: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

Abstract

General Description The MAX9107/MAX9108/MAX9109 dual/quad/single, high-speed, low-power voltage comparators are designed for use in systems powered from a single +5 V supply. Their 25 ns propagation delay (with 10 mV input overdrive) is achieved with a power consumption of only 1.75 mW per comparator. The wide input com-mon-mode range extends from 200mV below ground to within 1.5 V of the positive supply rail.

The MAX9107/MAX9108/MAX9109 outputs are TTLcompatible, requiring no external pullup circuitry. These easy-to-use comparators incorporate internal hysteresis to ensure clean output switching even when the devices are driven by a slow-moving input signal. The MAX9107/MAX9108/MAX9109 are higher-speed, lower-power, lower-cost upgrades to industry-standard comparators MAX907/MAX908/MAX909. The MAX9109 features an output latch but does not have complementary outputs. The dual MAX9107 is available in both 8-pin SO and SOT23 packages. The quad MAX9108 is available in 14-pin TSSOP and SO packages while the single MAX9109 is available in an ultra-small 6-pin SC70 package, a space-saving 6-pin SOT23 package and an 8-pin SO package.

Applications

Battery-Powered Systems
A/D Converters
Line Receivers

Threshold Detectors/ Discriminators
Sampling Circuits
Zero-Crossing Detectors

Features

- 25ns Propagation Delay
- $350 \mu \mathrm{~A}$ (1.75 mW) Supply Current Per Comparator
- Single 4.5V to 5.5V Supply Operation
- Wide Input Range Includes Ground
- Low $500 \boldsymbol{\mu V}$ Offset Voltage
- Internal Hysteresis Provides Clean Switching (2mV)
- TTL-Compatible Outputs
- Internal Latch (MAX9109 only)
- Space-Saving Packages:

6-Pin SC70 (MAX9109)
8-Pin SOT23 (MAX9107)
14-Pin TSSOP (MAX9108)

Ordering Information

PART	PIN- PACKAGE	TOP MARK	PKG CODE
MAX9107EKA-T	8 SOT23-8	AAIB	K8-5
MAX9107ESA	8 SO	-	S8-2
MAX9108EUD	14 TSSOP	-	U14-1
MAX9108ESD	14 SO	-	S14-1
MAX9109EXT-T	6 SC70-6	AAU	X6S-1
MAX9109EUT-T	6 SOT23-6	AARU	U6-1
MAX9109ESA	8 SO	-	S8-2

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

ABSOLUTE MAXIMUM RATINGS

Power-Supply Ranges
Supply Voltage (VCC to GND) .. 6 V
Differential Input Voltage-0.3V to (VCC +0.3 V)
Common-Mode Input Voltage to GND ...-0.3V to (VCC +0.3 V)
Latch-Enable Input Voltage
(MAX9109 only)..................................-0.3V to (VCC $+0.3 V$)
Current into Input Pins .. $\pm 20 \mathrm{~mA}$
Output Short-Circuit Duration to V_{CC} or GND 10 s
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
6 -Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 245 mW
6 -Pin SOT23 (derate $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW 8-Pin

above $\left.+70^{\circ} \mathrm{C}\right)$	W
8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	470 mW
$14-\mathrm{Pin}$ TSSOP (derate $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	727 mW
14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	666 mW
Operating Temperature Range	$+85^{\circ} \mathrm{C}$
Storage Temperature Range	$+150^{\circ} \mathrm{C}$
ead Temperature (soldering, 10s)	$+300^{\circ}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{LE}}=0\left(\mathrm{MAX9109}\right.\right.$ only), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	VCC	Guaranteed by PSRR		4.5		5.5	V
Input Offset Voltage	Vos	(Note 2)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1.6	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4.0	
Input Hysteresis	$\mathrm{V}_{\text {HYST }}$	(Note 3)		2			mV
Input Bias Current	I_{B}				125	350	nA
Input Offset Current	los				25	80	nA
Input Voltage Range	$V_{\text {CMR }}$	(Note 4)		-0.2		VCC-1.5	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$ (Note 5)			50	1000	$\mu \mathrm{V} / \mathrm{V}$
Power-Supply Rejection Ratio	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$			50	1000	$\mu \mathrm{V} / \mathrm{V}$
Output High Voltage	V OH	Isource $=100 \mu \mathrm{~A}$		3.0	3.5		V
Output Low Voltage	Vol	ISINK $=3.2 \mathrm{~mA}$			0.35	0.6	V
		$\mathrm{ISINK}=8 \mathrm{~mA}$		0.4			
Supply Current Per Comparator	Icc	$\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}$, all outputs low			0.35	0.7	mA
Output Rise Time	t_{r}	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ to 2.4V, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			12		ns
Output Fall Time	t_{f}	Vout $=2.4 \mathrm{~V}$ to $0.4 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			6		ns

