: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX9150 low-jitter, 10-port, low-voltage differential signaling (LVDS) repeater is designed for applications that require high-speed data or clock distribution while minimizing power, space, and noise. The device accepts a single LVDS input and repeats the signal at 10 LVDS outputs. Each differential output drives a total of 50Ω, allowing point-to-point distribution of signals on transmission lines with 100Ω terminations on each end.

Ultra-low 120ps (max) peak-to-peak jitter (deterministic and random) ensures reliable communication in highspeed links that are highly sensitive to timing error, especially those incorporating clock-and-data recovery, or serializers and deserializers. The high-speed switching performance guarantees 400 Mbps data rate and less than 100ps skew between channels while operating from a single +3.3 V supply.
Supply current at 400 Mbps is 160 mA (max) and is reduced to 60رA (max) in low-power shutdown mode. Inputs and outputs conform to the EIA/TIA-644 LVDS standard. A fail-safe feature sets the outputs high when the input is undriven and open, terminated, or shorted. The MAX9150 is available in a 28-pin TSSOP package.
Refer to the MAX9110/MAX9112 and MAX9111/MAX9113 data sheets for LVDS line drivers and receivers.

- Ultra-Low 120psp-p (max) Total Jitter (Deterministic and Random)		
- 100ps (max) Skew Between Channels		
- Guaranteed 400Mbps Data Rate		
- 60¢A Shutdown Supply Current		
- Conforms to EIA/TIA-644 LVDS Standard		
- Single +3.3V Supply		
Fail-Safe Circuit Sets Output High for Undriven Inputs		
- High-Impedance LVDS Input when Vcc = OV		
	Ordering	formation
PART	TEMP. RANGE	PIN-PACKAGE
MAX9150EUI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TSSOP

Pin Configuration

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Low-Jitter, 10-Port LVDS Repeater

ABSOLUTE MAXIMUM RATINGS

```
VCc to GND
    -0.3V to +4.0V
RIN+, RIN- to GND ...........................................-0.3V to +4.0V
PWRDN to GND.
    -0.3V to (VCC + 0.3V)
DO_+, DO_- to GND
```

\qquad

```
                            -0.3V to +4.0V
Short-Circuit Duration (DO_+, DO_-)
                            ....Continuous
Continuous Power Dissipation (TA = +70' C)
    28-Pin TSSOP (derate 12.8mW/ }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ above }+7\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ ) .....1026mW
```

Continuous Power Dissipation $\left(T_{A}=+70^{\circ} \mathrm{C}\right)$
28-Pin TSSOP (derate $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .1026 mW

Storage Temperature... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Operating Temperature Range. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \pm 1 \%,\left|\mathrm{~V}_{\mathrm{ID}}\right|=0.1 \mathrm{~V}$ to $1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\left|\mathrm{V}_{\mathrm{ID}} / 2\right|$ to $2.4 \mathrm{~V}-\left|\mathrm{V}_{\mathrm{ID}} / 2\right|, \overline{\mathrm{PWRDN}}=$ high, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{\text { PWRDN }}$						
Input High Voltage	V_{IH}		2.0			V
Input Low Voltage	VIL				0.8	V
Input Current	IIN	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ and OV	-15		15	$\mu \mathrm{A}$
LVDS INPUT						
Differential Input High Threshold	$\mathrm{V}_{\text {TH }}$			7	100	mV
Differential Input Low Threshold	$\mathrm{V}_{\text {TL }}$		-100	-7		mV
Single-Ended Input Current	IIN	$\begin{aligned} & \hline \text { PWRDN }=\text { high or low; } \mathrm{V}_{\text {RIN }+}=2.4 \mathrm{~V}, \\ & \text { RIN- }=\text { open or RIN }+=\text { open, } \mathrm{V}_{\text {RIN }-}=2.4 \mathrm{~V} \end{aligned}$	-6		+1	$\mu \mathrm{A}$
		$\overline{\mathrm{PWRDN}}=$ high or low; $\mathrm{V}_{\mathrm{RIN}+}=0 \mathrm{~V}$, RIN- = open or RIN+ = open, VRIN- = OV	-18		+1	
Power-Off Single-Ended Input Current	IIN(OFF)	$V_{C C}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{RIN}+}=2.4 \mathrm{~V}$, RIN- $=$ open or RIN+ = open, $\mathrm{V}_{\text {RIN }}=2.4 \mathrm{~V}$	-1		+12	$\mu \mathrm{A}$
Differential Input Resistance	RIDIFF	$\mathrm{VCC}=+3.6 \mathrm{~V}$ or OV, $\overline{\mathrm{PW} R D N}=$ high or low	5			k Ω
LVDS DRIVER						
Differential Output Voltage	Vod	Figure 1	250	320	450	mV
Change in VOD Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1			25	mV
Offset (Common-Mode) Voltage	Vos	Figure 1	0.90	1.25	1.375	V
Change in VOS Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 1			25	mV
Output High Voltage	V OH	Figure 1			1.6	V
Output Low Voltage	VOL	Figure 1	0.7			V
Differential Output Resistance (Note 2)	RODIFF	$\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}$ or 0V, $\overline{\text { PWRDN }}=$ high or low	150	240	330	Ω
Differential High Output Voltage in Fail-Safe	VOD+	Rin + , Rin- undriven with short, open, or 100Ω termination	250		450	mV
Output Short-Circuit Current	Isc	$\mathrm{V}_{\text {ID }}=+100 \mathrm{mV}, \mathrm{V}_{\text {DO_+ }}=\mathrm{GND}$	-15			mA
		$\mathrm{V}_{\text {ID }}=-100 \mathrm{mV}, \mathrm{V}_{\text {DO_- }}=$ GND				

