imall

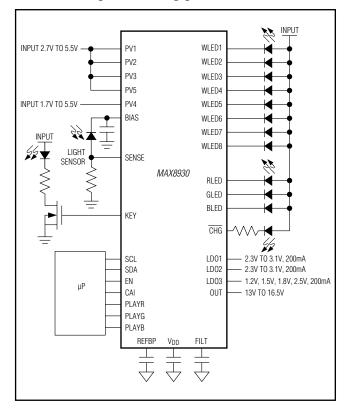
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

General Description

The MAX8930 integrates a charge pump for white LED display backlighting with ambient light control (ALC) feature. The high-efficiency, adaptive-mode 1x/-0.5x charge pump drives up to 11 LEDs (8 WLEDs + RGB LED) with constant current for uniform brightness. The LED current is adjustable from 0.1mA to 25.6mA in 256 linear steps through I²C. High accuracy and LED-to-LED current matching are maintained throughout the adjustment range. The MAX8930 includes soft-start, thermal shutdown, open-circuit, and short-circuit protection.

Three 200mA LDOs are provided with programmable output voltages to provide power to external circuitry. These three LDOs can also be configured for a GPO function through the I²C. A step-up converter is also available on the MAX8930 for biasing a PMOLED subpanel.

The MAX8930 is available in the 49-bump, 3.17mm x 3.17mm WLP package.

Simplified Application Circuit

_Features

- ♦ White LED Charge Pump
- Adaptive 1x or -0.5x Negative Modes
- 11 Low-Dropout LED Current Sinks with 25.6mA to 0.1mA in 256 Dimming Steps
- Ramp-Up/Down Control for Main White LED
- Ramp-Up/Down Control for RGB LED
- Individual Brightness Control for Each White, RGB LED
- Low 240µA (typ) Quiescent Current
- Ambient Light Control (ALC) for Any Type of Light Sensor
- Content Adaptive Interface
- ♦ I²C-Compatible Control Interface
- Three Programmable LDOs Up to 200mA
- Step-Up DC-DC Converter with Programmable Output for PMOLED Application
- Low 0.1µA Shutdown Current
- ♦ 2.7V to 5.5V Supply Voltage Range
- Thermal Shutdown
- Open and Short-Circuit Protection

Applications

Cell Phones and Smartphones

PDAs, Digital Cameras, Camcorders, and Other Portable Equipment

_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX8930EWJ+	-40°C to +85°C	49 WLP 0.4mm pitch

+Denotes a lead(Pb)-free/RoHS-compliant package.

Typical Operating Circuit appears at end of data sheet.

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

ABSOLUTE MAXIMUM RATINGS

PV_, VDD, EN, CAI, PLAY_, BIAS,
SENSE, REFBP, ECAGND to AGND0.3V to +6.0V
PV_, VDD, PGND_, AGND to NEG0.3V to +6.0V
ECAGND, PGND_ to AGND0.3V to +0.3V
WLED_, RGB_, C1N, C2N,
C1P, C2P to NEG0.3V to (VPV1 + VPV2 + VPV3 + 0.3V)
FILT to AGND0.3V to (VPV3 + 0.3V)
SCL, SDA to AGND
LDO_ to AGND0.3V to (VPV3 + VPV4 + 0.3V)
SW to PGND30.3V to (VPv5 + 0.3V)

LX, OUT to PGND30.3V to +22V KEY to AGND0.3V to (VPv3 + 0.3V)	
())	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
49-Pin WLP 3.17mm x 3.17mm	
(derate 20mW/°C above +70°C)1600mW	
Operating Temperature Range40°C to +85°C	
Junction Temperature+150°C	
Storage Temperature Range65°C to +150°C	
Soldering Temperature (reflow)+260°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{PV} = V_{EN} = V_{DD} = 3.7V, V_{PGND}$ and $V_{AGND} = 0V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	COND	ITIONS	MIN	ТҮР	МАХ	UNITS
PV1, PV2, PV3, PV5 Operating Voltage			2.7		5.5	V
Undervoltage Lockout Threshold	VPV1, VPV2, VPV3, VPV5 risin	g	2.25	2.45	2.65	V
UVLO Hysteresis				100		mV
PV4 Operating Voltage			1.7		5.5	V
V _{DD} Operating Range	V _{DD} is supply voltage for I ² logic is supplied from PV_	C input block only; all other	1.7		5.5	V
PV_ Shutdown Supply Current 1		TA = +25°C		0.1	1	
(All Outputs Off, I ² C Disabled)	$EN = AGND, V_{DD} = 0V$	T _A = +85°C		0.1		μΑ
PV_ Shutdown Supply Current 2		TA = +25°C		2	10	
(All Outputs Off, I ² C Enabled)	$V_{DD} = V_{PV3}, EN = AGND$ $T_A = +85^{\circ}C$		2		μA	
VDD Shutdown Threshold	VDD falling, hysteresis = 50	mV	1.15	1.4	1.65	V
	1x mode, no load, ALC off,	step-up off, ILDO_ = 0mA		240	400	μA
Supply Current	-0.5x mode, 4MHz switchin ALC off, I _{LDO} = 0mA, step- (Note 2)	g, each I _{LED} _ = 0.1mA, up I _o = 0mA at V _{PV3} = 2.7V		6.8		mA
Reference Bypass (REFBP) Output Voltage	$0\mu A \leq I_{REFBP} \leq 1\mu A$		1.164	1.200	1.236	V
REFBP Supply Rejection	2.5V ≤ VPV3 ≤ 5.5V			0.2	5	mV
Thermal Shutdown				+160		°C
Thermal Shutdown Hysteresis				20		°C

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

I²C INTERFACE CHARACTERISTICS

PARAMETER	CON	DITIONS	MIN	ТҮР	MAX	UNITS
SDA, SCL Input High Voltage	V _{DD} = 1.7V to 5.5V		0.7 x V _{DD}			V
SDA, SCL Input Low Voltage	$V_{DD} = 1.7V$ to 5.5V				0.3 x Vdd	V
	$V_{IL} = 0V \text{ or } V_{IH} = 5.5V,$	TA = +25°C		0.01	1	
SDA, SCL Input Current	VDD = 5.5V	T _A = +85°C		0.1		μA
SDA Output Low Voltage	ISDA = 3mA, for acknowled	dge (Note 3)		0.03	0.4	V
Clock Frequency	(Note 3)		100		400	kHz
Bus-Free Time Between START and STOP	t _{BUF} (Note 3)		1.3			μs
Hold Time Repeated START Condition	t _{HD,STA} (Note 3)	t _{HD,STA} (Note 3)		0.1		μs
SCL Low Period	tLOW (Note 3)		1.3	0.2		μs
SCL High Period	tнigн (Note 3)		0.6	0.2		μs
Setup Time Repeated START Condition	t _{SU,STA} (Note 3)		0.6	0.1		μs
SDA Hold Time	t _{HD,DAT} (Note 3)		0	0.01		μs
SDA Setup Time	tsu,dat (Note 3)		100	50		ns
Setup Time for STOP Condition	tsu,sto (Note 3)		0.6	0.1		μs

CHARGE PUMP CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Switching Frequency			4		MHz
Pump Soft-Start Time			0.5		ms
Charge-Pump Regulation Voltage (and OVP)	VPV1, VPV2 - VNEG	4.3	5		V
Open-Loop NEG Output Resistance	(0.5 x (VPV1 or VPV2) - VNEG)/INEG		1.3	2.49	Ω
Guaranteed Output Current	LED VFMAX = 3.9V, VPV1 = VPV2 = 3.2V	281			mA
NEG Discharge Resistance in Shutdown	All LEDs off		10		kΩ

