imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration General Description Features

The MAX8895_ USB-compliant linear battery chargers operate from either a USB port or dedicated charger with automatic detection of adapter type and USB enumeration capability. The MAX8895_ integrate the battery disconnect switch, current-sense circuit, MOSFET pass elements, and thermal regulation circuitry, and eliminate the external reverse-blocking Schottky diode to create the simplest and smallest stand-alone charging solutions.

The MAX8895_ includes an automated detection of charge adapter type, making it possible to distinguish between USB 2.0 device, USB charger, and dedicated charger devices. Furthermore, the MAX8895_ include a USB enumeration function that automatically negotiates with a USB host, making it possible to achieve the highest current available from a USB 2.0 device or USB charger without processor intervention. The adapter type detection is compliant with USB 2.0 specification as well as USB charging Revision 1.1.

The MAX8895_controls the charging sequence for singlecell Li+ batteries from initial power-OK indication, through prequalification, fast-charge, top-off, and finally charge termination. Charging is controlled using constant current, constant voltage, and constant die-temperature (CCCVCTj) regulation for safe operation under all conditions. The maximum charging current is adaptively controlled by subtracting the system current from the input current limit, ensuring that the charging current is always maximized for any given operating condition.

The MAX8895_ features optimized smart power control to make the best use of limited USB or adapter power. Battery charge current is set independently of the SYS_ input current limit. Power not used by the system charges the battery. Automatic input selection switches the system from battery to external power. This allows the application to operate without a battery, discharged battery, or dead battery.

Other features include undervoltage lockout (UVLO), overvoltage protection (OVP), charge status flag, charge fault flag, power-OK monitor, battery thermistor monitor, charge timer, and a 3.3V output.

The MAX8895_ operates from a +4.0V to +6.6V supply and include overvoltage protection up to +16V. The MAX8895_ is specified over the extended temperature range (-40°C to +85°C) and are available in a compact 2.36mm x 2.36mm, 25-bump WLP package (0.4mm pitch).

- Enables Charging from a USB Port*
- Automatic Detection of Adapter Type
- Enumeration Capability Without Processor Intervention
- USB Low-Speed Operation Without External Crystal (MAX8895V/MAX8895W/MAX8895X)
- USB Full-Speed Operation Using an External Crystal (MAX8895Y)
- Compliant with USB 2.0 Specification
- Compliant with USB Charging Specification (Revision 1.1)
- Adaptive Input Current Limit for Dedicated Charger
- Input Overvoltage Protection to 16V
- Automatic Current Sharing Between Battery Charging and System
- ♦ Smart Power Selector[™] Allows Operation with Discharged or No Battery
- NTC Monitoring of Battery Temperature
- No External MOSFETs Required
- Thermal Regulation Prevents Overheating
- ♦ 2µA Shutdown Current
- Tiny 2.36mm x 2.36mm, 25-Bump, 0.4mm Pitch WLP Package

Applications

Bluetooth[®] Headsets Charging Cradles Portable Devices

<u>Ordering Information and Typical Operating Circuit</u> appear at end of data sheet.

Bluetooth is a registered trademark of Bluetooth SIG.

Smart Power Selector is a trademark of Maxim Integrated Products, Inc. *Protected by US Patent #6,507,172.

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

ABSOLUTE MAXIMUM RATINGS

BUS_ to AGND	0.3V to +16.0V
XIN, XOUT, INT_3V3 to AGND	0.3V to +4.0V
ENU_EN, SUS_EN, RWU, D+, D-, PR	EQ, CHG, UOK,
FLT, BAT_, SYS_, CEN, STDBY, DE	ET_DONE,
IBUS_DEF, CHG_TYPE to AGND	0.3V to +6.0V
KB_TM, ISET, THM, IDN,	
CT to AGND	-0.3V to (VINT 3V3 + 0.3V)
DGND to AGND	0.3V to + 0.3V

25-Bump, 2.36mm x 2.36mm WLF	
(derate 19.34mW/°C above +70°C	
Operating Temperature	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(THM = \overline{CEN} = SUS_EN = AGND, V_{BAT_} = 4.2V, V_{BUS_}, CT, \overline{PREQ}, \overline{CHG}, \overline{UOK}, \overline{FLT}, \overline{DET_DONE}$ are unconnected, $T_A = -40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	ТҮР	MAX	UNITS	
USB-TO-SYS PREREGULAT	OR								
USB Operating Range		Initial V _{BUS} _voltage	Initial VBUS voltage before enabling charger				6.6	V	
USB Standoff Voltage		$V_{BAT} = V_{SYS} = 0V$, I _{BUS_} < 650)µA (max)			14	V	
BUS_OK Debounce Timer	tUSB_DB	Time from BUS_ with logic-low	nin valid rang	e until UOK		500	650	ms	
		UOK logic-low, V _{BUS} _rising, 100mV hysteresis	Before initia external dev	l detection of vice	3.85	4.0	4.15		
USB Undervoltage Lockout Threshold		UOK logic-low, VBUS_ falling	USB 2.0 low device	v-power	3.75	3.9	4.05	V	
Threshold		UOK logic-low, V _{BUS} _falling	USB 2.0 hig device	h-power	3.95	4.1	4.25	·	
		UOK logic-low, V _{BUS} _falling	Dedicated o USB charge		V _{SYS} _ -100mV	V _{SYS} _ + 50mV	V _{SYS} _ + 200mV	/	
USB Overvoltage Protection Threshold		UOK logic-low, VBUS	_{6_} rising, 100	mV	6.8	6.95	7.1	V	
	IDETECT	Charge type detection, ISYS_ = IBAT_ = 0mA, MAX8895X/ MAX8895X				0.5			
		VCEN = 0V		MAX8895Y			2.5		
	IENUMERATE	USB 2.0 enumeration in progress, ISYS_ = IBAT_ = 0mA, $V\overline{CEN}$ = 0V					100		
USB Input Supply Current (Note 2)	ISUSPEND	Suspend mode, ISYS 0mA, VSTDBY = 3.3V	Suspend mode, ISYS_ = IBAT_ =				0.5	mA	
				MAX8895Y			2.5		
	luce in the	USB 2.0 low-power	$T_A = 0^{\circ}C$ 1	o +85°C			100		
	IUSB_100mA	device detected	TA = -40°0	C to +85°C			102.5		
	IUSB_500mA	USB 2.0 high-power	device dete	cted			500		
	Isus	During suspend				0		- mA	
USB Input Current Limit	IENU	During USB enumera	ation		40	45	55		
	IUSB_LP	USB 2.0 low-power of	device detec	ted	80	90	98		
	IUSB_HP	USB 2.0 high-power	device dete	cted	460	475	490		

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

ELECTRICAL CHARACTERISTICS (continued)

