: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

General Description

The MAX9225/MAX9226 serializer/deserializer chipset reduces wiring by serializing 10 bits onto a single differential pair. Ten bits are serialized in each cycle of the parallel input clock resulting in a 100 Mbps to 200 Mbps net serial-data rate. The MAX9225 serializes the 8-bit YUV, HSYNC and VSYNC outputs from a camera mounted in the flip part of the phone, reducing wiring through the hinge to the baseband processor in the base of the phone. The 2-wire serial interface uses low-current differential signaling (LCDS) for low EMI, high common-mode noise immunity, and ground-shift tolerance. The MAX9225/MAX9226 automatically identify the word boundary in the serial data in case of signal interruption. The MAX9226 power-down is controlled by the MAX9225. The MAX9225/MAX9226 consume $3.5 \mu \mathrm{~A}$ or less in power-down mode.
The MAX9225 serializer operates from a single +2.375 V to +3.465 V supply and accepts +1.71 V to +3.465 V inputs. The MAX9226 deserializer operates from a +2.375 V to +3.465 V core supply and has a separate output buffer supply (VDDO), allowing +1.71 V to +3.465 V output high levels.
The MAX9225/MAX9226 are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range and are available in $16-$ pin TQFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$) packages with an exposed paddle.

Applications

Cell Phone Cameras
Digital Cameras

- Ideal for Serializing Cell Phone Camera Parallel Interface
- MAX9225 Serializes 8-Bit YUV, HSYNC, and VSYNC
- LCDS Rejects Common-Mode Noise
- Automatic Location of Word Boundary After Signal Interruption
- Power-Down Control Through the Serial Link
- Power-Down Supply Current
$0.5 \mu \mathrm{~A}$ (max) for MAX9225
3.0رA (max) for MAX9226
- +2.375V to +3.465V Core Supply Voltage
- Parallel I/O Interfaces Directly to 1.8V to 3.3V Logic
- $\pm 15 k V$ Human Body Model ESD Protection
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE	TOP MARK
MAX9225ETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	T1633-4	ADO
MAX9225ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	T1633-4	ADO
MAX9226ETE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	T1633-4	ADX
MAX9226ETE +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TQFN-EP*	T1633-4	ADX

+Denotes lead-free package.
${ }^{*} E P=$ Exposed paddle.
Pin Configurations appear at end of data sheet.

