramp function and blink timer.

LED Short- and Open-Circuit Protection

If any LED fails as an open circuit, the corresponding LED_ is internally connected to ground and the charge pump is enabled. To disable the corresponding current regulator, short any unused LED_ to IN1. The MAX8821 contains special circuitry to detect this condition and disables the corresponding current regulator to avoid wasting battery power.

Temperature Derating

The MAX8821 contains a derating function that automatically limits the LED current at high temperatures in accordance with the recommended derating curve of popular white LEDs. The derating function enables the safe usage of higher LED current at room temperature, thus reducing the number of LEDs required to backlight the display. The derating circuit limits the LED current by reducing the LED current above +40°C at approximately 1.67%/°C. The temperature derating function is enabled/disabled using the I²C interface and by default is disabled.

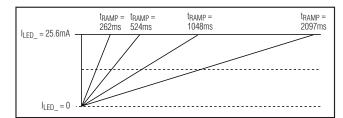


Figure 3. Ramp-Up Behavior

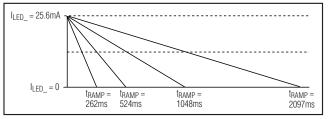


Figure 4. Ramp-Down Behavior

Audio Amplifier

The audio amplifier in the MAX8821 is a 2W Class D loudspeaker amplifier. The amplifier features a low-power shutdown mode and industry-leading click-and-pop suppression. The amplifier also features a programmable gain control through an I²C interface. The amplifier operates from a single 2.7V to 5.5V supply (V_{IN3} = V_{IN2}) and features an internally generated common-mode bias voltage of V_{IN3} / 2 referenced to ground.

Click-and-Pop Suppression

The MAX8821 features Maxim's industry-leading clickand-pop suppression circuitry. During startup, the amplifier's common-mode bias voltage ramps to the DC bias point. When entering shutdown, the amplifier outputs are high impedance with 100k Ω between both inputs. This scheme minimizes the energy present in the audio band.

Class D Amplifier

The MAX8821 ultra-low-EMI, filterless, Class D audio power amplifier features several improvements to switch mode amplifier technology. The MAX8821 audio amplifier features output driver AEL circuitry to reduce EMI. Zero dead-time technology maintains state-of-theart efficiency and THD+N performance by allowing the output MOSFETs to switch simultaneously without cross-conduction.

A unique filterless modulation scheme and spreadspectrum mode create a compact, flexible, low-noise, efficient audio power amplifier while occupying minimal board space. The differential input architecture reduces common-mode noise pickup with or without the use of input-coupling capacitors. The MAX8821 audio amplifier can also be configured as a single-ended input amplifier without performance degradation. The input capacitors C_{IN} (Figure 7) are required for single-ended input applications and are typically 1µF.

The output of the MAX8821 shuts down if the output current reaches approximately 2A. Each output MOSFET has its own short-circuit protection. This protection scheme allows the amplifier to survive shorts to either supply rail. After a thermal overload or short circuit, the device remains disabled for a minimum of 110µs before attempting to return to normal operation. The amplifier shuts down immediately and waits another 110µs before turning on if the fault condition remains. This operation causes the output to pulse during a persistent fault.

Comparators monitor the MAX8821 inputs and compare the complementary input voltages to the sawtooth waveform. The comparators trip when the input magnitude of the sawtooth exceeds their corresponding input voltage.

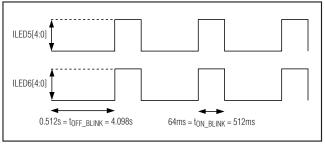


Figure 5. Blink Timer Behavior

Both comparators reset at a fixed time after the rising edge of the second comparator trip point, generating a minimum width pulse $t_{ON(MIN)}$ at the output of the second comparator. As the input voltage increases or decreases, the duration of the pulse at one output increases (the first comparator to trip), while the other output pulse duration remains at $t_{ON(MIN)}$. This causes the net voltage across the speaker (SPK+ - SPK-) to change.

Adjustable Differential Gain

The audio amplifier has an internal gain control. The gain of the input amplifiers is controlled through the $I^{2}C$ interface. The gain setting of the input amplifier can be set from -3dB to +24dB (Table 15). This allows the amplifier to be used for both hands-free and for receiver mode without any external components.