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{LE}}=0\left(\mathrm{MAX9109}\right.\right.$ only), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay	tPD+, tpD-	$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{V}_{\mathrm{OD}}=10 \mathrm{mV}$		25		ns
Differential Propagation Delay	Δ tpD	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=100 \mathrm{mV}, \mathrm{~V}_{\mathrm{OD}}=10 \mathrm{mV} \\ & (\text { Note 6) } \end{aligned}$		1		ns
Propagation Delay Skew	tpdskew	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=100 \mathrm{mV}, \mathrm{~V}_{\mathrm{OD}}=10 \mathrm{mV} \\ & (\text { Note } 7 \text {) } \end{aligned}$		5		ns
Latch Input Voltage High	V_{IH}	(Note 8)	2.0			V
Latch Input Voltage Low	$\mathrm{V}_{\text {IL }}$	(Note 8)			0.8	V
Latch Input Current	$\mathrm{I}_{\mathrm{IH},} \mathrm{I}_{\text {IL }}$	(Note 8)		0.4	1	$\mu \mathrm{A}$
Latch Setup Time	ts	(Note 8)		2		ns
Latch Hold Time	$t_{\text {h }}$	(Note 8)		2		ns

Note 1: Devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design
Note 2: Input Offset Voltage is defined as the center of the input-referred hysteresis zone. Specified for $\mathrm{V}_{\mathrm{CM}}=0$. See Figure 1.
Note 3: Trip Point is defined as the input voltage required to make the comparator output change state. The difference between upper ($\mathrm{V}_{\text {TRIP }}$) and lower ($\mathrm{V}_{\text {TRIP }}$) trip points is equal to the width of the input-referred hysteresis zone ($\mathrm{V}_{\text {HYST }}$). Specified for an input common-mode voltage (V_{CM}) of 0. See Figure 1.
Note 4: Inferred from the CMRR test. Note that a correct logic result is obtained at the output, provided that at least one input is within the $\mathrm{V}_{\mathrm{CMR}}$ limits. Note also that either or both inputs can be driven to the upper or lower absolute maximum limit without damage to the part.
Note 5: Tested over the full-input voltage range (VCMR).
Note 6: Differential Propagation Delay is specified as the difference between any two channels in the MAX9107/MAX9108 (both outputs making either a low-to-high or a high-to-low transition).
Note 7: Propagation Delay Skew is specified as the difference between any single channel's output low-to-high transition (tpD+) and high-to-low transition (tpD-).
Note 8: Latch specifications apply to MAX9109 only. See Figure 2.

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

PROPAGATION DELAY

PROPAGATION DELAY

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

PIN				NAME	FUNCTION
MAX9107	MAX9108	MAX9109			
		SC70/SOT23	So		
1	1	-	-	OUTA	Channel A Output
2	2	-	-	INA-	Channel A Inverting Input
3	3	-	-	INA+	Channel A Noninverting Input
7	7	-	-	OUTB	Channel B Output
6	6	-	-	INB-	Channel B Inverting Input
5	5	-	-	INB+	Channel B Noninverting Input
-	8	-	-	OUTC	Channel C Output
-	9	-	-	INC-	Channel C Inverting Input
-	10	-	-	INC+	Channel C Noninverting Input
-	14	-	-	OUTD	Channel D Output
-	13	-	-	IND-	Channel D Inverting Input
-	12	-	-	IND+	Channel D Noninverting Input
-	-	1	7	OUT	Output
-	-	3	2	$\mathrm{IN}+$	Noninverting Input
-	-	4	3	IN-	Inverting Input
8	4	6	1	VCC	Positive Supply
4	11	2	6	GND	Ground
-	-	5	5	LE	Latch Enable. The latch is transparent when LE is low.
-	-	-	4, 8	N.C.	No Connection. Not internally connected.

Detailed Description

Timing

Noise or undesired parasitic AC feedback cause most high-speed comparators to oscillate in the linear region (i.e., when the voltage on one input is at or near the voltage on the other input). The MAX9107/MAX9108/ MAX9109 eliminate this problem by incorporating an internal hysteresis of 2 mV . When the two comparator input voltages are equal, hysteresis effectively causes one comparator input voltage to move quickly past the other, thus taking the input out of the region where oscillation occurs. Standard comparators require that hysteresis be added through the use of external resistors. The MAX9107/MAX9108/MAX9109's fixed internal hysteresis eliminates these resistors. To increase hys-
teresis and noise margin even more, add positive feedback with two resistors as a voltage divider from the output to the noninverting input.
Adding hysteresis to a comparator creates two trip points: one for the input voltage rising and one for the input voltage falling (Figure 1). The difference between these two input-referred trip points is the hysteresis. The average of the trip points is the offset voltage.
Figure 1 illustrates the case where IN - is fixed and $\mathrm{IN}+$ is varied. If the inputs were reversed, the figure would look the same, except the output would be inverted.
The MAX9109 includes an internal latch, allowing the result of a comparison to be stored. If LE is low, the latch is transparent (i.e., the comparator operates as though the latch is not present). The state of the comparator output is latched when LE is high (Figure 2).