Typical Application Circuit

10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

ABSOLUTE MAXIMUM RATINGS

VDD to GND	-0.5 V to +4.0V
VDDO to GND.	
```Serial Interface (SDO+, SDO-, SDI+, SDI-) to GND```	
Single-Ended Inputs (DIN_, PCLKIN,   PWRDN) to GND ...................................-0.5V to (VDD +0.5 V )	
Single-Ended Outputs (DOUT_,	
Continuous Power Dissipation ( $\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
Multilayer PCB (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )	
Single-Layer PCB (derate $15.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS (MAX9225)

$\left(V_{D D}=+2.375 \mathrm{~V}\right.$ to $+3.465 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SINGLE-ENDED INPUTS (PCLKIN, DIN_, $\overline{\text { PWRDN }}$ )							
High-Level Input Voltage	$\mathrm{V}_{\mathrm{IH}}$			1.19		$V_{D D}+0.3$	V
Low-Level Input Voltage	VIL			-0.3		+0.3	V
Input Current	IIN	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V		-20		+20	$\mu \mathrm{A}$
		$-0.3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}<$		-100		+100	
		$\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\text {IN }} \leq\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$					
LCDS OUTPUT (SDO+, SDO-)							
Differential Output Current	IODH	High level		575	643	880	$\mu \mathrm{A}$
	IODL	Low level		200	229	300	
Output Short-Circuit Current	Ios	Shorted to OV or VDD				880	$\mu \mathrm{A}$
POWER SUPPLY							
Supply Current	IDD	$V_{D D}=2.5 \mathrm{~V}$	$\begin{aligned} & \text { PCLKIN = 10MHz, } \\ & \text { 100Mbps } \end{aligned}$		4.7	8.2	mA
			$\begin{aligned} & \text { PCLKIN = 20MHz, } \\ & \text { 200Mbps } \end{aligned}$		6.2	8.2	
Worst-Case Pattern Supply Current	IDDW	$V_{D D}=2.5 \mathrm{~V},$   Figure 1	$\begin{aligned} & \text { PCLKIN = 10MHz, } \\ & \text { 100Mbps } \end{aligned}$		4.7	10.6	mA
			$\text { PCLKIN }=20 \mathrm{MHz},$   200Mbps		6.2	10.6	
Power-Down Supply Current	IDDZ	All inputs = low				0.5	$\mu \mathrm{A}$

## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

## DC ELECTRICAL CHARACTERISTICS (MAX9226)

$\left(\mathrm{V}_{\mathrm{DD}}=+2.375 \mathrm{~V}\right.$ to $+3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}=+1.71 \mathrm{~V}$ to $+3.465 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=$ $\left.\mathrm{V}_{\mathrm{DDO}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SINGLE-ENDED OUTPUTS (PCLKOUT, DOUT_)							
High-Level Output Voltage	V OH	$\mathrm{V}_{\mathrm{DDO}}=+2.375 \mathrm{~V}$ to $+3.465 \mathrm{~V}, \mathrm{IOH}=-1 \mathrm{~mA}$		$0.8 \times \mathrm{V}_{\mathrm{DDO}}$			V
Low-Level Output Voltage	VOL	$\mathrm{V}_{\mathrm{DDO}}=+2.375 \mathrm{~V}$ to $+3.465 \mathrm{~V}, \mathrm{IOL}=1 \mathrm{~mA}$				0.2	V
Output Short-Circuit Current	Ios	Output shorted to ground	VDDO $=2.375 \mathrm{~V}$	-2			mA
			$\mathrm{V}_{\text {DDO }}=3.135 \mathrm{~V}$	-9			
			VDDO $=3.465 \mathrm{~V}$			-25	
LCDS INPUT (SDI+, SDI-)							
Differential Input-Current Threshold	IID				400		$\mu \mathrm{A}$
Common-Mode Input Current	IIC			-300	$\pm 400$	+300	$\mu \mathrm{A}$
Differential Input Impedance	ZID	$\mathrm{I}_{\mathrm{IC}}=0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$		69	90	114	$\Omega$
		$\mathrm{IIC}^{\text {C }}=0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=2.8 \mathrm{~V} \pm 5 \%$		82	108	137	
		$\mathrm{I}_{\mathrm{IC}}=0 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$		95	125	161	
		$\mathrm{I}_{\mathrm{I}}= \pm 300 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$		67	91	117	
		$\mathrm{IIC}= \pm 300 \mu \mathrm{~A}, \mathrm{~V}$ DD $=2.8 \mathrm{~V} \pm 5 \%$		86	108	141	
Common-Mode Input Impedance	ZIC	$\mathrm{I}_{\mathrm{IC}}= \pm 300 \mu \mathrm{~A}$		90	167	375	$\Omega$
Input Capacitance	CIN	SDI+ or SDI- to ground			2		pF
POWER SUPPLY							
Supply Current	Itot	$\begin{aligned} & V_{D D}=V_{D D O}=2.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	$\begin{aligned} & \text { PCLKOUT }=10 \mathrm{MHz}, \\ & 100 \mathrm{Mbps} \end{aligned}$		8.4	12	mA
			$\begin{aligned} & \text { PCLKOUT }=20 \mathrm{MHz}, \\ & \text { 200Mbps } \end{aligned}$		9.1	12	
