

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

General Description

Features

The MAX9257A serializer pairs with the MAX9258A deserializer to form a complete digital video serial link. The devices feature programmable parallel data width, parallel clock frequency range, spread spectrum, and preemphasis. An integrated control channel transfers data bidirectionally at power-up during video blanking over the same differential pair used for video data. This feature eliminates the need for external CAN or LIN interface for diagnostics or programming. The clock is recovered from input serial data at MAX9258A, hence eliminating the need for an external reference clock.

The MAX9257A serializes 10, 12, 14, 16, and 18 bits with the addition of two encoding bits for AC-coupling. The MAX9258A deserializer links with the MAX9257A to deserialize a maximum of 20 (data + encoding) bits per pixel/parallel clock period for a maximum serial-data rate of 840Mbps. The word length can be adjusted to accommodate a higher pixel/parallel clock frequency. The pixel clock can vary from 5MHz to 70MHz, depending on the serial-word length. Enabling parity adds two parity bits to the serial word. The encoding bits reduce ISI and allow AC-coupling.

The MAX9258A receives programming instructions from the electronic control unit (ECU) during the control channel and transmits to the MAX9257A over the serial video link. The instructions can program or update the MAX9257A, MAX9258A, or an external peripheral device, such as a camera. The MAX9257A communicates with the peripheral device with I2C or UART.

The devices operate from a +3.3V core supply and feature separate supplies for interfacing to +1.8V to +3.3V logic levels. These devices are available in 40-lead TQFN or 48-pin LQFP packages. These devices are specified over the -40°C to +105°C temperature range.

Applications

Automotive Cameras Industrial Cameras Navigation Systems Display In-Vehicle Entertainment Systems

- ♦ 10/12/14/16/18-Bit Programmable Parallel Data Width
- **♦ MAX9258A Does Not Require Reference Clock**
- **♦ Parity Protection for Video and Control Channels**
- **♦ Programmable Spread Spectrum**
- ◆ Programmable Rising or Falling Edge for HSYNC, **VSYNC**, and Clock
- ♦ Up to 10 Remotely Programmable GPIO on **MAX9257A**
- ♦ Automatic Resynchronization in Case of Loss of
- ♦ MAX9257A Parallel Clock Jitter Filter PLL with **Bypass**
- ♦ DC-Balanced Coding Allows AC-Coupling
- ♦ Levels of Preemphasis for Up to 20m STP Cable **Drive**
- ♦ Integrity Test Using On-Chip Programmable PRBS **Generator and Checker**
- ♦ LVDS I/O Meet ISO 10605 ESD Protection (±10kV) Contact and ±30kV Air Discharge)
- ♦ LVDS I/O Meet IEC 61000-4-2 ESD Protection (±8kV Contact and ±20kV Air Discharge)
- ♦ LVDS I/O Meet ±200V Machine Model ESD **Protection**
- **♦** -40°C to +105°C Operating Temperature Range
- ♦ Space-Saving, 40-Pin TQFN (5mm x 5mm) with **Exposed Pad or 48-Pin LQFP Packages**
- ♦ 3.3V Core Supply and 1.8V to 3.3V I/O Supply

Ordering Information appears at end of data sheet.

Typical Operating Circuit and Pin Configurations appear at end of data sheet.

For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX9257A.related.