 $(THM = \overline{CEN} = SUS_EN = AGND, V_{BAT_} = 4.2V, V_{BUS_}, CT, \overline{PREQ}, \overline{CHG}, \overline{UOK}, \overline{FLT}, \overline{DET_DONE}$ are unconnected, $T_A = -40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS	
V _{BUS_} -to-V _{SYS} _On- Resistance		V _{BUS} = V <u>CEN</u> = 5V, I	SYS_ = 400mA		200	320	mΩ	
V _{SYS} to-V _{BAT} _ Reverse Regulation		When SYS is in regula stops, VSYS_ falling, 5		VBAT_ - 80mV	V _{BAT} _ - 50mV	V _{BAT_} - 20mV	V	
Input Limiter Soft-Start Time		Input current ramp tin	ne		50	100	μs	
Thermal-Limit Start Temperature	TDIE_LIM				+110		°C	
Thermal-Limit Start Temperature Hysteresis					10		°C	
Thermal-Limit Gain		ISYS_ reduction/die tem	perature (above +110°C)		5		%/°C	
V _{BUS} _Adaptive Current Regulation Threshold		V _{BUS} regulation three current limit is regulat charger or USB charg	ed for dedicated			V _{SYS} _+ 550mV	V	
SYS_ Regulation Voltage		$V_{BAT} > 3.45V, I_{SYS}$ $V_{BUS} = V\overline{CEN} = 5V$	= 1mA to 1.6A,			V _{BAT_} + 210mV	V	
Minimum SYS Regulation Voltage		$V_{BUS} = 6V, I_{SYS} = 1$ $V_{\overline{CEN}} = 5V$	ImA to 1.6A,	3.3	3.4	3.55	V	
CHARGER								
BATto-SYS_ On-Resistance		$I_{SYS} = 200 mA$			55	80	mΩ	
BAT_ Undervoltage Lockout	VBAT_UVLO_F	VBAT_ falling		2.60	2.85	3.1	V	
	VBAT_UVLO_R	V _{BAT} _ rising		2.75	3.00	3.25	v	
Charger Soft-Start Time		Charge-current ramp	time		1		ms	
BAT_ Leakage Current		VBUS_ not connected			2	6	μA	
		VBUS_ connected, VC	<u>EN</u> = 5V		2	6	P	
PRECHARGE MODE	1	r		r				
BAT_ Precharge-Current Set Range	IPCHG	RISET = $30k\Omega$ to 1.875 (Note 3)	5kΩ, VBAT_>1.4V		IFCHG/10		А	
BAT_ Prequalification	VBAT_PCHG_R	VBAT_ rising		2.7	2.8	2.9	V	
Threshold	VBAT_PCHG_F	V _{BAT} _falling		2.6	2.7	2.8	v	
FAST-CHARGE MODE		1						
BAT_ Charge-Current Set Range	IFCHG	RISET = $30k\Omega$ to 1.875 (Note 3)	5kΩ, VBAT_ >1.4V	0.1		1.85	А	
nange		ISET = INT_3V3 (Note	93)		600		mA	
BAT_ Charge-Current			$R_{ISET} = 1.875 k\Omega$		1850			
Accuracy, Charger Loop in		V _{BUS} = 5.5V (Note 3)	$R_{ISET} = 5k\Omega$	540	600	660	mA	
Control			$R_{ISET} = 30k\Omega$	90	100	110		
DAT East Charge Threshold	VBAT_FCHG_R	VBAT_ rising threshold current IFCHG is redu		3.9	4.0	4.1	V	
BAT_ Fast-Charge Threshold	VBAT_FCHG_F	VBAT_ falling threshold, where charging current is increased to IFCHG		3.7	3.8	3.9	V	

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

ELECTRICAL CHARACTERISTICS (continued)

 $(THM = \overline{CEN} = SUS_EN = AGND, V_{BAT_} = 4.2V, V_{BUS_}, CT, \overline{PREQ}, \overline{CHG}, \overline{UOK}, \overline{FLT}, \overline{DET_DONE}$ are unconnected, $T_A = -40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
TOP-OFF CHARGE MODE		·					
Top-Off Charge Current	ITCHG	$R_{ISET} = 30k\Omega$ to 1.875	$R_{ISET} = 30 k\Omega$ to 1.875k Ω (Note 3)		0.6 x IFCHG		А
BAT_ Charge Termination		$R_{IDN} = 240 k\Omega$ to $15 k\Omega$	2	10		160	
Current Range	ICHG_DONE	IDN = INT_3V3			80		mA
BAT_ Regulation Voltage	VBAT_REG	I _{BAT_} = 0mA	$T_A = +25^{\circ}C$	4.179	4.200	4.221	V
D/H_Hogulation Voltage	VBAT_NEG		$T_A = 0^{\circ}C$ to $+85^{\circ}C$	4.158	4.200	4.242	•
BAT_ Recharge Threshold	VBAT_RECHG	Recharge threshold in restate going into top-off r	elation to V _{BAT} in DONE node (Figure 20)	-100	-200	-300	mV
CHARGE TIMER		· · · · · · · · · · · · · · · · · · ·					
Maximum Prequalification	tpchg	From VCEN falling to end of prequalification	CT = 0.068µF		16		Min
Time	UPCHG	charge mode, VBAT_ = 2.5V	C _T = AGND		20		IVIIII
Maximum Fast-Charge Time	t _{FCHG}	From VCEN falling to	$C_{T} = 0.068 \mu F$		100		Min
Maximum rast onlarge nine	FCHG	VFLT falling	C _T = AGND		120		
Maintain-Charge Time	^t MTCHG	$C_{T} = 0.068 \mu F$		4			Min
Maintain Onarge Time			$C_T = AGND$		5		
Timer Accuracy		$C_{T} = 0.068 \mu F$		-30		+30	%
Timer Accuracy		CT connected to AGND		-30		+30	70
Timer Extend Threshold		Percentage of charge timer clock operates a			50		%
Timer Suspend Threshold		Percentage of charge timer clock pauses	current below which		20		%
ADAPTER TYPE DETECTION	l	•					
D- Current Sink		MAX8895V/MAX8895>	(/MAX8895Y	50	86	150	
	IDM_SINK	MAX8895W		64	86	102	μA
D+ Source Voltage	VDP_SRC	$IDP_SRC = 0$ to $200\mu A$		0.5	0.6	0.7	V
D+ Detection Threshold	VDAT_REF			0.25	0.32	0.40	V
D+ Source On-Time	tDP_SRC_ON			100			ms
D+ Source to High Current Time	tDP_SRC_HC			40			ms
D- Pullup Resistor	RDM_PU	MAX8895V/MAX8895W/MAX8895X only, external series resistor = 33Ω		1.425	1.500	1.575	kΩ
D+ Pullup Resistor	R _{DP_PU}	MAX8895Y only, external series resistor = 33Ω		1.425	1.500	1.575	kΩ
D+ Charger Detection Pullup Resistor	RDP_CD_PU	RDP_CD_PU connect to INT_3V3		200	330	600	kΩ
D- Weak Current Sink	IDM_CD_PD					0.1	μA
D- Logic-High Threshold	Vdm_ih			0.8		2.0	V

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

ELECTRICAL CHARACTERISTICS (continued)