Input Filter

The fully differential amplifier inputs can be biased at voltages other than midsupply. The common-mode feedback circuit adjusts for input bias, ensuring the outputs are still biased at midsupply. Input capacitors are not required as long as the common-mode input voltage is within the specified range listed in the *Electrical Characteristics* table. If input capacitors are used, input capacitor C_{IN}, in conjunction with on-chip R_{INT}, forms a highpass filter that removes the DC bias from an incoming signal. The AC-coupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero-source impedance, the -3dB point of the highpass filter is given by:

$$f_{-3dB} = \frac{1}{2 \times \pi \times R_{INT} \times C_{IN}}$$

Setting the -3dB corner too high affects the low-frequency response of the amplifier. Use capacitors with dielectrics that have low-voltage coefficients, such as aluminum electrolytic. Capacitors with high voltage coefficients, such as ceramics, can increase distortion at low frequencies.

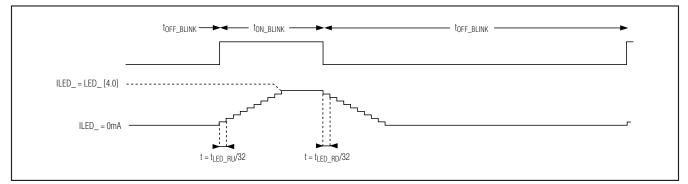


Figure 6. Combining Ramp Function and Blink Timer (Tables 10 and 11)

LDO1 and LDO2

The linear regulators are designed for low dropout and low quiescent current to maximize battery life. Both LDOs are controlled through the I²C interface, minimizing the number of control lines to the MAX8821. Each LDO has an individual control register (LDO1_CNTL and LDO2_CNTL, Tables 13 and 14). The I²C interface controls the output voltages, and the enable/disable state for both LDO1 and LDO2.

Thermal Shutdown

The MAX8821 includes a thermal-limit circuit that shuts down the IC at a junction temperature of approximately +160°C. The IC turns on after it cools by approximately 20°C.

Shutdown Mode

The MAX8821 can be put into two different shutdown modes. The first shutdown mode is achieved by driving V_{DD} low. In this mode, the I²C interface becomes disabled. The second shutdown is a lower power mode. To enter the low-power mode, disable LED_, audio amplifier, and LDOs through I²C. In lower power mode, the I²C interface is still active.

I²C Interface

The I²C serial interface consists of a serial-data line (SDA) and a serial-clock line (SCL). Standard I²C writebyte commands are used. Figure 8 shows a timing diagram for the I²C protocol. The MAX8821 is a slave-only device, relying upon a master to generate a clock signal. The master (typically a microprocessor) initiates data transfer on the bus and generates SCL to permit data transfer. A master device communicates to the MAX8821 by transmitting the proper 8-bit address followed by the 8-bit control byte. Each transmit sequence is framed by a START (A) condition and a STOP (L) condition. Each word transmitted over the bus

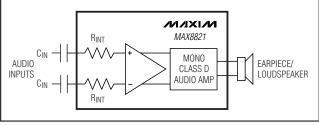


Figure 7. Optional Input Capacitors

is 8 bits long and is always followed by an acknowledge clock pulse (K).

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (A) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, the master issues a STOP (L) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission. One data bit is transferred during each clock pulse. The data on SDA must remain stable while SCL is high.

Register Reset

MAX882

The I²C register is reset back to the default value when either V_{IN} drops below the UVLO threshold or V_{DD} is driven low.

I²C Registers and Control

I²C Address

The MAX8821 acts as a slave transmitter/receiver. The slave address of the MAX8821 is preset to 1001110X, where "X" is the R/W bit. The address 0x9C is designated for write operations and 0x9D for read operations.

Use Table 1 as a register map to reference the control bits found in Tables 2–16.