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

CURRENT SINK DRIVER CHARACTERISTICS

PARAMETER		CONDITIO	NS	MIN	ТҮР	MAX	UNITS
Current Setting Range	WLED1-WLED8,	WLED1-WLED8, RGB programmable by I ² C				25.6	mA
					0 (default)		
					0.016]
WILED DOB Dome Lin/Dome	Main WLED_ and	d RGB ramp-up,	ramp-down in 0.1mA		0.064		ms/
WLED_, RGB Ramp-Up/Ramp-			mable through I ² C;		0.128		0.1mA
	ramp-up and ran	np-down times a	are set separately		0.256		
					0.512		-
					1.024		
					2.048		
WLED_, RGB Current Accuracy	25.6mA setting,			-2.5		+2.5	%
	0.1mA setting, T,			-50	±10	+50	
WLED_, RGB Current Matching	WLED1-WLED8,	RGB (Note 4)			5	10	%
WLED_, RGB RDSON	1x mode			2.68		Ω	
	-0.5x mode				4.12		
WLED_, RGB Current Regulator	25.6mA setting	1 1x mode	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$		62	120	
Dropout Voltage	(Note 5)		TA = -40°C		62	150	mV
	(-0.5x mode			95	200	
WLED_, RGB Current Regulator Switchover Threshold (1x to -0.5x)	V _{LED} falling			125	150	175	mV
WLED_, RGB Current Regulator Switchover Hysteresis					100		mV
WLED_, RGB Leakage in	All LEDs off	$T_A = +25^{\circ}C$			0.01	5	
Shutdown		$T_A = +85^{\circ}C$			0.1		μA

LDO1 CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Voltage V _{LDO1} (Default)	200mA at V _{PV3} = 3.6V	2.522	2.6	2.678	V
		2.231	2.3	2.369	
		2.425	2.5	2.575	
		2.522	2.6	2.678	V
Programmable Quitaut Valtage		2.619	2.7	2.781	
Programmable Output Voltage	I _{LDO1} = 50mA	2.716	2.8	2.884	
		2.813	2.9	2.987	
		2.910	3.0	3.090	
		3.007	3.1	3.193	
Output Current		200			mA
Current Limit	V _{LDO1} = 90% of nominal regulation voltage (Note 3)	250	475	750	mA
Dropout Voltage	$I_{LDO1} = 200 \text{mA}, T_A = +25 ^{\circ}\text{C}$		120	300	mV
Line Regulation	$3.4V \le V_{PV3} \le 5.5V$, $I_{LDO1} = 150mA$		2.4		mV
Load Regulation	1mA < ILDO1 < 200mA		25		mV

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

LDO1 CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN TYP MAX			UNITS
Power-Supply Rejection ΔV _{LDO1} /ΔV _{PV3}	f = 10Hz to 10kHz, ILDO1 = 10mA, CLDO1 = 1 μ F		60		dB
Output Noise Voltage (RMS)	f = 100Hz to 100kHz, ILDO1 = 10mA, CLDO1 = 1µF		45		μVRMS
Minimum Output Capacitor	I _{LDO1} < 200mA		1		μF
Startup Time from Shutdown	ILDO1 = 150mA (Note 3)		40	100	μs
Startup Transient Overshoot	I _{LDO1} = 150mA (Note 3)		3	50	mV
Shutdown Output Impedance	LDO1 disabled through I ² C (default on)		1		kΩ

LDO2 CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Voltage VLDO2 (Default)	200mA at VPv3 = 3.6V	2.813	2.9	2.987	V
		2.231	2.3	2.369	
		2.425	2.5	2.575	
		2.522	2.6	2.678	
Programmable Output Voltage	11002 = 50 mA	2.619	2.7	2.781	v
		2.716	2.8	2.884	v
		2.813	2.9	2.987	
		2.910	3.0	3.090	
		3.007	3.1	3.193	
Output Current		200			mA
Current Limit	VLDO2 = 90% of nominal regulation voltage (Note 4)	250	475	750	mA
Dropout Voltage	$I_{LDO2} = 200 \text{mA}, T_A = +25 ^{\circ}\text{C}$		120	300	mV
Line Regulation	$3.4V \le VPV3_{\le} \le 5.5V$, ILDO2 = 150mA		2.4		mV
Load Regulation	1mA < I _{LDO2} < 200mA		25		mV
Power-Supply Rejection ΔVLDO2/ΔVPV3	f = 10Hz to 10kHz, I_{LDO2} = 10mA, C_{LDO2} = 1 μ F		60		dB
Output Noise Voltage (RMS)	f = 100Hz to 100kHz, I_{LDO2} = 10mA, C_{LDO2} = 1 μ F		45		μVrms
Minimum Output Capacitor	I _{LDO2} < 200mA		1		μF
Startup Time from Shutdown	I _{LDO2} = 150mA (Note 3)		40	100	μs
Startup Transient Overshoot	I _{LDO2} = 150mA (Note 3)		3	50	mV
Shutdown Output Impedance	LDO2 disabled through I ² C (default on)		1		kΩ

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

LDO3 CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Operating Range	VPV4	1.7		5.5	V
Output Voltage VLDO3	200mA at V _{PV4} = 2.4V	1.764	1.80	1.854	V
	Vou: 19V hoos 50mA	1.164	1.2	1.236	
Dragrammable Output Valtaria	VPV4 = 1.8V, I _{LDO3} = 50mA	1.455	1.5	1.545	V
Programmable Output Voltage		1.764	1.80	1.854	V
	$V_{PV4} = 3.7V, I_{LDO3} = 50mA$	2.425	2.5	2.575	
Output Current				200	mA
Current Limit	V _{LDO3} = 90% of nominal regulation voltage (Note 4)	250	475	750	mA
Dropout Voltage	$I_{LDO3} = 200 \text{mA}, T_A = +25^{\circ}\text{C}$		120	300	mV
Line Regulation	$2.4V \le V_{PV4} \le 5.5V$, ILDO3 = 150mA		2.4		mV
Load Regulation	1mA < I _{LDO3} < 200mA		25		mV
Power-Supply Rejection ΔVLDO3/ΔVPV4	f = 10Hz to 10kHz, I_{LDO3} = 10mA, C_{LDO3} = 2.2µF		60		dB
Output Noise Voltage (RMS)	f = 100Hz to 100kHz, I_{LDO3} = 10mA, C_{LDO3} = 2.2µF		75		μVrms
Minimum Output Capacitor	0μA < I _{LDO3} < 200mA (Note 3)	2.2			μF
Startup Time from Shutdown	ILDO3 = 150mA (Note 3)		100	250	μs
Startup Transient Overshoot	I _{LDO3} = 150mA (Note 3)		3	50	mV
Shutdown Output Impedance	LDO3 disabled through I ² C (default on)		1		kΩ