 $(THM = \overline{CEN} = SUS_EN = AGND, V_{BAT_} = 4.2V, V_{BUS_}, CT, \overline{PREQ}, \overline{CHG}, \overline{UOK}, \overline{FLT}, \overline{DET_DONE}$ are unconnected, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
Enumeration Time Limit	tenum	Time from start of enumeration process until enumeration must be completed; if not completed, the MAX8895_ retries to enumerate			10		S
Reconnect Timer	t FAULT	Time from failed enum detection reenabled	neration to adapter type		3		S
Enumeration Fail to Reconnect Timer	tenu_fault	Time from enumeratio enumeration is retried enumeration fail at 100 timer is started	at 100mA or time from		87		ms
Reenumeration Timer	^t RE_ENUM	Time from when the M suspend mode until it RWU = AGND			100		ms
Oscillator Frequency Accuracy		MAX8895V/MAX8895X oscillator), $T_A = +25^{\circ}C$		5.91	6.00	6.09	MHz
XIN Input Current		MAX8895Y only, VXIN	= VSTDBY = 3.3V			10	μA
XIN Logic-High Input Voltage		MAX8895Y only		2/3x VINT_3V3		Vint_3v3	V
XIN Logic-Low Input Voltage		MAX8895Y only				0.4	V
тнм							
THM Cold Threshold	TAMB_COLD	When charging is sus threshold, 2% hystere		72	74	76	% of VINT_3V3
THM Hot Threshold	TAMB_HOT	When charging is sus threshold, 2% hystere		26	28	30	% of VINT_3V3
THM Threshold, Disabled		When THM function is threshold, 2% hystere	0		3		% of VINT_3V3
THM Input Leakage		THM = AGND or	$T_A = +25^{\circ}C$	-0.1	0.001	+0.2	μA
		INT_3V3	$T_A = +85^{\circ}C$		0.01		μΑ
LOGIC I/O: CHG, FLT, UOK, C	EN, PREQ, K		SUS_EN, ENU_EN, DET	DONE, C	HG_TY	PE, IBUS_	DEF
		High level		1.3			V
Logic-Input Threshold		Low level				0.4	
		Hysteresis			50		mV
Logic-Input Leakage Current		$V_{BUS} = 0$ to 5.5V	$T_A = +25^{\circ}C$		0.001	1	μA
			$T_A = +85^{\circ}C$		0.01		· ·
Logic-Low Output Voltage (CHG, FLT, UOK, PREQ, DET_DONE, CHG_TYPE Only)		Sinking 10mA			35	100	mV
Logic-High Output-Leakage Current (CHG, FLT, UOK,		T _A = +25°C			0.001	1	μA
PREQ, DET_DONE, CHG_ TYPE Only)			$T_A = +85^{\circ}C$		0.01		

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

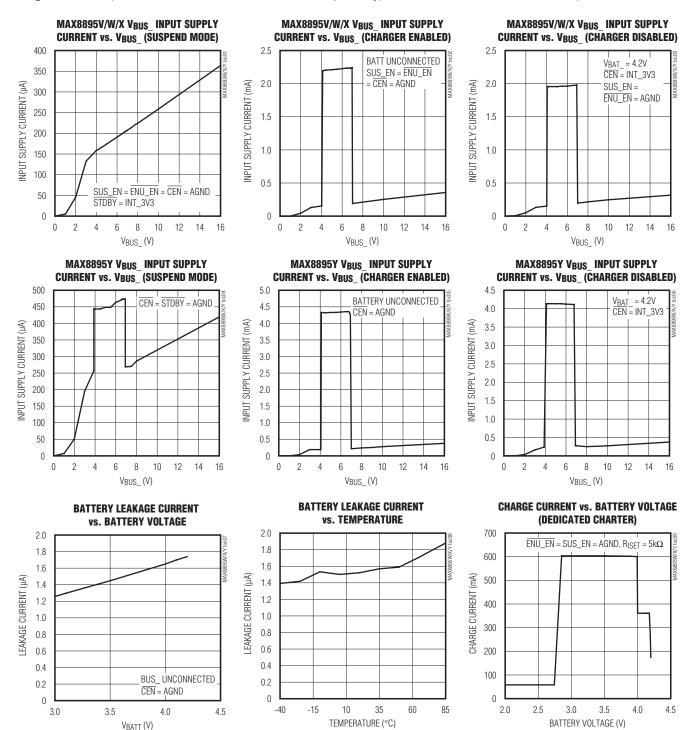
ELECTRICAL CHARACTERISTICS (continued)

 $(THM = \overline{CEN} = SUS_EN = AGND, V_{BAT_} = 4.2V, V_{BUS_}, CT, \overline{PREQ}, \overline{CHG}, \overline{UOK}, \overline{FLT}, \overline{DET_DONE}$ are unconnected, $T_A = -40^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
USB DATA INTERFACE						L	
Differential-Receiver Input Sensitivity		IV _{D+} - V _{D-} I	0.2			V	
Differential-Receiver Common-Mode Voltage			0.8		2.5	V	
D+, D- Input Impedance			300			kΩ	
D+, D- Output Low Voltage	Vol	$R_{LOAD} = 1.5 k\Omega$ from V _D - to 3.6V			0.3	V	
D+, D- Output High Voltage	Voh	$R_{LOAD} = 15k\Omega$ from D+ and D- to AGND	2.8		3.6	V	
Driver Output Impedance		Excludes external resistor	2	7	11	Ω	
BUS_ Idle Time	tidle	Only valid when an adapter type is detected as a USB 2.0 device; time BUS_ is inactive until charging current is reduced to ISUSPEND		3		ms	
USB Host Remote Wake-Up Timer	tRWU	Time delay from when the MAX8895_ is put into suspend mode until they request the host for a remote wake-up		100		ms	
D+, D- Rise Time (Note 5)	tRISE	MAX8895V/MAX8895W/MAX8895X only, C _L = 50pF to 600pF, (Figures 5 and 6)	75		250	ns	
(11018-5)		MAX8895Y only, $C_L = 50 pF$ (Figures 5 and 6)	4		20		
D+, D- Fall Time	+	MAX8895V/MAX8895W/MAX8895X only, $C_L =$ 50pF to 600pF (Figures 5 and 6)	75		250		
(Note 5)	^t FALL	MAX8895Y only, C _L = 50pF (Figures 5 and 6)	4		20	ns	
Rise-/Fall-Time Matching		$\begin{array}{l} \mbox{MAX8895V/MAX8895W/MAX8895X only, CL} = \\ \mbox{50pF to 600pF (Figures 5 and 6)} \end{array}$	80		120	%	
(Note 5)		MAX8895Y only, C _L = 50pF (Figures 5 and 6)	90		110	70	
Output-Signal Crossover		MAX8895V/MAX8895W/MAX8895X only, $C_L =$ 50pF to 600pF (Figures 5 and 6)	1.3		2.0	V	
Voltage (Note 5)		MAX8895Y only, C _L = 50pF (Figures 5 and 6)	1.3		2.0	V	
INT_3V3 REGULATOR							
INT_3V3 Voltage		V_{BUS} = 5V, I_{INT} 3V3 = 0 to 10mA	3.0	3.3	3.6	V	
ESD PROTECTION (D+, D-, V	'BUS_)						
Human Body Model		VBUS_ bypassed with 1µF to AGND		±8		kV	

Note 1: Specifications are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization.

Note 2: Sum of input current limit and current used for INT_3V3.