Low-Jitter, 10-Port LVDS Repeater

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, R_{L}=50 \Omega \pm 1 \%,\left|\mathrm{~V}_{\text {ID }}\right|=0.1 \mathrm{~V}$ to $1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\left|\mathrm{V}_{\text {ID }} / 2\right|$ to $2.4 \mathrm{~V}-\left|\mathrm{V}_{\mathrm{ID}} / 2\right|, \overline{\mathrm{PWRDN}}=$ high, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Single-Ended Output HighImpedance Current	loz			-1		+1	$\mu \mathrm{A}$
		$\begin{aligned} & \overline{\text { PWRDN }}=\text { GND; } \\ & V_{\text {DO_+ }}=3.6 \mathrm{~V} \text { or OV, DO_- }=\text { open; or } \\ & \text { VDO_- }^{2}=3.6 \mathrm{~V} \text { or OV, DO_+ }=\text { open } \end{aligned}$		-1		+1	$\mu \mathrm{A}$
SUPPLY CURRENT							
Supply Current (Note 2)	IcC	DC	Figure 2		100	140	mA
		200MHz (400Mbps)			130	160	
Power-Down Supply Current	Iccz	$\overline{\text { PWRDN }}=$ GND				60	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \pm 1 \%, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},\left|\mathrm{V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}$ to $1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\left|\mathrm{V}_{\mathrm{ID}} / 2\right|$ to $2.4 \mathrm{~V}-\left|\mathrm{V}_{\mathrm{ID}} / 2\right|, \overline{\mathrm{PWRDN}}=$ high, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2-5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Propagation Delay High-to-Low	tPHLD	Figures 2, 3	1.6	2.2	3.5	ns
Differential Propagation Delay Low-to-High	tPLHD	Figures 2, 3	1.6	2.2	3.5	ns
Total Peak-to-Peak Jitter (Random and Deterministic) (Note 6)	tJPP	Figures 2, 3		20	120	psp-p
Differential Output-to-Output Skew (Note 7)	tsKOO	Figures 2, 3	40	100	ps	
Differential Part-to-Part Skew (Note 8)	tSKPP	Figures 2, 3		1.9	ns	
Rise/Fall Time	TTLH, tTHL	Figures 2, 3		150	220	450
Maximum Input Frequency (Note 9)	fMAX	Figures 2, 3	400	ps		

Low-Jitter, 10-Port LVDS Repeater

AC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \pm 1 \%, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},\left|\mathrm{V}_{\mathrm{ID}}\right|=0.2 \mathrm{~V}$ to $1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\left|\mathrm{V}_{\mathrm{ID}} / 2\right|$ to $2.4 \mathrm{~V}-\left|\mathrm{V}_{\mathrm{ID}} / 2\right|, \overline{\mathrm{PWRDN}}=h i g h, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2-5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Power-Down Time	tpD	Figures 4, 5		100	ns
Power-Up Time	tpu			100	$\mu \mathrm{s}$