STEP-UP CONVERTER CHARACTERISTICS

PARAMETER	CO	NDITIONS	MIN	ТҮР	MAX	UNITS
Input Operating Range	V _{PV5}		2.7		5.5	V
Line Regulation	$V_{OUT} = 14V$, $I_{OUT} = 5mA$	A, VPV5 = 2.7V to 5.5V		0.1		%/V
Load Regulation	VOUT = 14V, IOUT = 0mA	a to 5mA, V _{PV5} = 3.7V		0.1		%/mA
LX Voltage Range					20	V
LX Switch Current Limit			192	241	289	mA
	V _{LX} = 20V, step-up	TA = +25°C		0.01	2	
LX Leakage Current	converter disabled	T _A = +85°C		0.1		μA
Isolation pMOS RDS(ON)	VPv5 = 2.7V, Isw = 100mA			1.5	2.4	Ω
pMOS Rectifier RDS(ON)	LX to OUT, $V_{PV5} = 3.7V$, $I_{LX} = 100mA$			4.0		Ω
Isolation pMOS Current Limit	VPV5 = 3.7V, VSW = 0V		0.15	0.3	0.6	A
location pMOS Lockage Current	SW = PGND3,	$T_A = +25^{\circ}C$		0.01	1	
Isolation pMOS Leakage Current	$V_{PV5} = 5.5V$	TA = +85°C		0.1		μΑ
SW Soft-Start Time	VPV5 = 2.7V			0.2		ms
nMOS RDS(ON)	VPV5 = 3.7V, ILX = 100m	A		0.9	1.5	Ω
Maximum LX On-Time			8	11	14	μs
Minimum LX Off-Time	V _{OUT} > 12V		1.6	2	2.4	μs
OVP Threshold	No feedback, VOUT rising	g	17.6	18.5	19.4	V
OVP Threshold Hysteresis				1		V

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

STEP-UP CONVERTER CHARACTERISTICS (continued)

PARAMETER	CONDITIONS		MIN	ТҮР	МАХ	UNITS	
Current Limit Propagation Delay (LX)				55		ns	
		$T_A = 0^{\circ}C$ to $+85^{\circ}C$	-2		+2	0/	
Output Voltage Accuracy	$V_{PV5} = 3.7V, I_{OUT} = 0mA$	$T_A = -40^{\circ}C$	-2.5		+2.5	%	
				13.0			
	VPv5 = 3.7V, I _{OUT} = 0mA			13.5			
				14.0			
Brogrommoble Output Voltage				14.5		v	
Programmable Output Voltage				15.0		V	
				15.5			
				16.0			
				16.5			

AMBIENT LIGHT SENSOR INTERFACE

PARAMETER	CONDITIONS			ТҮР	MAX	UNITS
BIAS Output Voltage	IBAIS = 200µA, VPV3 = 3.2	/ to 5.5V	2.85	3.0	3.15	V
BIAS Output Current	$V_{BIAS} = 3.0V \pm 5\%$				30	mA
BIAS Dropout Voltage	IBIAS = 10mA (Note 3)			125	250	mV
SENSE Input Voltage Range			0		V _{BIAS} x 255/256	V
BIAS Discharge Resistance in Shutdown			1.0	1.5	kΩ	
ADC Resolution				8		Bit
ADC Integral Nonlinearity Error			-3		+3	LSB
ADC Differential Nonlinearity Error	,		-1		+1	LSB
SENSE Input Impedance $T_A = +25^{\circ}C$ (Note 3)		1			MΩ	
		Bit 0 = 0 in 02h register		32		ms
Waiting Time for ADC Movement After ALCEN = 1	VBIAS = 3V	Bit = 1 in 02h register		64 (default)		ms

KEY CHARACTERISTICS

PARAMETER	COND	ITIONS	MIN	ТҮР	МАХ	UNITS
Low-Level Output Voltage	ISINK = 1mA	ISINK = 1mA			0.4	V
High-Level Output Voltage	ISOURCE = 1mA		1.8			V
	At complementary output,	$T_A = +25^{\circ}C$		0.01	1	
nMOS Output Leakage Current	VPv3 = 3.7V (Note 6)	TA = +85°C		0.1		μA
	At complementary output,	$T_A = +25^{\circ}C$		0.01	1	
pMOS Output Leakage Current	VPv3 = 3.7V (Note 6)	TA = +85°C		0.1		μA

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

CAI CHARACTERISTICS

PARAMETER	COND	TIONS	MIN	ТҮР	МАХ	UNITS
PWM Low-Level Input Voltage					0.4	V
PWM High-Level Input Voltage			1.4			V
PWM Dimming Frequency	$C_{FILT} = 0.1 \mu F$ (Note 3)		0.1	0.2	15	kHz
Current Dimming Range	Duty cycle = 0% to 100% (Note 3)				25.6	mA
PWM Dimming Resolution	$1\% \le duty cycle \le 100\%$ (Note 3)			0.256		mA/%
CAI Enable Blanking Time (tB)	Time from CAI enable until dimming control switches to CAI input (Note 4)			10		ms
	I(A) = (A) = (A) = A / V = A	T _A = +25°C		0.1	1	
Input Leakage Current		TA = +85°C		1		μΑ

GPO (OPEN-DRAIN OUTPUT) CHARACTERISTICS

PARAMETER		CONDITIONS		TYP	MAX	UNITS
Low-Level Output Voltage	I _{SINK} = 1mA	I _{SINK} = 1mA			0.2	V
		$T_A = +25^{\circ}C$		0.1		
Output Leakage Current	$V_{LDO} = 2.6V$	$T_A = +85^{\circ}C$		1		μΑ

EN CHARACTERISTICS

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Low-Level Input Voltage					0.4	V
High-Level Input Voltage			1.4			V
	$\lambda = 0 \lambda = 0 \lambda$	$T_A = +25^{\circ}C$		0.1	1	
Input Leakage Current	$V_{EN} = 0V \text{ or } 3.7V$	T _A = +85°C		1		- μΑ

PLAYR/PLAYG/PLAYB CHARACTERISTICS

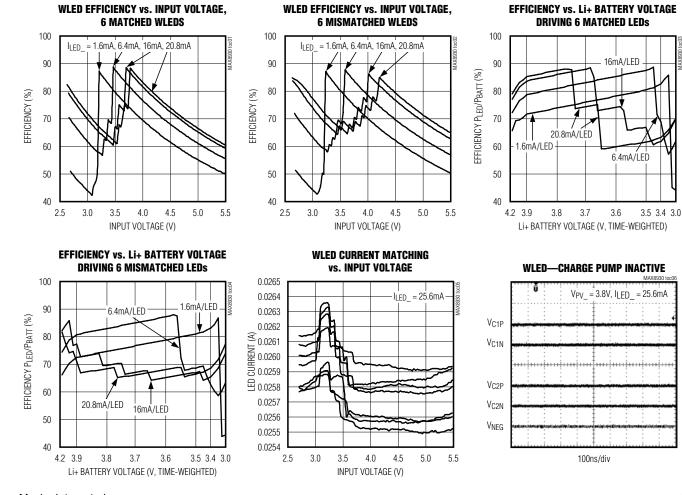
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Low-Level Input Voltage				0.4	V
High-Level Input Voltage		1.4			V
ON/OFF PWM Frequency	(Note 3)	2		200	Hz
PLAY_ Minimum High Time	PLAY_ active high (Bit 1 = low in Register 20h) (Note 3)	80			μs
PLAY_ Minimum Low Time	PLAY_ active low (Bit 1= high in Register 20h) (Note 3)	80			μs
Pulldown Resistor to AGND			800		kΩ

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

CHG PIN CHARACTERISTICS

PARAMETER		CONDITIONS		TYP	MAX	UNITS
Low-Level Voltage	$I\overline{CHG} = 5mA$	ICHG = 5mA		0.05	0.2	V
Lookogo Current		$T_A = +25^{\circ}C$		0.1	1	
Leakage Current	$V_{CHG} = 3.7V$	$T_A = +85^{\circ}C$		1		μΑ

Note 1: Limits are 100% production tested at $T_A = +25^{\circ}$ C. Limits over the operating temperature range are guaranteed by design. **Note 2:** 0.1mA LED load current is not included.