19

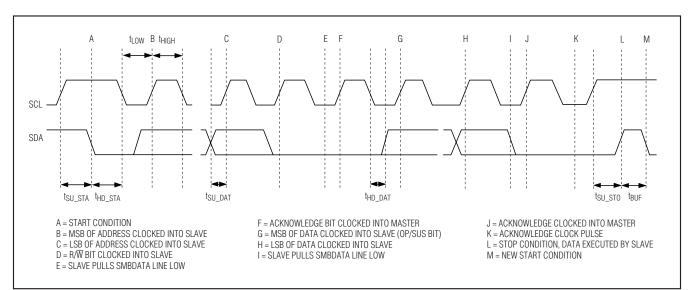


Figure 8. I²C Timing Diagram

NAME	GROUP ADDRESS (hexadecimal)	TABLE	ТҮРЕ	DESCRIPTION
LED1_CNTL	00	2	R/W	LED1 current regulator control
LED2_CNTL	01	3	R/W	LED2 current regulator control
LED3_CNTL	02	4	R/W	LED3 current regulator control
LED4_CNTL	03	5	R/W	LED4 current regulator control
LED5_CNTL	04	6	R/W	LED5 current regulator control
LED6_CNTL	05	7	R/W	LED6 current regulator control
RAMP1_CNTL	06	8	R/W	LED1 and LED2 ramp control
RAMP2_CNTL	07	9	R/W	LED3 and LED4 ramp control
RAMP3_CNTL	08	10	R/W	LED5 and LED6 ramp control
BLINK_CNTL	09	11	R/W	LED5 and LED6 blink control
LED_EN	0A	12	R/W	LED1–LED6 enable control
LDO1_CNTL	OB	13	R/W	LDO1 control
LDO2_CNTL	0C	14	R/W	LDO2 control
AUDIO_CNTL	0D	15	R/W	Audio amplifier, control clock, and frequency
PUMP_CNTL	OE	16	R/W	Charge-pump control setting and temperature derating enable/disable

Table 1. Register Map

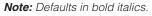
Table 2. LED1_CNTL (Address 0x00)

BIT	NAME	CODE	DESCRIPTION	
B7, B6	N/A, do not use.			
B5	LED1_RP_EN	0 1	<i>LED1 ramp-up/down disabled.</i> LED1 ramp-up/down enabled.	
		00000	0.1mA	
		00001	0.2mA	
		00010	0.3mA	
		00011	0.4mA	
		00100	0.5mA	
		00101	0.6mA	
		00110	0.7mA	
		00111	0.8mA	
		01000	1.0mA	
		01001	1.2mA	
		01010	1.4mA	
		01011	1.6mA	
		01100	2.0mA	
		01101	2.4mA	
		01110	2.8mA	
		01111	3.2mA	
B4–B0	LED1[4:0]	10000	4.0mA	
		10001	4.8mA	
		10010	5.6mA	
		10011	6.4mA	
		10100	8.0mA	
		10101	9.6mA	
		10110	11.2mA	
		10111	12.8mA	
		11000	14.4mA	
		11001	16.0mA	
		11010	17.6mA	
		11011	19.2mA	
		11100	20.8mA	
		11101	22.4mA	
	l F	11110	24.0mA	
		11111	25.6mA	

Table 3. LED2_CNTL (Address 0x01)

BIT	NAME	CODE	DESCRIPTION	
B7, B6	N/A, do not use.			
B5	LED2_RP_EN	0 1	LED2 ramp-up/down disabled. LED2 ramp-up/down enabled.	
		00000	0.1mA	
		00001	0.2mA	
		00010	0.3mA	
		00011	0.4mA	
		00100	0.5mA	
		00101	0.6mA	
		00110	0.7mA	
		00111	0.8mA	
		01000	1.0mA	
		01001	1.2mA	
		01010	1.4mA	
		01011	1.6mA	
		01100	2.0mA	
		01101	2.4mA	
		01110	2.8mA	
B4–B0		01111	3.2mA	
B4–BU	LED2[4:0]	10000	4.0mA	
		10001	4.8mA	
		10010	5.6mA	
		10011	6.4mA	
		10100	8.0mA	
		10101	9.6mA	
		10110	11.2mA	
		10111	12.8mA	
		11000	14.4mA	
		11001	16.0mA	
		11010	17.6mA	
		11011	19.2mA	
		11100	20.8mA	
		11101	22.4mA	
		11110	24.0mA	
		11111	25.6mA	

Note: Defaults in bold italics.