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

Figure 1. Input and Output Waveforms, Noninverting Input Varied

Applications Information

Circuit Layout

Because of the MAX9107/MAX9108/MAX9109's high gain bandwidth, special precautions must be taken to realize the full high-speed capability. A printed circuit board with a good, low-inductance ground plane is mandatory. Place the decoupling capacitor (a $0.1 \mu \mathrm{~F}$ ceramic capacitor is a good choice) as close to Vcc as possible. Pay close attention to the decoupling capacitor's bandwidth, keeping leads short. Short lead lengths on the inputs and outputs are also essential to avoid unwanted parasitic feedback around the comparators. Solder the device directly to the printed circuit board instead of using a socket.

Overdriving the Inputs

The inputs to the MAX9107/MAX9108/MAX9109 may be driven beyond the voltage limits given in the Absolute Maximum Ratings, as long as the current flowing into the device is limited to 25 mA . However, if the inputs are overdriven, the output may be inverted. The addition of an external diode prevents this inversion by limiting the input voltage to 200 mV to 300 mV below ground (see Figure 3).

Battery-Operated Infrared Data Link

In Figure 4, the circuit allows reception of infrared data. The MAX4400 converts the photodiode current to a voltage, and the MAX9109 determines whether the amplifier output is high enough to be called a "1." The current consumption of this circuit is minimal: the MAX4400 and MAX9109 require typically $410 \mu \mathrm{~A}$ and $350 \mu \mathrm{~A}$, respectively.

Figure 2. MAX9109 Timing Diagram

Figure 3. Schottky Clamp for Input Driven Below Ground

Figure 4. Battery-Operated Infrared Data Link Consumes Only $760 \mu A$

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

Chip Information

MAX9107 TRANSISTOR COUNT: 262
MAX9108 TRANSISTOR COUNT: 536
MAX9109 TRANSISTOR COUNT: 140
PROCESS: Bipolar

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Nates
2. MOLD FLASH OR PROTRUSIONS NDT TO EXCEED 0.15mm PER SIDE

NG DIMENSIUN: MILLIMETER
4. MEETS JEDEC DUTLINE MD-153. SEE JEDEC VARIATIONS TABLE
5. "N" REFERS TD NUMBER DF LEADS
7. NUMBER $\square F$ LEADS SHOWN ARE FDR REFERENCE \quad NLL
8. MARKING IS FDR PACKAGE GRIENTATION REFERENCE $\square N L Y$

DRAWING NDT TD SCALE-

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

WDALLAS			
	21-0058	\|ex	

MAX9107/MAX9108/MAX9109

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NDTES:
ALL DIMENSIDNS ARE IN MILLIMETERS.
FIDT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM A \& LEAD SURFACE.
3. PACKAGE QUTLINE EXCLUSIVE DF MILD FLASH \& METAL BURR. MOLD FLASH, PROTRUSION DR METAL BURR SHDULD NDT EXCEED 0.25 MM .
4. PACKAGE DUTLINE INCLUSIVE QF SLLDER PLATING.
5. PIN 1 IS LDWER LEFT PIN WHEN READING TIP MARK FRDM LEFT TZ RIGHT. (SEE EXAMPLE TZP MARK)
6. PIN 1 I.D. DOT IS 0.3 MM \varnothing MIN. LICATED ABDVE PIN 1.
7. MEETS JEDEC MD178, VARIATIDN AB.
8. SOLDER THICKNESS MEASURED AT FLAT SECTIUN DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEADTIP.
9. LEAD TD BE CDPLANAR WITHIN 0.1 MM.
10. NUMBER OF LEADS SHOWN ARE FIR REFERENCE ONLY.
11. MARKING IS FIR PACKAGE ORIENTATION REFERENCE ONLY.

SYMBCL	MIN	NDMINAL	MAX
A	0.90	1.25	1.45
A1	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
C	0.08	0.15	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.35	0.45	0.60
L1	0.60 REF.		
e1	1.90 BSC.		
e	0.95 BSC.		
a	0°	2.5°	10°

U6-1, U6-2, U6-4, U6C-8, U6CN-1, U6CN-2, U6S-3, U6F-5, U6F-6, U6FH-5, U6FH-6

\mathfrak{B} DALLALS			
TITLE:			
PACKAGE OUTLINE, SOT 6L BODY			
nPPROVML	$\begin{gathered} \text { Document contral na. } \\ 21-0058 \end{gathered}$	$\stackrel{\text { ReV. }}{\text { H }}$	2/2

25ns, Dual/Quad/Single, Low-Power, TTL Comparators

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

SIDE VIEW

Pages revised at Rev 2: 1, 2, 9-13

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