Note 3: Guaranteed by design. Not production tested.

Note 4: LED current matching is defined as: (IMAX - IMAX)/25.6mA. Matching is for LEDs within the RGB group (RLED, GLED, BLED) or the white LED group (WLED1–WLED8).

Note 5: Dropout voltage is defined as the LED_ to AGND voltage at which current into LED_ drops 10% from the value at V_{LED} = 0.5V at 1x mode.

Note 6: VKEY = 0V when pulling low, leakage current from PV3. VKEY = 3.7V when pulling high, leakage current is to GND.

(VPV = V_{EN} = 3.7V, circuit of Figure 1, T_A = +25°C, unless otherwise noted.)

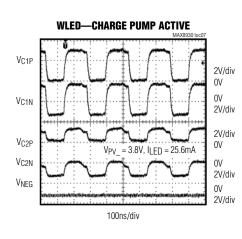
Maxim Integrated

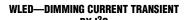
0V

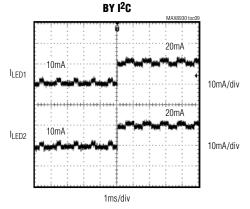
0V

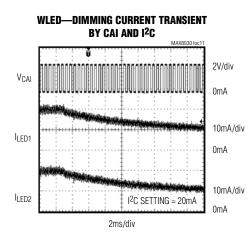
0V

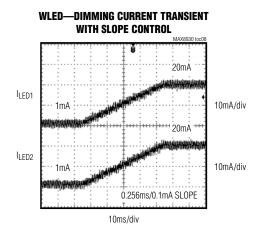
0V

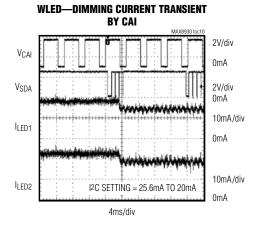

0V

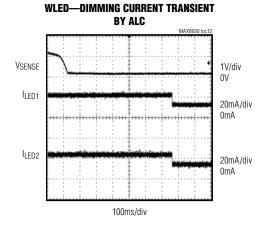

Typical Operating Characteristics

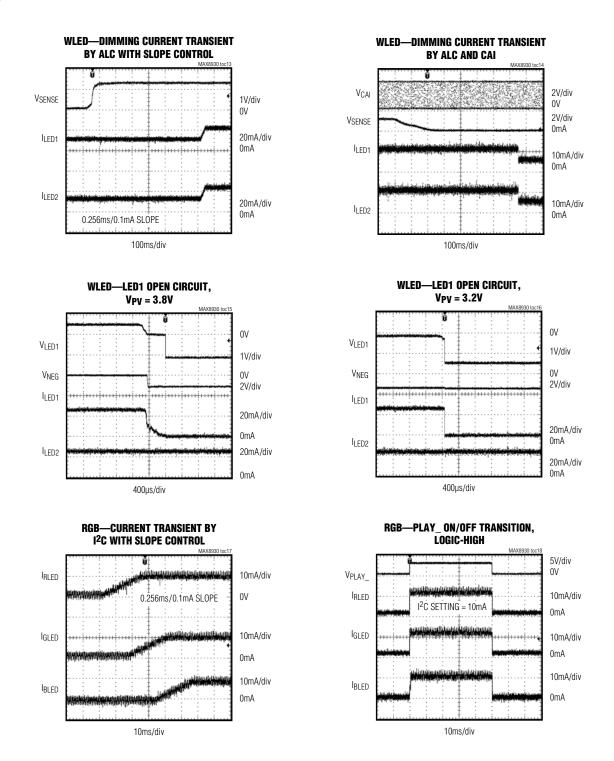

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI


Typical Operating Characteristics (continued)


 $(V_{PV} = V_{EN} = 3.7V, \text{ circuit of Figure 1, } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$



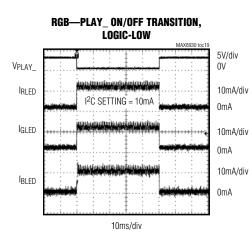


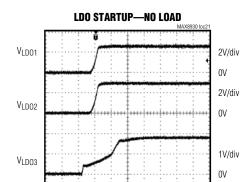


Maxim Integrated

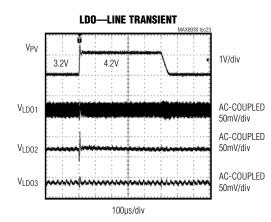
WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

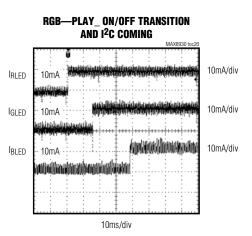
Typical Operating Characteristics (continued)

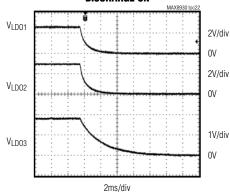

 $(V_{PV} = V_{EN} = 3.7V)$, circuit of Figure 1, $T_A = +25^{\circ}C$, unless otherwise noted.)



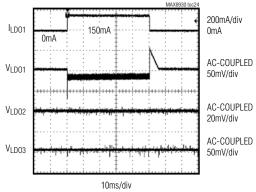
WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

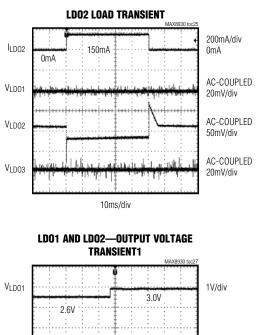

Typical Operating Characteristics (continued)

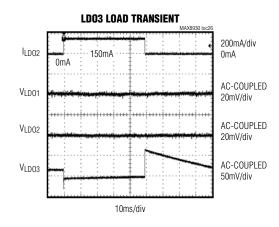

 $(V_{PV} = V_{EN} = 3.7V)$, circuit of Figure 1, $T_A = +25^{\circ}C$, unless otherwise noted.)

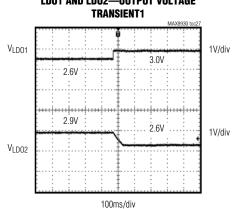


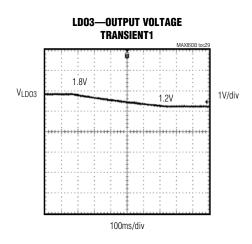
10ms/div



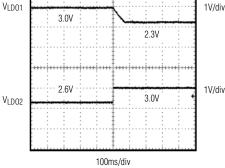

LDO1 LOAD TRANSIENT

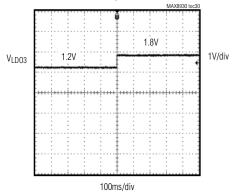


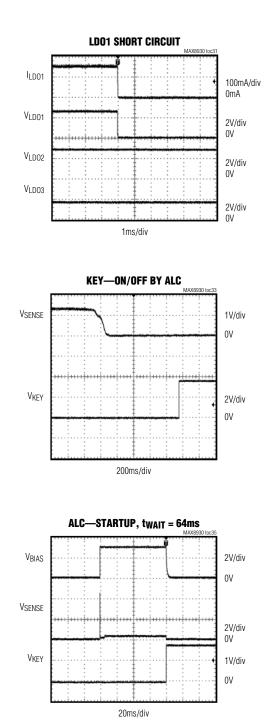

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

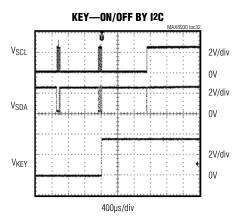

Typical Operating Characteristics (continued)

 $(V_{PV} = V_{EN} = 3.7V$, circuit of Figure 1, $T_A = +25^{\circ}C$, unless otherwise noted.)