Worst-Case Pattern Supply Current	Itotw	$\begin{aligned} & C_{L}=5 p F, V_{D D}= \\ & V_{D D O}=2.5 \mathrm{~V}, \\ & \text { Figure } 2(\text { Note 4) } \end{aligned}$	$\begin{aligned} & \text { PCLKOUT }=10 \mathrm{MHz}, \\ & \text { 100Mbps } \end{aligned}$		9.7	12	mA
			$\begin{aligned} & \text { PCLKKOUT = 20MHz, } \\ & \text { 200Mbps } \end{aligned}$		11.6	13	
Power-Down Supply Current	Itotz	(Note 4)			0.3	3.0	$\mu \mathrm{A}$
Supply Difference	VSD	MAX9225 VDD to MAX9226 VDD		-5		+5	\%
GROUND POTENTIAL							
Ground Difference	VGD	MAX9225 to MAX922	6 ground difference	-0.2		+0.2	V

## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

## AC ELECTRICAL CHARACTERISTICS (MAX9225)

$\left(V_{D D}=+2.375 \mathrm{~V}\right.$ to $+3.465 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 3$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PCLKIN INPUT REQUIREMENTS (Figure 3)						
Input Rise Time	tR				2	ns
Input Fall Time	tF				2	ns
PCLKIN Period	tp		50		100	ns
High-Level Pulse Width	tPWH		$0.3 \times \mathrm{tp}$		$0.7 \times \mathrm{tp}$	ns
Low-Level Pulse Width	tPWL		$0.3 \times \mathrm{tp}$		$0.7 \times \mathrm{tp}$	ns
Setup Time	ts		3			ns
Hold Time	th		1			ns

## AC ELECTRICAL CHARACTERISTICS (MAX9226)

$\left(V_{D D}=V_{D D O}=+2.375 \mathrm{~V}\right.$ to $+3.465 \mathrm{~V}, C_{L}=5 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=$ $+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 3,5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PCLKOUT Period	tp	Figure 4	50		100	ns
High-Level Pulse Width	tpWH	Figure 4	$0.4 \times \mathrm{tp}$		$0.6 \times \mathrm{tp}$	ns
Low-Level Pulse Width	tPWL	Figure 4	$0.4 \times \mathrm{tp}$		$0.6 \times \mathrm{tp}$	ns
Data Valid Before PCLKOUT	tvB	Figure 4	5			ns
Data Valid After PCLKOUT	tva	Figure 4	5			ns
SERIALIZER AND DESERIALIZER LINK						
Power-Up Time	tpu1	From $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=2.375 \mathrm{~V}$ when supplies are ramping up			$\begin{gathered} 11,264 \times \\ \text { tp } \end{gathered}$	ns
	tPU2	From $\overline{\text { PWRDN }}$ low to high			$\begin{gathered} 4096 x \\ \text { tp } \end{gathered}$	
Power-Down Time	tpWRDN	From $\overline{\text { PWRDN }}$ high to low		2.8	10	$\mu \mathrm{s}$

Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground.
Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$.
Note 3: Parameters are guaranteed by design and characterization and are not production tested. Limits are set at $\pm 6$ sigma.
Note 4: ITOT = IDD + IDDO.
Note 5: CL includes probe and test jig capacitance.

## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

Test Circuits/Timing Diagrams


Figure 1. Serializer Worst-Case Switching Pattern


Figure 2. Deserializer Worst-Case Switching Pattern


Figure 3. Serializer Input Timing


Figure 4. Deserializer Output Timing

## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

$\left(V_{D D}=V_{D D O}=+2.8 \mathrm{~V}\right.$, logic input levels $=0$ to +2.8 V , logic output load $C_{L}=5 p F, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$


MAX9225 SUPPLY CURRENT vs. FREQUENCY


MAX9225 POWER-DOWN SUPPLY CURRENT vs. FREQUENCY


MAX9225
SUPPLY CURRENT vs. SUPPLY VOLTAGE


MAX9225 SUPPLY CURRENT vs. FREQUENCY


MAX9226
SUPPLY CURRENT vs. SUPPLY VOLTAGE


MAX9225 SUPPLY CURRENT vs. SUPPLY VOLTAGE


MAX9225
SUPPLY CURRENT vs. FREQUENCY


MAX9226
SUPPLY CURRENT vs. SUPPLY VOLTAGE


# 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset 

## Typical Operating Characteristics (continued)

$\left(V_{D D}=V_{D D O}=+2.8 \mathrm{~V}\right.$, logic input levels $=0$ to +2.8 V , logic output load $C L=5 p F, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.$)$



## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

Pin Description (MAX9225)

PIN	NAME	FUNCTION
$1-7$,		
$14,15,16$	DIN6-DINO,   DIN9, DIN8, DIN7	Single-Ended Parallel Data Inputs. The 10 data bits are loaded into the input latch on the rising   edge of PCLKIN. 1.71V to 3.465V tolerant. Internally pulled down to GND.
8	PCLKIN	Parallel Clock Input. The rising edge of PCLKIN (typically the pixel clock) latches the parallel   data input. Internally pulled down to GND.