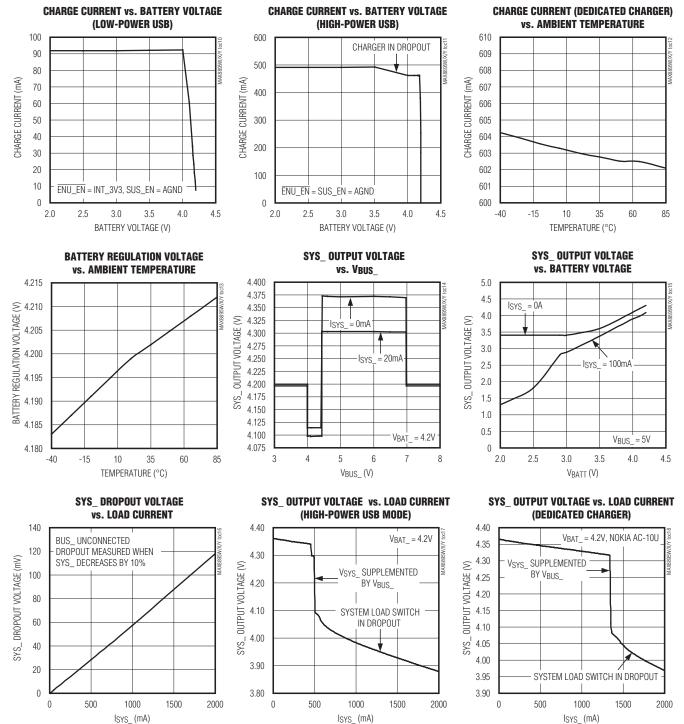

Note 3: Maximum charging current is adaptively regulated to IIN_LIM - ISYS_ with a maximum value of ICHG.

Note 4: All devices are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design. **Note 5:** Guaranteed by design, not production tested.

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

Typical Operating Characteristics

 $(V_{BAT} = 4.2V, V_{BUS} = 5V, ISET = IDN = CT = SUS_EN = INT_3V3, STDBY = \overline{ENU_EN} = RWU = \overline{CEN} = KB_TM = AGND, circuits of Figures 4 and 5 (MAX8895V/MAX8895X and MAX8895Y, respectively), TA = +25°C, unless otherwise noted.)$

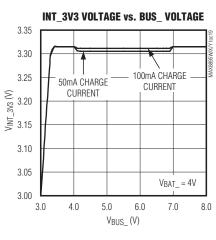


Maxim Integrated

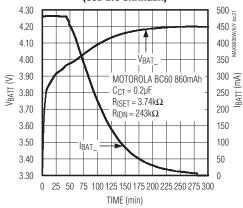
Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

____Typical Operating Characteristics (continued)

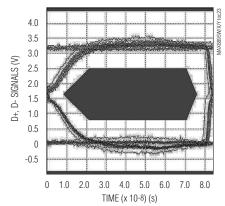
 $(V_{BAT} = 4.2V, V_{BUS} = 5V, ISET = IDN = CT = SUS_EN = INT_3V3, STDBY = \overline{ENU_EN} = RWU = \overline{CEN} = KB_TM = AGND, circuits of Figures 4 and 5 (MAX8895V/MAX8895X and MAX8895Y, respectively), T_A = +25°C, unless otherwise noted.)$

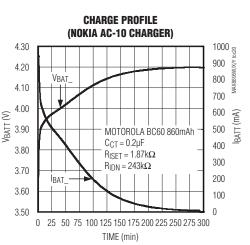


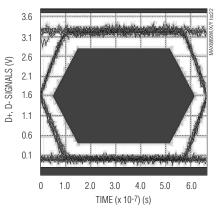
Maxim Integrated


Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

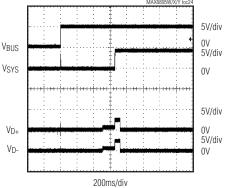
Typical Operating Characteristics (continued)


 $(V_{BAT} = 4.2V, V_{BUS} = 5V, ISET = IDN = CT = SUS_EN = INT_3V3, STDBY = \overline{ENU_EN} = RWU = \overline{CEN} = KB_TM = AGND, circuits of Figures 4 and 5 (MAX8895V/MAX8895X and MAX8895Y, respectively), TA = +25°C, unless otherwise noted.)$

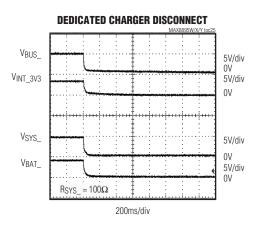


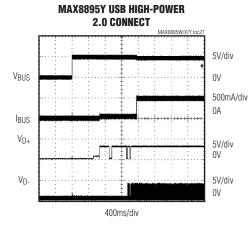


MAX8895Y EYE DIAGRAM

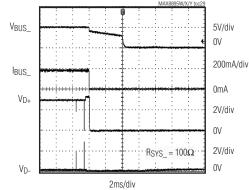


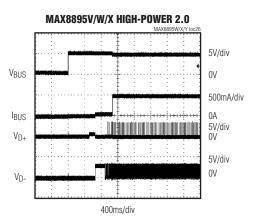
MAX8895V/W/X EYE DIAGRAM

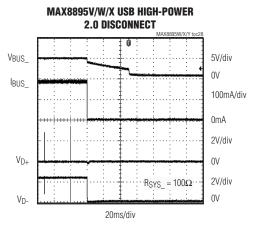

DEDICATED CHARGER CONNECT

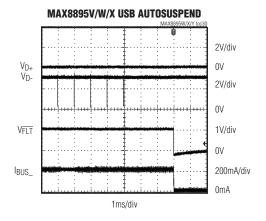


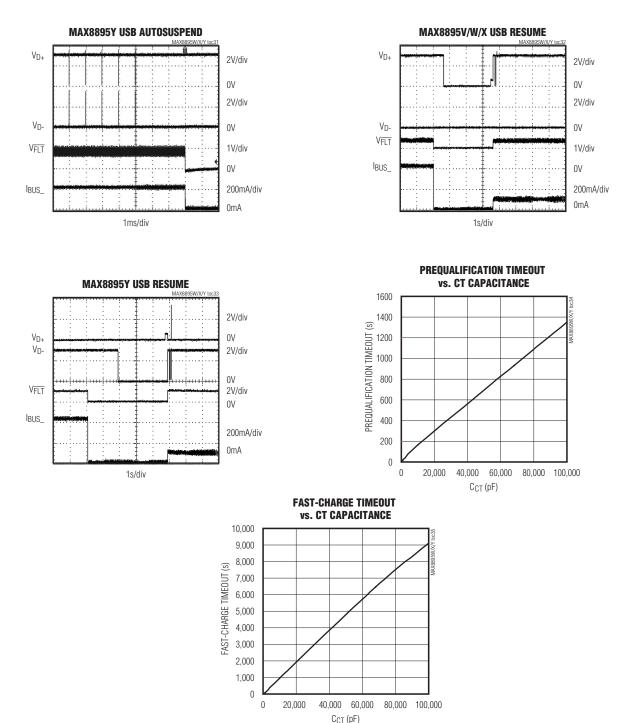
Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration


Typical Operating Characteristics (continued)


 $(V_{BAT} = 4.2V, V_{BUS} = 5V, ISET = IDN = CT = SUS_EN = INT_3V3, STDBY = \overline{ENU_EN} = RWU = \overline{CEN} = KB_TM = AGND, circuits of Figures 4 and 5 (MAX8895V/MAX8895X and MAX8895Y, respectively), TA = +25°C, unless otherwise noted.)$