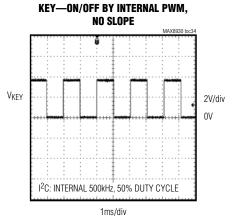


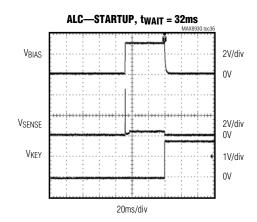


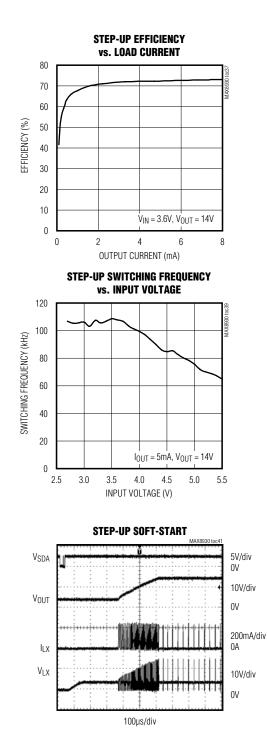

LD03—OUTPUT VOLTAGE TRANSIENT2

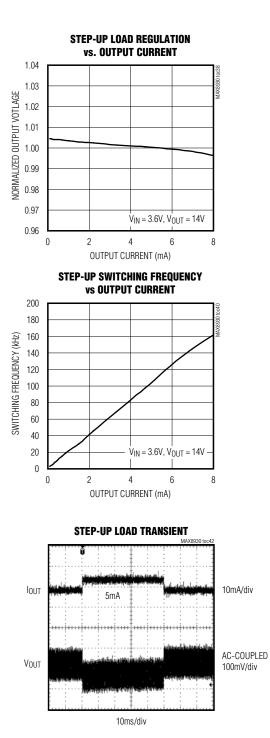


WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI


Typical Operating Characteristics (continued)


 $(V_{PV} = V_{EN} = 3.7V$, circuit of Figure 1, $T_A = +25^{\circ}C$, unless otherwise noted.)

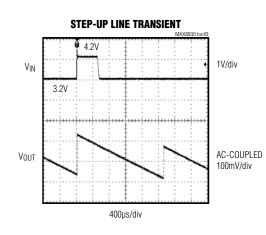


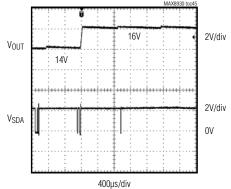


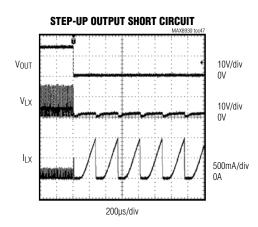
WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

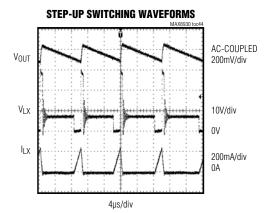
Typical Operating Characteristics (continued)

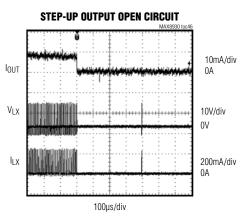
 $(V_{PV} = V_{EN} = 3.7V, \text{ circuit of Figure 1, } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

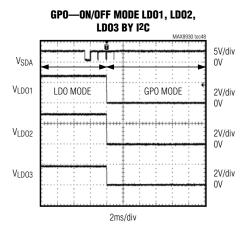


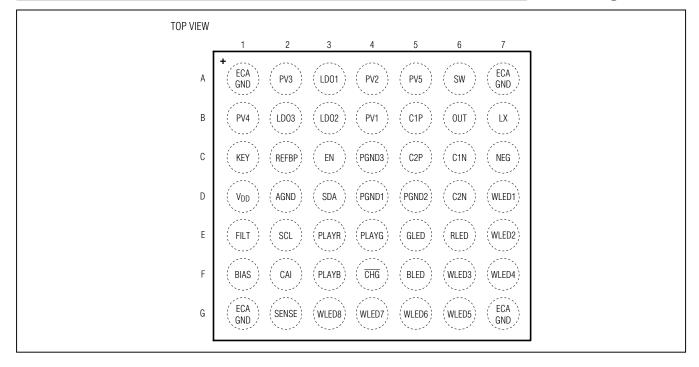

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI


Typical Operating Characteristics (continued)


 $\overline{(V_{PV} = V_{EN} = 3.7V)}$, circuit of Figure 1, $T_A = +25^{\circ}C$, unless otherwise noted.)







WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

Pin Configuration

Pin Description

PIN	NAME	FUNCTION						
EXTERNAL	EXTERNALLY CONNECTED TO PGND							
A1, A7, G1, G7	ECAGND	Connect to AGND						
POWER INP	UT SUPPLY	AND POWER GROUND						
A2	PV3	Supply Voltage Input for Ref, Bias, LDO1, and LDO2. The input voltage range is 2.7V to 5.5V. Bypass PV3 to AGND with a 2.2µF ceramic capacitor as close as possible to the IC. PV3 is high impedance during shutdown. Connect PV3 to PV1, PV2, and PV5.						
A4	PV2	Supply Voltage Input. Connect PV2 to PV1.						
A5	PV5	Supply Voltage Input for the Step-Up Converter. The input voltage range is 2.7V to 5.5V. Bypass PV5 to PGND3 with a 1μ F ceramic capacitor as close as possible to the IC. PV5 is high impedance during shutdown. Connect PV5 to PV1, PV2, and PV3.						
B1	PV4	Supply Voltage Input for LDO3. The input voltage range is 1.7V to 5.5V. Bypass PV4 to AGND with a 2.2µF ceramic capacitor as close as possible to the IC. PV4 is high impedance during shutdown. If PV4 is not used separately, connect PV4 to PV1.						
B4	PV1	Supply Voltage Input for Charge-Pump Circuitry. The input voltage range is 2.7V to 5.5V. Bypass PV1 to PGND1 and PGND2 with a 4.7μ F to 10μ F ceramic capacitor as close as possible to the IC. PV1 is high impedance during shutdown. Connect PV1 to PV2, PV3, and PV5.						
C4	PGND3	Power Ground for the Step-Up Converter						
D4	PGND1	Power Ground for the Charge-Pump Block						
D5	PGND2	Power Ground for the Charge-Pump Block						

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

Pin Description (continued)