9	$\overline{\text { PWRDN }}$	Power-Down Input. Pull $\overline{\text { PWRDN low to place the MAX9225/MAX9226 in power-down mode. }}$Drive $\overline{\text { PWRDN high for normal operation. Internally pulled down to GND. }}$   10$\quad$ SDO-
11	SDO+	Inverting LCDS Serial-Data Output
12	GND	Goninverting LCDS Serial-Data Output
13	VDD	Core Supply Voltage. Bypass to GND with 0.1 $\mu$ F and $0.01 \mu F$ capacitors in parallel as close to   the device as possible with the smallest value capacitor closest to the supply pin.
-	EP	Exposed Paddle. Connect EP to ground.

Pin Description (MAX9226)

PIN	NAME	FUNCTION
1	GND	Ground
2	SDI+	Noninverting LCDS Serial-Data Input
3	SDI-	Inverting LCDS Serial-Data Input
4	VDD	Core Supply Voltage. Bypass to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to   the device as possible, with the smallest value capacitor closest to the supply pin.
5	PCLKOUT	Parallel Clock Output. Parallel output data are valid on the rising edge of PCLKOUT (typically   the pixel clock).
$6-15$	DOUTO-DOUT9	Single-Ended Parallel Data Output. DOUT[9:0] are valid on the rising edge of PCLKOUT.
16	VDDO	Output Supply Voltage. Bypass to GND with $0.1 \mu$ F and $0.01 \mu F$ capacitors in parallel as close to   the device as possible with the smallest value capacitor closest to the supply pin.
-	EP	Exposed Paddle. Connect EP to ground.

# 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset 



Detailed Description
The MAX9225 serializer operates at a $10 \mathrm{MHz}-\mathrm{to}-20 \mathrm{MHz}$ parallel clock frequency, serializing 10 bits of parallel input data $\operatorname{DIN}[9: 0]$ in each cycle of the parallel clock. $\operatorname{DIN}[9: 0]$ are latched on the rising edge of PCLKIN. The data and internally generated serial clock are combined and transmitted through SDO+/SDO- using multilevel LCDS. The MAX9226 deserializer receives the LCDS signal on SDI+/SDI-. The deserialized data and recovered parallel clock are available at DOUT[9:0] and PCLKOUT. Output data is valid on the rising edge of PCLKOUT.
Bit 0 (DIN[0]) is transmitted first. Boundary bits OH1 and OH 2 are used by the MAX9226 deserializer to identify the word boundary. OH 1 is the inverse polarity of data bit 9 (DIN[9]), and OH2 is the inverse polarity of OH1. Therefore, at least two level transitions are guaranteed in one word. The clock is recovered from the serial input.

## Serial word format:

0	1	2	3	4	5	6	7	8	9	OH 1	OH 2

Functional Diagram (MAX9226)


## LCDS

The MAX9225/MAX9226 use a proprietary multilevel LCDS interface. Figure 5 provides a representation of the data and clock in the multilevel LCDS interface. This interface offers advantages over other chipsets, such as requiring only one differential pair as the transmission medium, the inherently aligned data and clock, and much smaller current levels than the 4 mA typically found in traditional LVDS interfaces.

## MAX9225/MAX9226 Handshaking

The handshaking function of the MAX9225/MAX9226 provides bidirectional communication between the two devices in case a word boundary error is detected. Prior to data transmission, the MAX9225 serializer adds boundary bits $(\mathrm{OH})$ to the end of the latched word. These boundary bits are the inverse of the last bit of the latched word. During data transmission, the MAX9226 deserializer continuously monitors the state of the boundary bits of each word. If a word boundary error is detected, the serial link is pulled up to $V_{D D}$ and the MAX9226 powers down. The MAX9225 detects the pullup of the serial link and powers down for $1.0 \mu \mathrm{~s}$. After $1.0 \mu \mathrm{~s}$, the MAX9225 powers up, causing the power-up of the MAX9226. Then the word boundary is reestablished, and data transfer resumes. The handshaking function is disabled when PWRDN is pulled low.

## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset


Figure 5. Multilevel LCDS Output Representation

## Applications Information

## PCLKIN Latch Edge

The parallel data input of the MAX9225 serializer is latched on the rising edge of PCLKIN. Figure 3 shows the serializer input timing.