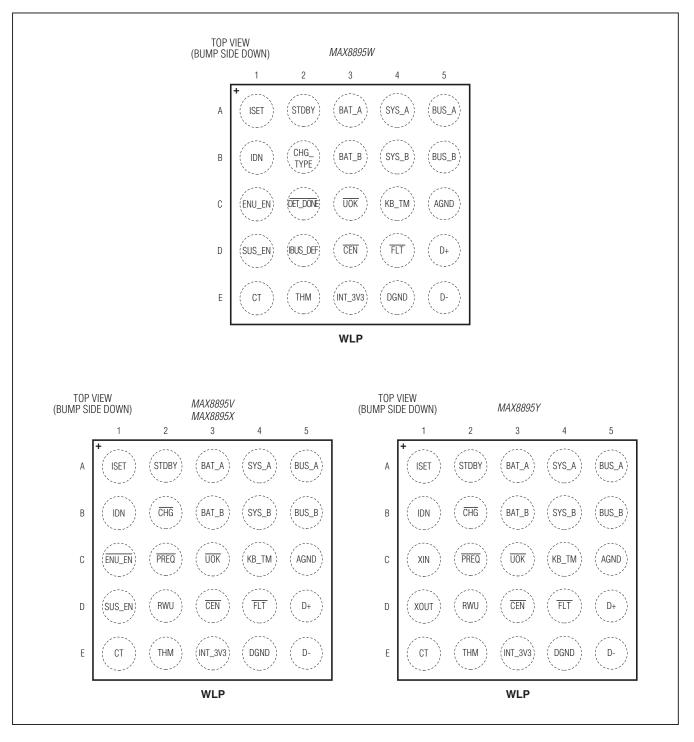






Maxim Integrated

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration


Typical Operating Characteristics (continued)

 $(V_{BAT} = 4.2V, V_{BUS} = 5V, ISET = IDN = CT = SUS_EN = INT_3V3, STDBY = \overline{ENU_EN} = RWU = \overline{CEN} = KB_TM = AGND, circuits of Figures 4 and 5 (MAX8895V/MAX8895X and MAX8895Y, respectively), T_A = +25°C, unless otherwise noted.)$

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

Pin Configurations

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

Pin Description

	NAME			
PIN	MAX8895W	MAX8895V/ MAX8895X	MAX8895Y	FUNCTION
A1	ISET	ISET	ISET	Maximum Fast-Charge Current Selection. Connect a resistor from ISET to AGND to set the fast-charge current from 0.1A to 1.85A. IFCHG = 3000/RISET If ISET is connected to INT_3V3 the default IFCHG is set as maximum charge current. ISET can also be used to monitor the actual current charging the battery. See the <i>Monitoring Charge Current</i> section for details.
A2	STDBY	STDBY	STDBY	Standby Mode Enable. Connect STDBY to AGND to enter automatic detect mode. In automatic detect mode, the MAX8895V/MAX8895W/MAX8895X determine when to enter suspend mode depending on the status of the SUS_EN logic input. When using the MAX8895Y, the IC always starts in automatic suspend mode. Connect STDBY to INT_3V3 or drive logic-high to force the MAX8895_ into suspend mode regardless of external conditions.
A3	BAT_A	BAT_A	BAT_A	Li+ Battery Connection (V _{BAT_}). Connect a single-cell Li+ battery from V _{BAT_} to DGND. The battery charges from V _{SYS_} when a valid source is present at V _{BUS_} . V _{BAT_} powers V _{SYS_} when V _{BUS_} power is not present, or when
B3	BAT_B	BAT_B	BAT_B	the V _{SYS} load exceeds the input current limit. Bypass V _{BAT} to DGND with a 10 μ F X5R or X7R ceramic capacitor. Both BAT_A and BAT_B must be connected together externally.
A4	SYS_A	SYS_A	SYS_A	System Supply Output (V _{SYS}). V _{SYS} is connected to V _{BAT} through an internal 55m Ω system load switch when V _{BUS} is invalid, or when the V _{SYS} load is greater than the input current limit. When a valid voltage is present at V _{BUS} , V _{SYS} is limited to 4.35V when using the MAX8895V/MAX8895X/MAX8895Y, and 4.53V when using the MAX8895W. When the system load
B4	SYS_B	SYS_B	SYS_B	current (ISYS_) exceeds the VBUS_ current limit VBAT_ also powers VSYS_ to maintain the load current. Bypass VSYS_ to DGND with a 10µF X5R or X7R ceramic capacitor. Both SYS_A and SYS_B must be connected together externally.
A5	BUS_A	BUS_A	BUS_A	USB Power Input (V _{BUS}). During initial connection of an external device, the MAX8895_ identifies the type of connection established and set the input current limit accordingly. Bypass V _{BUS} to DGND with a 10μ F X5R or X7R
B5	BUS_B	BUS_B	BUS_B	ceramic capacitor. Both BUS_A and BUS_B must be connected together externally.
B1	IDN	IDN	IDN	Charge Termination Current Threshold. Connect a resistor from IDN to AGND to set the termination current threshold from 10mA to 160mA. ITERM = 2400/RIDN If IDN is connected to INT_3V3, the termination current is set to the default ICHG_DONE threshold.

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

Pin Description (continued)

		NAME		
PIN	MAX8895W	MAX8895V/ MAX8895X	MAX8895Y	FUNCTION
B2		CHG	CHG	Active-Low, Charging Indicator. CHG is an open-drain output that is pulled low when the battery is in prequalification mode, fast-charge mode, or top-off states. Otherwise, CHG is high impedance.
DZ	CHG_TYPE		_	CHG_TYPE is used to indicate capacity of input current. IF CHG_TYPE is high, the input current can be greater than or equal to 500mA. If CHG_TYPE is low, the input current is 100mA from the USB 2.0 host.
		_	XIN	Crystal Oscillator Input. Connect XIN to one side of a parallel resonant 12MHz ±0.25% crystal and a capacitor to AGND. XIN can also be driven by an external clock referenced to INT_3V3.
C1		ENU_EN	_	Automatic Enumeration Enable. Connect ENU_EN to AGND to allow the MAX8895V/MAX8895X to automatically perform enumeration. Connect to INT_3V3 or drive logic-high to force the input current limit to 100mA without performing an adapter type detection.
	ENU_EN	_		Automatic Enumeration Enable. Connect ENU_EN to AGND to allow the MAX8895W to automatically perform enumeration. By connecting ENU_EN to INT_3V3 or drive logic-high, disables automatic enumeration and sets the input current limit to level determined by the IBUS_DEF if a USB 2.0 device is detected.
	_	PREQ	PREQ	Active-Low, Prequalification Charging Output. PREQ is an open-drain output that is pulled low when the charger enters the prequalification state.
C2	DET_DONE		_	Active-Low Adapter-Type Detection Done Output. DET_DONE is an open- drain output that is pulled low when adapter detection is completed. DET_ DONE is high impedance in suspend mode.
C3	UOK	UOK	UOK	Active-Low, V _{BUS} Power-OK Output. $\overline{\text{UOK}}$ is an open-drain output that is pulled low when a valid input is detected at V _{BUS} .
C4	KB_TM	KB_TM	KB_TM	Keyboard Test Mode. In normal operation, connect KB_TM to AGND. This input is only used during USB certification.
C5	AGND	AGND	AGND	Analog Ground. Both AGND and DGND should be connected together at the negative terminal of the battery.
			XOUT	Crystal Oscillator Output. Connect XOUT to one side of a parallel resonant 12 MHz $\pm 0.25\%$ crystal and a capacitor to AGND. Leave XOUT unconnected if XIN is driven by an external clock.
D1	SUS_EN	SUS_EN	_	Automatic Suspend Mode Detection Enable. Connect SUS_EN to AGND to disable the automatic suspend mode detection. Connect SUS_EN to INT_3V3 or drive logic-high to enable the automatic detection of suspend mode.
		RWU	RWU	Remote Wake-up. Connect RWU to AGND or logic-low for remote wake- ups whenever the device is put into suspend mode and the supervisor determines that more current is needed.
D2	IBUS_DEF	_	_	Sets USB Input Current if Adapter is Detected as a USB 2.0 Device and ENU_EN is Logic-High. If IBUS_DEF is connected high, the input current limit is set to 500mA. If IBUS_DEF is connected low or to ground, the input current limit is set to 100mA.