PIN	NAME	FUNCTION				
LDO FUNCI	ΓΙΟΝ					
A3	LDO1	Output of LDO1. The default value is 2.6V. Bypass LDO1 to AGND with a 1μ F ceramic capacitor as close as possible to the IC.				
B3	LDO2	Output of LDO2. The default value is 2.9V. Bypass LDO2 to AGND with a 1µF ceramic capacitor as close as possible to the IC.				
B2	LDO3	Output of LDO3. The default value is 1.80V. Bypass LDO3 to AGND with a minimum 2.2µF ceramic capacitor as close as possible to the IC.				
LOGIC AND	ENABLE FU	JNCTION				
D1	VDD	Logic-Supply Voltage Input. Bypass V_{DD} to AGND with a 0.1µF ceramic capacitor as close as possible to the IC. The input range is 1.7V to 5.5V.				
D3	SDA	I ² C Data Input. Data is read on the rising edge of SCL. Connect a 1.5k Ω resistor from SDA to V _{DD} .				
E2	SCL	I ² C Clock Input. Data is read on the rising edge of SCL. Connect a 1.5k Ω resistor from SCL to VDD.				
D2	AGND	Analog Ground. Connect AGND to the system ground plane.				
C3	EN	Hardware Enable Input for the IC. Drive EN high to activate the IC. Drive EN low to disable the IC.				
WLED AND	RGB DIMMI	NG RELATED FUNCTION				
F2	CAI	Brightness Control Input by Contents Adaptive Interface (DPWM signal). CAI varies the brightness of main WLEDs from 0% to 100%. The dimming frequency is typically 200Hz. When CAI is used as the main control method for main white LEDs, the ramp-up/ramp-down is automatically disabled.				
E3	PLAYR	On/Off Input for the Red LED Current Regulator. The PLAYR signal can be either active high or active low. Program either active high or active low through the 20h register.				
E4	PLAYG	On/Off Input for the Green LED Current Regulator. The PLAYG signal can be either active high or active low. Program either active high or active low through the 20h register.				
F3	PLAYB	On/Off Input for the Blue LED Current Regulator. The PLAYB signal can be either active high or active low. Program either active high or active low through the 20h register.				
E1	FILT	PWM Filter Capacitor. Connect a 0.1μ F ceramic capacitor between FILT and AGND as close as possible to FILT.				
C1	KEY	Key Backlight Control Output. Two threshold values for ON/OFF are available and programmable through the I ² C serial interface. KEY on/off function is controlled by the I ² C, ALC, or the internal 500Hz PWM signal. Program the settings for KEY through the I ² C interface.				
C2	REFBP	1.20V Reference output. Bypass REFBP to AGND with 0.1µF ceramic capacitor as close as possible to the IC. Do not load REFBP.				
AUTOMATIC	C LUMINANO	CE CONTROL				
F1	BIAS	Bias Output for an External Light Sensor. Bypass BIAS to AGND with a 1μ F ceramic capacitor as close as possible to the IC. The BIAS output is 3.0V.				
G2	SENSE	Input from Ambient Light Sensor. Connect a 5.1k Ω resistor from SENSE to AGND.				
CHARGE-PI						
B5	C1P	Transfer Capacitor 1 Positive Connection. Connect a 1µF ceramic capacitor from C1P to C1N.				
C6	C1N	Transfer Capacitor 1 Negative Connection. Connect a 1µF ceramic capacitor from C1P to C1N.				
C5	C2P	Transfer Capacitor 2 Positive Connection. Connect a 1µF ceramic capacitor from C2P to C2N.				
C7	NEG	Charge-Pump Negative Output. Connect a 1 μ F to 2.2 μ F ceramic capacitor from NEG to PGND1. In shutdown, an internal 10k Ω resistor pulls NEG to PGND.				
D6	C2N	Transfer Capacitor 2 Negative Connection. Connect a 1µF ceramic capacitor from C2P to C2N.				

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

Pin Description (continued)

PIN	NAME	FUNCTION
WLED AND	RGB	
D7	WLED1	WLED Current Sink Regulator. Current into WLED1 is based upon the programmed internal I ² C registers. Connect WLED1 to the cathodes of external LEDs. WLED1 is high impedance during shutdown. If unused, short WLED1 to PV3.
E7	WLED2	WLED Current Sink Regulator. Current into WLED2 is based upon the programmed internal I ² C registers. Connect WLED2 to the cathodes of external LEDs. WLED2 is high impedance during shutdown. If unused, short WLED2 to PV3.
F6	WLED3	WLED Current Sink Regulator. Current into WLED3 is based upon the programmed internal I ² C registers. Connect WLED3 to the cathode of an external WLED. WLED3 is high impedance during shutdown. If unused, short WLED3 to PV3.
F7	WLED4	WLED Current Sink Regulator. Current into WLED4 is based upon the programmed internal I ² C registers. Connect WLED4 to the cathode of an external LED. WLED4 is high impedance during shutdown. If unused, short WLED4 to P3.
G6	WLED5	WLED Current Sink Regulator. Current into WLED5 is based upon the programmed internal I ² C registers. Connect WLED5 to the cathode of an external WLED. WLED5 is high impedance during shutdown. If unused, short WLED5 to either PV3 or disable the regulator.
G5	WLED6	WLED Current Sink Regulator. Current into WLED6 is based upon the programmed internal I ² C registers. Connect WLED6 to the cathode of an external WLED. WLED6 is high impedance during shutdown. If unused, short WLED6 to either PV3 or disable the regulator.
G4	WLED7	WLED Current Sink Regulator. Current into WLED7 is based upon the programmed internal I ² C registers. Connect WLED7 to the cathode of an external WLED. WLED7 is high impedance during shutdown. If unused, short WLED7 to either PV3 or disable the regulator.
G3	WLED8	WLED Current Sink Regulator. Current into WLED8 is based upon the programmed internal I ² C registers. Connect WLED8 to the cathode of an external WLED. WLED8 is high impedance during shutdown. If unused, short WLED8 to either PV3 or disable the regulator.
E6	RLED	Red LED Connection. The brightness is set up by I ² C. ON/OFF is synchronized with the PWM signal applied to PLAYR pin. RLED maximum brightness is enabled/disabled through the serial interface.
E5	GLED	Green LED Connection. The brightness is set up by I ² C. ON/OFF is synchronized with the PWM signal applied to PLAYG pin. GLED maximum brightness is enabled/disabled through the serial interface.
F5	BLED	Blue LED Connection. The brightness is set up by I ² C. ON/OFF is synchronized with the PWM signal applied to PLAYB pin. BLED maximum brightness is enabled/disabled through the serial interface.
BOOST CO	NVERTER	
B6	OUT	Step-Up Converter Output. Bypass OUT to GND with a 1 μ F ceramic capacitor. During shutdown, OUT is pulled to PGND3 by an internal 1M Ω resistor.
A6	SW	Isolation Switch Output for the Step-Up Converter. SW is internally connected to the drain of a p-channel MOSFET and used to isolate the output of the step-up from the input during shutdown. If true shutdown is not required, SW can be left open with the input supply connected directly to the inductor.
B7	LX	Inductor Switching Connection. Connect the inductor between LX and SW. For most applications, use a 22μ H inductor.
STATUS IN	DICATOR	
F4	CHG	Charging Status Output. CHG is an open-drain output that goes low when the battery is charging. On/off is operated by I ² C. CHG is high impedance when the IC is in shutdown mode. Enable CHG through the I ² C interface.