Note 1: Current-into-device pins is defined as positive. Current-out-of-device pins is defined as negative. All voltages are referenced to ground, except $\mathrm{V}_{T H}, \mathrm{~V}_{T L}, \mathrm{~V}_{\mathrm{OD}}$, and $\Delta \mathrm{V}_{\mathrm{OD}}$.
Note 2: Guaranteed by design, not production tested.
Note 3: AC parameters are guaranteed by design and characterization.
Note 4: C_{L} includes scope probe and test jig capacitance.
Note 5: Signal generator conditions, unless otherwise noted: frequency $=200 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{R}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{R}}=1 \mathrm{~ns}$, and $\mathrm{tf}_{\mathrm{F}}=$ 1ns (0\% to 100\%).
Note 6: Signal generator conditions for t.JPP: $\mathrm{VOD}=200 \mathrm{mV}, \mathrm{VOS}=1.2 \mathrm{~V}$, frequency $=200 \mathrm{MHz}, 50 \%$ duty cycle, Ro $=50 \Omega$, tr $=1 \mathrm{~ns}$, and $t_{F}=1 \mathrm{~ns}\left(0 \%\right.$ to 100%. $\mathrm{t}_{\mathrm{JPP}}$ includes pulse (duty cycle) skew.
Note 7: tSKOO is the magnitude difference in differential propagation delay between outputs for a same-edge transition.
Note 8: tSKPP is the |MAX - MIN| differential propagation delay.
Note 9: Device meets $V_{O D}$ and $A C$ specifications while operating at $f_{M A X}$.

Typical Operating Characteristics

(Figure 2, $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{IV} \mathrm{ID} \mathrm{I}=200 \mathrm{mV}, \mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{f} \mid \mathrm{N}=50 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Jitter, 10-Port LVDS Repeater

Typical Operating Characteristics (continued)
(Figure 2, $\mathrm{V}_{C C}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{IVIDI}=200 \mathrm{mV}, \mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{f} \mathrm{IN}=50 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Jitter, 10-Port LVDS Repeater

PIN	NAME	FUNCTION
$\begin{aligned} & \hline 1,3,11,13, \\ & 16,18,20, \\ & 24,26,28 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{DO} 2+, \mathrm{DO}+, \mathrm{DO} 10+, \\ \mathrm{DO9}+, \mathrm{DO}+, \text { DO7+, } \\ \mathrm{DO6+,} \text {, DO5+, } \mathrm{DO} 4+, \text { DO3+ } \end{gathered}$	Differential LVDS Outputs. Connect a 100Ω resistor across each of the output pairs (DO_+ and DO_-) adjacent to the IC, and connect a 100Ω resistor at the input of the receiving circuit.
$\begin{gathered} 2,4,12,14, \\ 15,17,19 \\ 23,25,27 \\ \hline \end{gathered}$	$\begin{gathered} \text { DO2-, DO1-, DO10-, DO9-, } \\ \text { DO8-, DO7-, } \\ \text { DO6-, DO5-, DO4-, DO3- } \\ \hline \end{gathered}$	
5	$\overline{\text { PWRDN }}$	Power Down. Drive $\overline{\text { PWRDN }}$ low to disable all outputs and reduce supply current to 60μ A. Drive $\overline{\text { PWRDN }}$ high for normal operation.
6, 9, 21	GND	Ground
10, 22	VCC	Power. Bypass each V_{CC} pin to GND with $0.1 \mu \mathrm{~F}$ and 1 nF ceramic capacitors.
7	RIN+	LVDS Receiver Inputs. RIN+ and RIN- are high-impedance inputs. Connect a resistor from RIN+ to RIN- to terminate the input signal.
8	RIN-	

Detailed Description

The LVDS interface standard is a signaling method intended for point-to-point communication over a controlled impedance medium, as defined by the ANSI/TIA/EIA-644 and IEEE 1596.3 standards. The LVDS standard uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption while reducing EMI emissions and system susceptibility to noise.
The MAX9150 is a 400Mbps, 10 -port LVDS repeater intended for high-speed, point-to-point, low-power applications. This device accepts an LVDS input and repeats it on 10 LVDS outputs. The device is capable of detecting differential signals as low as 100 mV and as high as 1 V within a 0 to 2.4 V input voltage range. The LVDS standard specifies an input voltage range of 0 to 2.4 V referenced to ground.