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

	NAME			
PIN	MAX8895W	MAX8895V/ MAX8895X	MAX8895Y	FUNCTION
D3	CEN	CEN	CEN	Charger Enable Input. Connect \overline{CEN} to AGND to enable battery charging when a valid source is connected at V _{BUS} . Connect \overline{CEN} to INT_3V3 or drive logic-high to disable battery charging. In this condition the USB state machine is still active, and V _{SYS} is powered from V _{BUS} under normal conditions and supplemented from V _{BAT} if sufficient current is not available from V _{BUS} input.
D4	FLT	FLT	FLT	Active-Low Fault Output. $\overline{\text{FLT}}$ is an open-drain output that is pulled low when the battery charger timer expires before prequalification or fast-charge completes. $\overline{\text{FLT}}$ is also pulled low during adapter type detection or if USB enumeration fails.
D5	D+	D+	D+	USB D+ signal. Connect D+ to a USB "B" connector through a 33 Ω series resistor. The 1.5k Ω D+ pullup resistor is internal to the device (for MAX8895Y only).
E1	СТ	СТ	СТ	Timer Set Capacitor. Connect a capacitor from CT to AGND to set the fault timers for prequalification and fast-charge. $t_{PREQUAL} = 16min \times (C_{CT}/0.068\mu F)$ $t_{FCHG} = 100min \times (C_{CT}/0.068\mu F)$ $t_{MTCHG} = 4min \times (C_{CT}/0.068\mu F)$ If CT is connected directly to AGND, the default timers are used.
E2	THM	THM	THM	Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor that has good thermal contact with the battery from THM to AGND. Connect a resistor equal to the thermistor at $T_A = +25^{\circ}$ C resistance from THM to INT_3V3. Charging is suspended when the thermistor is outside the hot and cold limits. Connect THM to AGND to disable the thermistor temperature sensor.
E3	INT_3V3	INT_3V3	INT_3V3	LDO Output. INT_3V3 is the output of an LDO that powers the internal circuitry. INT_3V3 is powered from the VBUS_ input. Connect a 0.1μ F capacitor from INT_3V3 to AGND.
E4	DGND	DGND	DGND	Digital Ground. Both AGND and DGND should be connected together at the negative terminal of the battery.
E5	D-	D-	D-	USB D- Signal. Connect D- to a USB "B" connector through a 33 Ω series resistor. The 1.5k Ω D- pullup resistor is internal to the device (for MAX8895V/MAX8895X only).

Pin Description (continued)