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

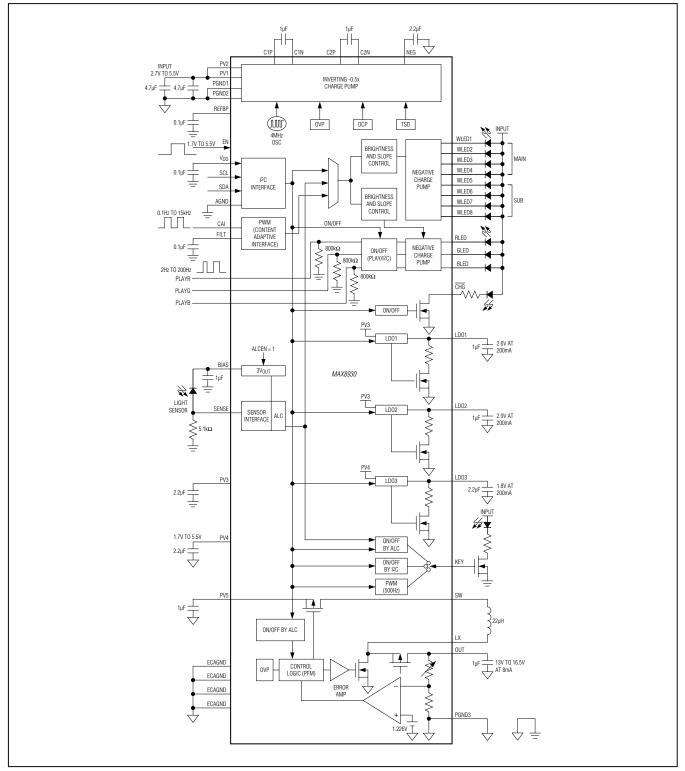


Figure 1. Typical Application and Block Diagram

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

_External Components

PIN	EXTERNAL COMPONENTS	NOTES
PV1, PV2, PV3, PV5	10µF Total capacitance ≥ total LDO, boost, and charge-pump capacitance	System stability
PV4	2.2µF	LDO stability
VDD	0.1µF	Decoupling
BIAS	1µF	LDO compensation
LDO1	1µF	LDO compensation
LDO2	1µF	LDO compensation
LDO3	2.2µF	LDO compensation
FILT	0.1µF	Noise filter
REFBP	0.1µF	Noise filter
C1P, C1N	1µF	Charge pump
C2P, C2N	1µF	Charge pump
NEG	2.2µF	Charge pump
WLED1-WLED8	White LED	_
RLED, GLED, BLED	Red, green, blue LED	_
CHG	A resister, for example $10k\Omega$	Current limit
SW, LX	22µH	Boost converter
OUT	1µF	Boost stability
SENSE	5.1kΩ	Converter ambient light to a voltage
ALC	Toshiba TPS852	Any type (linear/log) of photo IC

Note: All output capacitors are ceramic and X7R/X5R type.

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

Detailed Description

The MAX8930 integrates a negative charge pump for both white LED display backlighting with ambient light control (ALC) function, content adaptive interface (CAI) function, and R/G/B LED. There is one step-up converter for passive matrix OLED (PMOLED) oriented application and three LDOs with programmable output voltage. The three LDO outputs are able to convert to GPO (generalpurpose output) status through an I²C command. The MAX8930 includes soft-start, thermal shutdown, opencircuit, and short-circuit protection in the charge-pump circuitry.

Reset Control

The MAX8930 uses two different methods of reset: software and hardware.

Software Reset: All the registers are initiated by RESET = 1 at Register 00h. After that, the values in all registers come back to POR (power-on-reset) state. The bit of RESET in 00h is automatically returned to 0. Auto return to 0.

Hardware Reset: Hardware reset is done by toggling EN from logic-high to logic-low. All the registers under hardware reset conditions are returned to their initial values (POR) and stop receiving any commands.

Open-Circuit and Short-Circuit Protection

If any WLED/RGB fails as an open circuit, that LED pin pulls to ground, and the IC is forced into -0.5X mode. Therefore, connect any unused WLED_/RGB pins to PV1, PV2, or PV3 to disable the corresponding current regulator. The MAX8930 contains special circuitry to detect this condition and disables the corresponding current regulator to avoid wasting battery current.

Thermal Shutdown

The MAX8930 includes a thermal-limit circuit that shuts down the IC at about +160°C. The part turns on after the IC cools by approximately 20°C.

Thermal shutdown is applied to the following blocks:

- White and RGB LED driver
- Step-up converter
- LDO1, LDO2, LDO3
- SBIAS

LED Charge Pump

The charge pump drives up to 8 white LEDs (4 WLEDs for main and 4 WLEDs for sub) and 3 RGB LEDs with regulated constant current for both display backlight and fun light applications. By utilizing individually adaptive 1x/-0.5x negative charge-pump modes and extremely low-dropout current regulators, it is able to achieve high efficiency over the full 1-cell lithium battery input voltage range. High-frequency switching of 4MHz allows for tiny external components. The regulation scheme is optimized to ensure low EMI and low input ripple. Each channel for WLED and RGB LED has the capability of delivering 25.6mA with 256 dimming steps (0.1mA per step). The current-level adjustment is programmed by an I²C command. Figure 2 is the flow chart of the startup and mode-change algorithm.

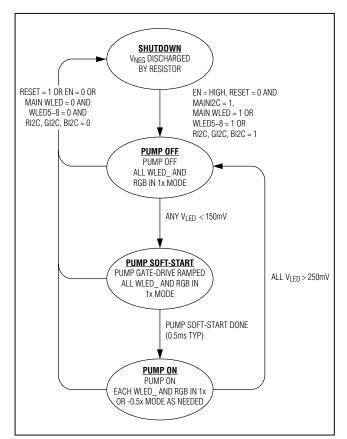


Figure 2. Startup and Mode Change Algorithm

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

WLED1-WLED8 Driver Operation

The white LED current regulators are composed of 4 main-group drivers (WLED1–WLED4) and 4 subgroup drivers (WLED5–WLED8). The current of the main-group LEDs can be selected by an I²C register. Both ambient light control (ALC) mode and ramp-up/ramp-down control are applied to only the main-group white LEDs.

The subgroup LEDs can choose either individual control or can belong to the main group based on the status of a bit in the register (01h and 02h). In this function, combinations can be adjusted as required. For example, main 4ch + sub 4ch or main 5ch + sub 3ch.

The CAI (PWM) signal from either the LCD driver module or baseband chipset controls only the main-group WLEDS. The up/down slope control can be programmed by the setting of the 0Ah register when the main LEDs are controlled by either I²C or ALC.

For main LEDs, there are three different dimming control methods, I²C, ALC, and CAI. The dimming range for main LEDs and sub LEDs is from 0.1mA to 25.6mA in 0.1mA increments.

RGB Driver Operation

The brightness for each color LED has 256 different steps (0.1mA to 25.6mA). The RGB LED can be activated by either the high/low status of the PLAY_PWM signal or by I²C ON/OFF command. The default dimming control is I²C command. An I²C command for dimming can adjust the current of each RGB individually. The operation of ON/OFF by I²C command also allows individual control. However, the operation of ON/OFF by PWM to PLAY_RGB is group control. To operate with either an active-high or active-low signal coming from the microprocessor such as audio processor, the register related to active high or active low should be selected first (the bit 1 in 20h). When a call comes in or music plays, all RGB LEDs are allowed to be activated by either a PWM signal applied to PLAY_ or a designated register by I²C.