The MAX9150 outputs use a current-steering configuration to generate a 5 mA to 9 mA output current. This cur-rent-steering approach induces less ground bounce and no shoot-through current, enhancing noise margin and system speed performance. The driver outputs are short-circuit current limited, and are high impedance (to ground) when PWRDN $=$ low or the device is not powered. The outputs have a typical differential resistance of 240Ω.
The MAX9150 current-steering architecture requires a resistive load to terminate the signal and complete the
transmission loop. Because the device switches the direction of current flow and not voltage levels, the output voltage swing is determined by the total value of the termination resistors multiplied by the output current. With a typical 6.4 mA output current, the MAX9150 produces a 320 mV output voltage when driving a transmission line terminated at each end with a 100Ω termination resistor $(6.4 \mathrm{~mA} \times 50 \Omega=320 \mathrm{mV})$. Logic states are determined by the direction of current flow through the termination resistors.

Fail-Safe
Fail-safe is a receiver feature that puts the output in a known logic state (high) under certain fault conditions. The MAX9150 outputs are differential high when the inputs are undriven and open, terminated, or shorted (Table 1).

Table 1. Input/Output Function Table

INPUT, VID	OUTPUTS, VOD
+100 mV	High
-100 mV	Low
Open	High
Short	Undriven
Terminated	

Note: $V_{I D}=R I N+-R I N-, V_{O D}=D O_{-}+-D O_{-}$
High $=450 \mathrm{mV}>V_{O D}>250 \mathrm{mV}$
Low $=-250 \mathrm{mV}>V_{O D}>-450 \mathrm{mV}$

Low-Jitter, 10-Port LVDS Repeater

Applications Information

Supply Bypassing

Bypass each of the Vcc pins with high-frequency sur-face-mount ceramic $0.1 \mu \mathrm{~F}$ and 1 nF capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to the VCC pins.

Differential Traces

Output trace characteristics affect the performance of the MAX9150. Use controlled impedance traces to match trace impedance to both the transmission medium impedance and termination resistor. Ensure that noise couples as common mode by running the differential traces close together. Reduce skew by matching the electrical length of the traces. Excessive skew can result in a degradation of magnetic field cancellation.
Maintain the distance between the differential traces to avoid discontinuities in differential impedance. Avoid 90° turns and minimize the number of vias to further prevent impedance discontinuities.

Cables and Connectors

Transmission media should have a controlled differential impedance of 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.
Avoid the use of unbalanced cables, such as ribbon or simple coaxial cable. Balanced cables, such as twisted pair, offer superior signal quality and tend to generate
less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by the LVDS receiver.

Termination
Termination resistors should match the differential characteristic impedance of the transmission line. Since the MAX9150 has current-steering devices, an output voltage will not be generated without a termination resistor. Output voltage levels are dependent upon the value of the total termination resistance. The MAX9150 produces LVDS output levels for point-to-point links that are double terminated (100Ω at each end). With the typical 6.4 mA output current, the MAX9150 produces an output voltage of 320 mV when driving a transmission line terminated at each end with a 100Ω termination resistor ($6.4 \mathrm{~mA} \times 50 \Omega=320 \mathrm{mV}$). Termination resistance values may range between 90Ω and 150Ω, depending on the characteristic impedance of the transmission medium.
Minimize the distance between the output termination resistor and the corresponding MAX9150 transmitter output. Use $\pm 1 \%$ surface-mount resistors.
Minimize the distance between the input termination resistor and the MAX9150 receiver input. Use a $\pm 1 \%$ surface-mount resistor.

Chip Information
PROCESS : CMOS

Figure 1. Driver-Load Test Circuit

Low-Jitter, 10-Port LVDS Repeater

 Test Circuits and Timing Diagrams (continued)

Figure 2. Repeater Propagation Delay and Transition Time Test Circuit

Figure 3. Propagation Delay and Transition Time Waveforms

Low-Jitter, 10-Port LVDS Repeater

Test Circuits and Timing Diagrams (continued)

Figure 4. Power-Up/Down Delay Test Circuit

Figure 5. Power-Up/Down Delay Waveform

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", " "", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
28 TSSOP	U28-4	$\underline{\mathbf{2 1 - 0 0 6 6}}$

Low-Jitter, 10-Port LVDS Repeater

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 00$	Initial release	-
1	$3 / 09$	Replaced the obsolete Rev C package outline drawing with the Package Information table	9