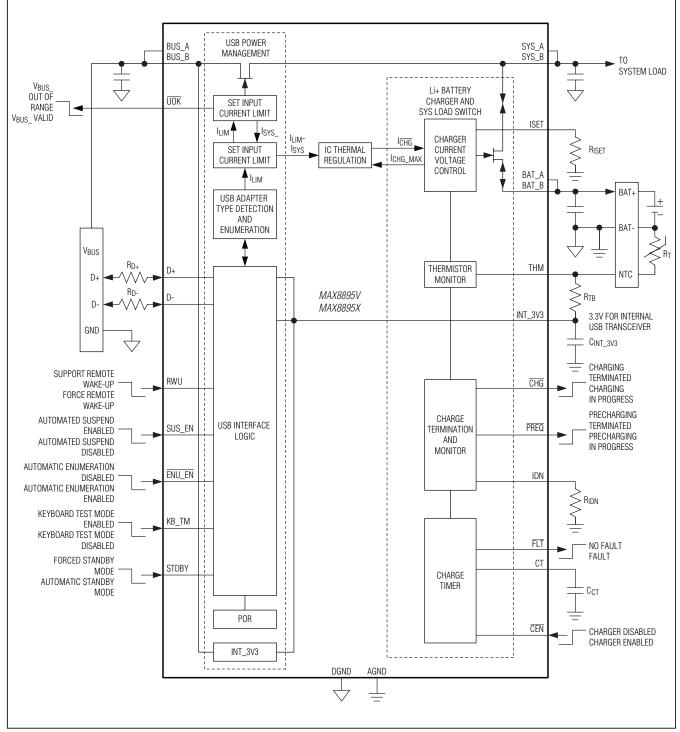


Figure 1. MAX8895V/MAX8895X Block Diagram

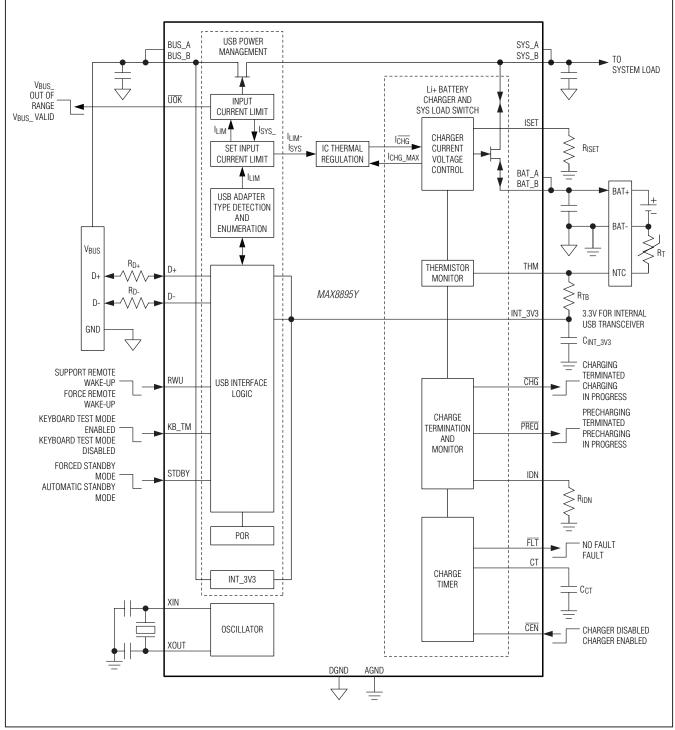


Figure 2. Differential Input Configuration

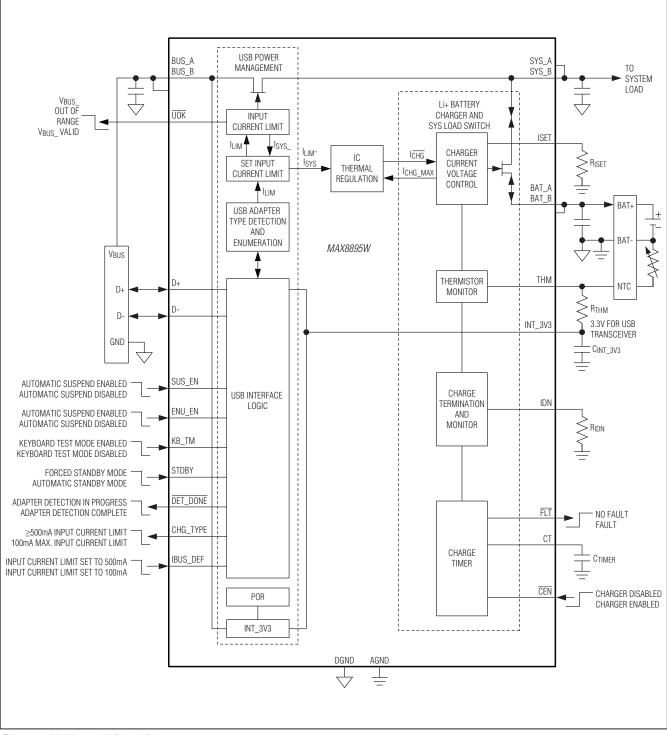


Figure 3. MAX8895W Block Diagram

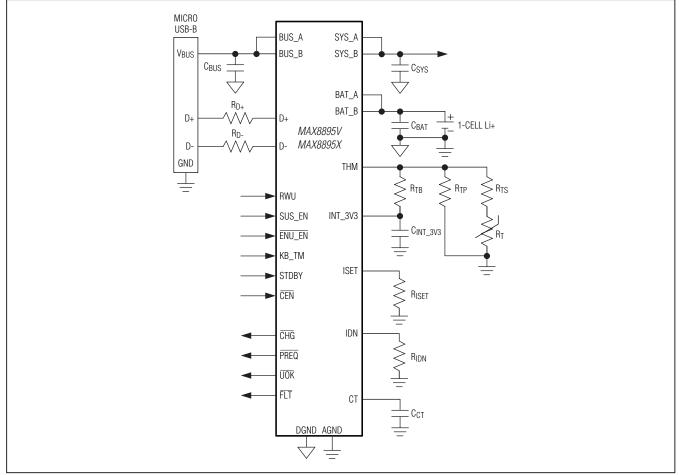


Figure 4. MAX8895V/MAX8895X Typical Application Circuit

NAME	VALUE	FUNCTION
CBUS	10µF, 16V	Decoupling of input supply.
CSYS	10µF, 6.3V	Decoupling of system rail.
Сват	10µF, 6.3V	Decoupling of battery rail.
RT	User dependent	Thermistor for thermal sensing. See the <i>Thermistor Input (THM)</i> section for details.
RTB, RTP, RTS	User dependent	Bias resistors for thermal sensing. See the <i>Thermistor Input (THM)</i> section for details.
CINT_3V3	0.1µF, 6.3V	Decoupling of internal 3.3V rail.
C _{CT}	1000pF to 0.2µF	Capacitor to set charge timer, optional. See the <i>Fault Output</i> (<i>FLT</i>) and <i>Charge Timer</i> (<i>CT</i>) section for details.
RISET	1.875k Ω to 30k Ω	Resistor to set maximum charging current, optional.
RIDN	15k Ω to 240k Ω	Resistor to set termination current for charger, optional.
R _{D+} , R _{D-}	33Ω	D+/D- serial impedance.

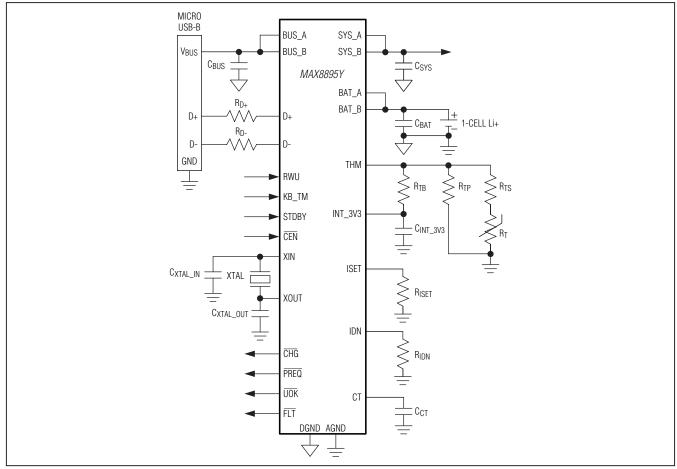


Figure 5. MAX8895Y Typical Application Circuit

NAME	VALUE	FUNCTION
CBUS	10µF, 16V	Decoupling of input supply.
Csys	10µF, 6.3V	Decoupling of system rail.
CBAT	10µF, 6.3V	Decoupling of battery rail.
RT	User dependent	Thermistor for thermal sensing. See the Thermistor Input (THM) section for details.
RTB, RTP, RTS	User dependent	Bias resistors for thermal sensing. See the Thermistor Input (THM) section for details.
CINT_3V3	0.1µF, 6.3V	Decoupling of internal 3.3V rail.
XTAL	12MHz 2500ppm	MAX8895Y only, clock source for full-speed mode, requires a 2500ppm or better accuracy.
CXTAL_IN	User dependent	MAX8895Y only, crystal load capacitor, only required for full-speed operation. See the <i>External Crystal/Ceramic Resonator</i> section for details.
CXTAL_OUT	User dependent	MAX8895Y only, crystal load capacitor, only required for full-speed operation.
Сст	1000pF to 0.2µF	Capacitor to set charge timer, optional. See the <i>Fault Output</i> (<i>FLT</i>) and <i>Charge Timer</i> (<i>CT</i>) section for details.
RISET	1.875k Ω to 30k Ω	Resistor to set maximum charging current, optional.
RIDN	15k Ω to 240k Ω	Resistor to set termination current for charger, optional.
RD+, RD-	33Ω	D+/D- serial impedance.

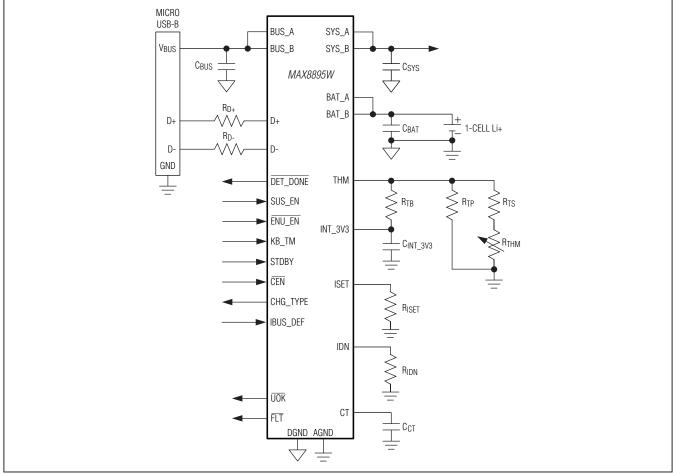


Figure 6. MAX8895W Typical Application Circuit

NAME	VALUE	FUNCTION	
CBUS	10µF, 16V	Decoupling of input supply.	
Csys	10µF, 6.3V	Decoupling of system rail.	
CBAT	10µF, 6.3V	Decoupling of battery rail.	
Rthm	User dependent	Thermistor for thermal sensing. See the <i>Thermistor Input (THM)</i> section for details.	
RTB, RTP, RTS	User dependent	Bias resistors for thermal sensing. See the <i>Thermistor Input (THM)</i> section for details.	
CINT_3V3	0.1µF, 6.3V	Decoupling of internal 3.3V rail.	
Сст	1000pF to 0.2µF	Capacitor to set charge timer, optional. See the <i>Fault Output (FLT) and Charge Timer (CT)</i> section for details.	
RISET	1.875k Ω to 30k Ω	Resistor to set maximum charging current, optional.	
RIDN	15k Ω to 240k Ω	Resistor to set termination current for charger, optional.	
RD+, RD-	33Ω	D+/D- serial impedance.	