Table 4. LED3_CNTL (Address 0x02)

MAX8821

BIT	NAME	CODE	DESCRIPTION
B7, B6	N/A, do not use.		
B5	LED3_RP_EN	0 1	LED3 ramp-up/down disabled. LED3 ramp-up/down enabled.
		00000	0.1mA
		00001	0.2mA
		00010	0.3mA
		00011	0.4mA
		00100	0.5mA
		00101	0.6mA
		00110	0.7mA
		00111	0.8mA
		01000	1.0mA
		01001	1.2mA
		01010	1.4mA
		01011	1.6mA
		01100	2.0mA
		01101	2.4mA
		01110	2.8mA
B4–B0	LED3[4:0]	01111	3.2mA
D4-DU	LED3[4.0]	10000	4.0mA
		10001	4.8mA
		10010	5.6mA
		10011	6.4mA
		10100	8.0mA
		10101	9.6mA
		10110	11.2mA
		10111	12.8mA
		11000	14.4mA
		11001	16.0mA
		11010	17.6mA
		11011	19.2mA
		11100	20.8mA
		11101	22.4mA
		11110	24.0mA
		11111	25.6mA

Table 5. LED4_CNTL (Address 0x03)

BIT	NAME	CODE	DESCRIPTION
B7, B6	N/A, do not use		
B5	LED4_RP_EN	0 1	LED4 ramp-up/down disabled. LED4 ramp-up/down enabled.
		00000	0.1mA
		00001	0.2mA
		00010	0.3mA
		00011	0.4mA
		00100	0.5mA
		00101	0.6mA
		00110	0.7mA
		00111	0.8mA
		01000	1.0mA
		01001	1.2mA
		01010	1.4mA
		01011	1.6mA
		01100	2.0mA
		01101	2.4mA
		01110	2.8mA
54.50		01111	3.2mA
B4–B0	LED4[4:0]	10000	4.0mA
		10001	4.8mA
		10010	5.6mA
		10011	6.4mA
		10100	8.0mA
		10101	9.6mA
		10110	11.2mA
		10111	12.8mA
		11000	14.4mA
		11001	16.0mA
		11010	17.6mA
		11011	19.2mA
		11100	20.8mA
		11101	22.4mA
		11110	24.0mA
		11111	25.6mA

Table 6. LED5_CNTL (Address 0x04)

BIT	NAME	CODE	DESCRIPTION	
B7, B6	N/A, do not use.			
B5	LED5_RP_EN	0 1	LED5 ramp-up/down disabled. LED5 ramp-up/down enabled.	
		00000	0.1mA	
		00001	0.2mA	
		00010	0.3mA	
		00011	0.4mA	
		00100	0.5mA	
		00101	0.6mA	
		00110	0.7mA	
		00111	0.8mA	
		01000	1.0mA	
		01001	1.2mA	
		01010	1.4mA	
		01011	1.6mA	
		01100	2.0mA	
		01101	2.4mA	
		01110	2.8mA	
		01111	3.2mA	
B4–B0	LED5[4:0]	10000	4.0mA	
		10001	4.8mA	
		10010	5.6mA	
		10011	6.4mA	
		10100	8.0mA	
		10101	9.6mA	
		10110	11.2mA	
		10111	12.8mA	
		11000	14.4mA	
		11001	16.0mA	
		11010	17.6mA	
		11011	19.2mA	
		11100	20.8mA	
		11101	22.4mA	
		11110	24.0mA	
		11111	25.6mA	

Table 7. LED6_CNTL (Address 0x05)

BIT	NAME	CODE	DESCRIPTION
B7, B6	N/A, do not use		
B5	LED6_RP_EN	0 1	LED6 ramp-up/down disabled. LED6 ramp-up/down enabled.
		00000	0.1mA
		00001	0.2mA
		00010	0.3mA
		00011	0.4mA
		00100	0.5mA
		00101	0.6mA
		00110	0.7mA
		00111	0.8mA
		01000	1.0mA
		01001	1.2mA
		01010	1.4mA
		01011	1.6mA
		01100	2.0mA
		01101	2.4mA
		01110	2.8mA
54 50		01111	3.2mA
B4–B0	LED6[4:0]	10000	4.0mA
		10001	4.8mA
		10010	5.6mA
		10011	6.4mA
		10100	8.0mA
		10101	9.6mA
		10110	11.2mA
		10111	12.8mA
		11000	14.4mA
		11001	16.0mA
		11010	17.6mA
		11011	19.2mA
		11100	20.8mA
		11101	22.4mA
		11110	24.0mA
		11111	25.6mA

Note: Defaults in bold italics.

BIT NAME DESCRIPTION CODE RAMP TIME (tRAMP) (ms) B7, B6 LED1_RU[1:0] LED1 ramp-up control 00 2¹⁸ x TQPCLK B5, B4 LED1 ramp-down control 2¹⁹ x TQPCLK LED1_RD[1:0] 01 B3, B2 2²⁰ x TQPCLK LED2_RU[1:0] LED2 ramp-up control 10 B1, B0 LED2_RD[1:0] LED2 ramp-down control 2²¹ x TQPCLK 11

Table 8. RAMP1_CNTL (Address 0x06)

Note: $T_{QPCLK} = 1 / f_{SW}$; defaults in bold italics.