## PCLKOUT Strobe

The serial-data output of the MAX9226 deserializer is valid on the rising edge of PCLKOUT. Figure 4 shows the deserializer output timing.

## Power-Down and Power-Up

Driving $\overline{\text { PWRDN }}$ low puts the MAX9225 in power-down mode and sends a pulse to power down the MAX9226. In powe-down mode, the DLL is stopped, SDO+/SDOare high impedance to ground and differential, and the LCDS link is weakly biased around (VDD -0.8 V ). With $\overline{\text { PWRDN }}$ and all inputs low, the combined MAX9225/ MAX9226 supply current is reduced to $3.5 \mu \mathrm{~A}$ or less.
Driving $\overline{\text { PWRDN }}$ high starts DLL lock to PCLKIN and initiates a MAX9226 power-up sequence. The MAX9225

LCDS output is not driven until the DLL locks. 11,264 clock cycles are required for the power-up and link synchronization before valid DIN can be latched. See Figure 6 for an overall power-up and power-down timing diagram. For normal operation, PCLKIN must be running and settled before driving PWRDN high.
If $V_{D D}=0$, the $\operatorname{LCDS}$ outputs are high impedance to ground and differential.

Ground-Shift Tolerance
The MAX9225/MAX9226 are designed to function normally in the event of a slight shift in ground potential. However, the MAX9226 deserializer ground must be within $\pm 0.2 \mathrm{~V}$ relative to the MAX9225 serializer ground to maintain proper operation.

MAX9226 Output Buffer Supply (VDDO)
The MAX9226 parallel outputs are powered from VDDO, which accepts a +1.71 V to +3.465 V supply, allowing direct interface to inputs with 1.8 V to 3.3 V logic levels.

## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset



Figure 6. MAX9225/MAX9226 Power-Up/Power-Down Sequence

Flex Cable, PCB Interconnect, and Connectors
Interconnect for LCDS typically has a differential impedance of $100 \Omega$. Use interconnect and connectors that have matched differential impedance to minimize impedance discontinuities.

Board Layout and Supply Bypassing Separate the LVTTL/LVCMOS and LCDS signals to prevent crosstalk. A PCB or flex with separate layers for power, ground, and signals is recommended.
Bypass each VDD and VDDO pin with high-frequency, surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin.

ESD Protection
The MAX9225/MAX9226 are rated for $\pm 15 \mathrm{kV}$ ESD protection using the Human Body Model. The Human Body Model discharge components are Cs $=100 \mathrm{pF}$ and $R D=1.5 \mathrm{k} \Omega$ (Figure 7).


Figure 7. Human Body Model ESD Test Circuit

Chip Information
PROCESS: CMOS

10-Bit, Low-Power, 10MHz-to-20MHz
Serializer and Deserializer Chipset

TOP VIEW


## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)


## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

PKG	8L 3×3			12L 3x3			16L 3x3		
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30
D	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
E	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
e	0.65 BSC.			0.50 BSC .			0.50 BSC .		
L	0.35	0.55	0.75	0.45	0.55	0.65	0.30	0.40	0.50
N	8			12			16		
ND	2			3			4		
NE	2			3			4		
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05
A2	0.20 REF			0.20 REF			0.20 REF		
k	0.25	-	-	0.25	-	-	0.25	-	-


EXPOSED PAD VARIATIONS								
PKG.   CODES	D2			E2			JEDEC	
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
TQ833-1	0.25	0.70	1.25	0.25	0.70	1.25	$0.35 \times 45^{\circ}$	WEEC
T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633-5	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \# 1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION
7. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS . DRAWING CONFORMS TO JEDEC MO220 REVISION C.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
9. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
10. WARPAGE NOT TO EXCEED 0.10 mm .
-DRAWING NOT TO SCALE-


## 10-Bit, Low-Power, 10MHz-to-20MHz Serializer and Deserializer Chipset

Revision History

REVISION   NUMBER	REVISION   DATE	DESCRIPTION	PAGES   CHANGED
0	$1 / 06$	Initial release	-
1	$12 / 07$	Changed max output short-circuit current from -20 to -25 in EC table; various   style changes.	$2,3,11$