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

Detailed Description

The MAX8895_ is an integrated 1-cell Li+ charger with USB enumeration capability. All power switches for charging and switching the load between battery and external power are internal. No external MOSFETS are required.

The MAX8895_ makes it possible to negotiate more than 100mA of charging current from a USB host or hub without processor intervention. The MAX8895_ also automatically detects a dedicated charger or USB charger and set the input current limit accordingly. The battery charge current can be set up to 1.85A. Input power not used by the system charges the battery.

USB Interface

An integrated USB peripheral controller provides autoenumeration for full-speed (MAX8895Y) and low-speed (MAX8895V/MAX8895W/MAX8895X) modes.

The USB controller executes the adapter detection sequence, which consists of detecting the type of adapter that is externally connected and setting the input current limit accordingly.

If attached to a USB charger (host or hub) or a USB 2.0 (host or hub), it enumerates as an HID device and negotiates the maximum charging current level (from VBUS_).

The MAX8895V/MAX8895W/MAX8895X operate in lowspeed mode, using an internal 6MHz oscillator, and does not require an external crystal to be USB compliant. The MAX8895Y operates in full-speed mode and requires an external 12MHz crystal.

According to the USB 2.0 specification, a low-speed device is not allowed to use a standard USB "B" connector. This is why MAX8895_ is available in both a low- and full-speed version. This makes it possible to use a custom or captive cable for low-speed mode using the MAX8895V/MAX8895W/MAX8895X and still be USB compliant. Operating in full-speed mode, using the MAX8895Y allows use of a standard USB "B" connector.

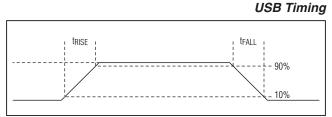


Figure 7. USB Rise and Fall Timing

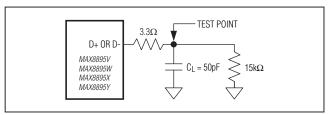


Figure 8. Load for D+/D- AC Measurements

D+ and D-

The internal USB full speed (MAX8895Y)/low-speed (MAX8895V/MAX8895W/MAX8895X) transceiver is brought out to the bidirectional data pins D+ and D-. These pins are ESD protected up to \pm 8kV (HBM). Connect these pins to a USB "B" custom connector through external 33 Ω series resistors. The MAX8895V/MAX8895X provide an automatic switchable 1.5k Ω pullup resistor for D-, while the MAX8895Y provides an automatic switchable 1.5k Ω pullup resistor for D+.

Adapter Detection

When an adapter is present on V_BUS_, the MAX8895_ examines the external device to identify the type of adapter connected.

The possible adapter types are:

- Dedicated charger
- USB charger (host or hub)
- USB 2.0 (host or hub) low power
- USB 2.0 (host or hub) high power

Each of these different devices has different current capability as shown in Table 1.

Table 1.	Adapter	Types
----------	---------	-------

ADAPTER TYPE	OUTPUT VOLTAGE	OUTPUT CURRENT
Dedicated charger	4.75V to 5.25V at I _{LOAD} < 500mA 2.0V to 5.25V for I _{LOAD} ≥500mA	500mA to 1.85A
USB charger	4.75V to 5.25V at I _{LOAD} < 500mA 0 to 5.25V for I _{LOAD} ≥ 500mA	500mA to 900mA for low speed, full speed 500mA to 1.5A for low speed and full speed
USB 2.0 low power	4.25V to 5.25V	100mA (max)
USB 2.0 high power	4.75V to 5.25V	500mA (max)

Li-Ion Chargers with Smart Power Selector, Adapter Type Detection, and USB Enumeration

When an adapter is connected to the MAX8895_, a series of tests is performed to identify the type of device connected. The sequence is done according to the flow

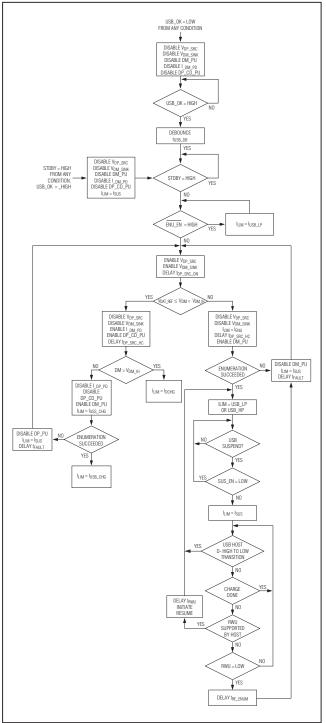


Figure 9. MAX8895X Flow Chart for Adapter Type Detection

charts in Figures 7 and 8. Figures 9, 10, and 11 show the adapter-type detection timing.



Figure 10. MAX8895V Flow Chart for Adapter Type Detection

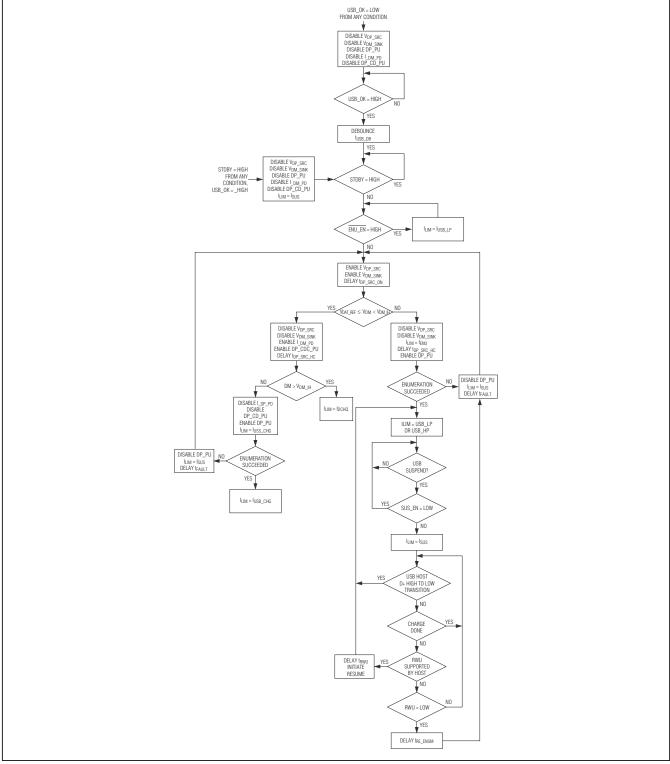


Figure 11. MAX8895Y Flow Chart for Adapter Type Detection



Figure 12. MAX8895W Flow Chart for Adapter Type Detection