The main purpose for the PLAY_ is for ON/OFF control function and not for dimming control. If the dimming current is set to 10mA on each RGB LED, the PWM signal to PLAY_ RGB turns all of the current regulators on or off at the same time. However, the dimming current for RGB can be set by I²C command during ON/OFF operation. When the PLAY_ is in active-high period, the RGB current regulator is on with 10mA current. When the PLAY_ is in the opposite state (active-low period), the RGB regulator is off with 0mA current. The default method to turn the RGB LED on is to pull the PLAY_ input high with

a minimum on-time of 80 μ s in active-high mode. If bit 1 in 20h is set to 1, then all current regulators for RGB are activated by active-low signal with a minimum off-time of 80 μ s. The up/down slope control can be programmed by the setting of the 0Bh register when the RGB LEDs are controlled by I²C only.

If bit 7 in 20h is set to logic-low, then slope up/down is automatically deactivated.

CAI (Contents Adaptive Interface) Operation

A 200Hz PWM signal is applied to the CAI pin. The CAI signal can be from either the LCD driver module with gamma correction information or from the baseband chipset. The main WLED can be activated by either the high/low status of the CAI PWM signal or with either an active-high or active-low signal coming from either a LCD driver module or baseband chipset. The corresponding register bit (bit 0 in 02h) should be set to either, 1 or 0 by I²C command.

Depending on the duty cycle, the brightness varies from 0mA to 25.6mA with the resolution of 0.256mA per 1% duty variation. In control of CAI (PWM) independently, the existing brightness setting from either I²C or ALC is overwritten because CAI has the priority over I²C and ALC.

See the *Dimming by Digital PWM on CAI Only* and *Dimming by Both Digital PWM on CAI and Either I²C or ALC at the Same Time* sections for details on the CAI dimming control.

Dimming by Digital PWM on CAI Only

When the digital PWM (DPWM) signal (100Hz ~15kHz) is provided by either the baseband or CPU for dimming the brightness, the MAX8930 DPWM function takes over the responsibility of dimming the main WLEDs. The dimming by CAI is initiated by setting CAI (bit 7 of Register 02h) to 1. After the set-up, both I²C register dimming settings and ALC no longer control the dimming current for the main WLEDs. The frequency range on the CAI pin is from 100Hz to 15kHz, where 0% duty cycle corresponds to 0mA and 100% duty cycle corresponds to full current, 25.6mA.

When CAI is set to 1, the ramp-up/down slope for main WLED_ is automatically disabled by the MAX8930 control logic. Figure 3 is the timing diagram on initiating CAI. The MAX8930 maintains its previous dimming setting for tB (10ms typ) to allow the PWM filter time to settle to its average value before activating CAI dimming. This is done automatically inside the IC. The bit of MAINI2C

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

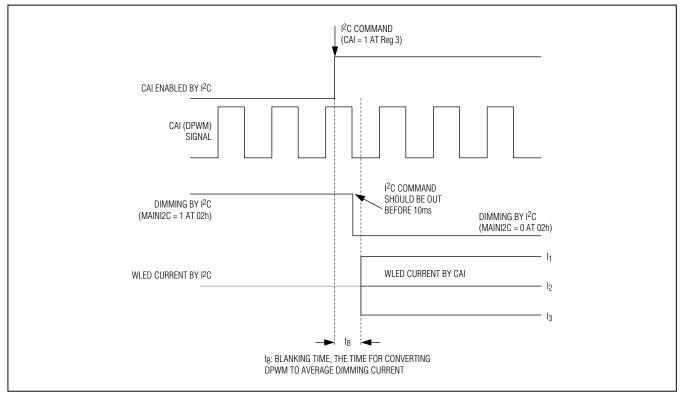


Figure 3. Timing Diagram of Stand-Alone CAI Dimming Operation

should be set to 0 in less than t_B, 10ms (typ) for CAI dimming to be exclusively through DPWM.

If this setup fails, the previous dimming current is still effective even though bit 7 in 02h (CAI) has been set to 1.

The current of I1, I2, and I3 of Figure 3 is different depending on the duty cycle of DPWM.

tB is the settling time for the CAI input filter to calculate an average value for the dimming current.

Dimming by Both Digital PWM on CAI and Either I²C or ALC at the Same Time

If an end-user wants to see either TV or a movie, the LCD driver module may take care of dimming control independently. In this situation, the output signal from the LCD module has some color information. For example, (16mA/LED) + gamma correction can make the user feel the same brightness of the LCD screen compared to (20mA/LED) + no gamma correction.

In this combined dimming control, any dimming current set earlier by either the l^2C register or the ALC register is the value corresponding with 100% duty cycle of the CAI signal.

Ambient Light Control Operation

Dimming of the LCD backlight and ON/OFF control of the keypad backlight are possible on the basis of the data detected by an external ambient light sensor. The ALC consists of the following segments:

- Bias function (3V output)
- 8-bit ADC with an average filter
- A slope process function
- A LOG scale conversion function

A wide range of ambient light sensors can be used with the MAX8930, including photo diode, photo transistor, photo IC (a linear output/LOG output), etc. The detected amount of ambient light is changed into digital data by

WLED Charge Pump, RGB, OLED Boost, LDOs with ALC and CAI

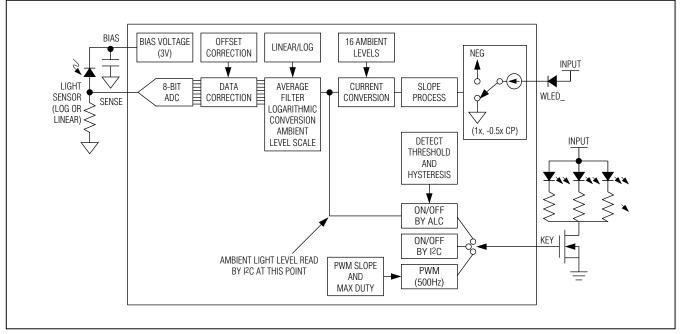


Figure 4. ALC Block Diagram

the embedded digital processing. This data can be read through the $I^{2}C$ (0Dh).

The conversion to LED current can be accomplished either through a built-in initial lookup table or a built-in user settable lookup table.

When ALC is activated, the brightness settings of the main LEDs are controlled through the ALC control circuitry and not by the baseband processor. The default setting on power-on reset is for control by the baseband processor.

ON/OFF of ALC Block for Main WLEDs

ALC operation can be activated independently for the main LED and the keypad backlight. The ALCEN bit in register 00h activates ambient light control. The KBALC bit in register 00h activates ON/OFF for the keypad backlight in ALC mode. For keypad backlight, the output is simple logic-high/logic-low.

Bias Voltage for a Sensor

An embedded LDO with a nominal 3V output provides the bias voltage for the ambient light sensor. This bias output is enabled as soon as the ALCEN bit is set to 1. The operation of the bias output voltage has two options based on the value of the SBIAS bit (bit 7 in Register 0Ch). When this bit is set to 1, the bias output is synchronized with the measurement cycle. This means that the bias voltage generator is active only when a measurement cycle is being performed. The measurement cycle has four different times, 0.52s, 1.05s, 1.57s, and 2.10s. When this bit is set to 0, the bias output is always on as long as the ALCEN bit is set to 1.

Brightness Data Conversion

16 different dimming steps are available depending on the ambient light condition. The selection of the log or linear conversion is possible by the setting of the LSTY bit (bit 6 of register 0Ch).

Linear type sensor: LOG conversion

Log type sensor: Data bypass

The brightness data can be read through I^2C (Register at 0Dh).

LED Current Conversion

The following is the initial current value to each level of ambient light. This value can be overwritten by I²C command.