BIT	NAME	DESCRIPTION	CODE	RAMP TIME (t _{RAMP}) (ms)
B7, B6	LED3_RU[1:0]	LED3 ramp-up control	00	2 ¹⁸ x TQPCLK
B5, B4	LED3_RD[1:0]	LED3 ramp-down control	01	2 ¹⁹ x Tqpclk
B3, B2	LED4_RU[1:0]	LED4 ramp-up control	10	2 ²⁰ x Tqpclk
B1, B0	LED4_RD[1:0]	LED4 ramp-down control	11	2 ²¹ x Tqpclk

Table 9. RAMP2_CNTL (Address 0x07)

Note: T_{QPCLK} = 1 / f_{SW}; defaults in bold italics.

BIT NAME DESCRIPTION CODE RAMP TIME (tRAMP) (ms) B7, B6 LED5_RU[1:0] LED5 ramp-up control 00 2¹⁸ x TQPCLK 2¹⁹ x TQPCLK B5, B4 LED5_RD[1:0] LED5 ramp-down control 01 B3, B2 LED6_RU[1:0] LED6 ramp-up control 10 220 x TQPCLK B1, B0 LED6_RD[1:0] LED6 ramp-down control 11 2²¹ x TQPCLK

Table 10. RAMP3_CNTL (Address 0x08)

Note: T_{QPCLK} = 1 / f_{SW}; defaults in bold italics.

MAX8821

BIT	NAME	CODE	BLINK TIME
		00	2 ¹⁹ x T _{QPCLK}
B7, B6		01	2 ²⁰ x T _{QPCLK}
D/, D0	LED5_OFF_BLINK	10	2 ²¹ x T _{QPCLK}
		11	2 ²² x T _{QPCLK}
		00	2 ¹⁶ x T _{QPCLK}
	LED5_ON_BLINK	01	2 ¹⁷ x T _{QPCLK}
B5, B4		10	2 ¹⁸ x T _{QPCLK}
		11	2 ¹⁹ x Tqpclk
	LED6_OFF_BLINK	00	2 ¹⁹ x T _{QPCLK}
B3, B2		01	2 ²⁰ x T _{QPCLK}
D3, D2		10	2 ²¹ x T _{QPCLK}
		11	2 ²² x T _{QPCLK}
	B0 LED6_ON_BLINK	00	2 ¹⁶ x T _{QPCLK}
		01	2 ¹⁷ x T _{QPCLK}
B1, B0		10	2 ¹⁸ x T _{QPCLK}
		11	2 ¹⁹ x Tqpclk

Table 11. BLINK_CNTL (Address 0x09)

Note: $T_{QPCLK} = 1 / f_{SW}$; defaults in bold italics.

Table 12. LED_EN (Address 0xA)

BIT	NAME	CODE	DESCRIPTION
B7	LED1_EN	0	LED current source is
B6	LED2_EN	U	disabled.
B5	LED3_EN	-1	LED current source is
B4	LED4_EN	I	enabled.
		00 01	LED current source is disabled.
B3, B2	LED5_EN[1:0]		LED current source is enabled.
B1, B0	LED6_EN[1:0]	10	LED current source controlled by blink timer.
		11	N/A, do not use.

Note: Defaults in bold italics.

Table 13. LDO1_CNTL (Address 0x0B)

BIT	NAME	CODE	DESCRIPTION		
B7, B6	N/A, do not use.				
Dr		0	LDO1 is disabled.		
B5	LDO1_EN	1	LDO1 is enabled.		
		0	Active pulldown enabled during OFF condition.		
B4	LDO1_PD	1	Active pulldown disabled during OFF condition.		
		0000	1.2V		
	LDO1[3:0]	0001	1.3V		
		0010	1.5V		
		0011	1.6V		
		0100	1.8V		
		0101	1.9V		
		0110	2.0V		
B3-B0		0111	2.3V		
D3–D0		1000	2.5V		
		1001	2.6V		
		1010	2.7V		
		1011	2.8V		
		1100	2.9V		
		1101	3.0V		
		1110	3.1V		
		1111	3.2V		