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.5V to +4.0V	IEC 61000-4-2 (RD = 330Ω , CS = $150pF$)	
Any Ground to Any Ground	0.5V to +0.5V	Contact Discharge	
SDI+, SDI-, SDO+, SDO- to GND	0.5V to +4.0V	(SDI+, SDI-, SDO+, SDO-) to GND	±8kV
SDO+, SDO- Short Circuit to GND or VCI	CLVDSContinuous	Air Discharge	
DIN[0:15], GPIO[0:9], PCLK_IN, HSYNC	_IN, VSYNC_IN,	(SDI+, SDI-, SDO+, SDO-) to GND	±20kV
SCL/TX, SDA/RX, REM to GND	0.5V to (V _{CCIO} + 0.5V)	ISO 10605 (RD = $2k\Omega$, CS = 330pF)	
DOUT[0:15], PCLK_OUT, CCEN, HSYNC	C_OUT,	Contact Discharge	
$VSYNC_OUT$, RX , $LOCK$, TX , \overline{PD} ,		(SDI+, SDI-, SDO+, SDO-) to GND	±10kV
ERROR to GND0.5	5V to (V _{CCOUT} + 0.5V)	Air Discharge	
Continuous Power Dissipation (TA = +70	0°C)	(SDI+, SDI-, SDO+, SDO-) to GND	±30kV
40-Lead TQFN		Machine Model (RD = 0Ω , CS = $200pF$)	
Multilayer PCB (derate 35.7mW/°C abo	ove +70°C)2857mW	All Pins to GND	±200V
48-Lead LQFP		Storage Temperature Range	65°C to +150°C
Multilayer PCB (derate 21.7mW/°C abo	ove +70°C)1739mW	Junction Temperature	+150°C
ESD Protection		Lead Temperature (soldering, 10s)	+300°C
Human Body Model (RD = $1.5k\Omega$, CS	= 100pF)	Soldering Temperature (reflow)	+260°C
All Pins to GND	±3kV		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

Junction-to-Ambient Thermal Resistance (θ_{JA})		Junction-to-Case Thermal F	lesistance (θ_{JC})
40-Pin TQFN	28°C/W	40-Pin TQFN	1.7°C/W
48-Pin LQFP	46°C/W	48-Pin LQFP	10°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

MAX9257A DC ELECTRICAL CHARACTERISTICS

 $(V_{CC}=+3.0V\ to\ +3.6V,\ V_{CCIO}=+1.71V\ to\ +3.6V,\ R_L=50\Omega\pm1\%,\ T_A=-40^{\circ}C\ to\ +105^{\circ}C,\ unless\ otherwise\ noted.$ Typical values are at $V_{CC} = +3.3V$, $T_A = +25^{\circ}C$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SINGLE-ENDED INPUTS						
High-Level Input Voltage		$V_{CCIO} = +1.71V \text{ to } +3V$	0.65 x V _{CCIO}		V _{CCIO} + 0.3	
	VIH	$V_{CCIO} = +3V \text{ to } +3.6V$	2		V _{CCIO} + 0.3	V
		REM input	2		V _{CC} + 0.3	
		V _{CCIO} = +1.71V to +3V	0		0.3 x V _{CCIO}	.,
Low-Level Input Voltage	V _{IL}	$V_{CCIO} = +3V \text{ to } +3.6V$	0		0.8	V
		REM input	0		0.8]

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9257A DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC_} = +3.0V \text{ to } +3.6V, V_{CCIO} = +1.71V \text{ to } +3.6V, R_L = 50\Omega \pm 1\%, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC_} = +3.3V, T_A = +25^{\circ}\text{C.}) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	cc	ONDITIONS	MIN	TYP	MAX	UNITS
la act of Octobra and	1	$V_{IN} = 0$ to V_{CCIO}		-20		+20	
Input Current	I _{IN}	$V_{IN} = 0$ to V_{CC} , R	EM input	-20		+20	μA
Input Clamp Voltage	V _{CL}	I _{CL} = -18mA				-1.5	V
SINGLE-ENDED OUTPUTS							
	.,	I _{OH} = -100μA		V _{CCIO} - 0.1			V
High-Level Output Voltage	V _{OH}	I _{OH} = -2mA		V _{CCIO} - 0.35			V
	.,	I _{OL} = 100μA				0.1	.,
Low-Level Output Voltage	V _{OL}	$I_{OL} = 2mA$				0.3	V
		Classita el tal CND	$V_{CCIO} = +1.71V \text{ to } +3V$	-40		-4	
Output Chart Circuit Current		Shorted to GND	$V_{CCIO} = +3V \text{ to } +3.6V$	-50		-10	A
Output Short-Circuit Current	I _{OS}	Chartad to V	$V_{CCIO} = +1.71V \text{ to } +3V$	4		40	mA mA
		Shorted to V _{CCIO}	$V_{CCIO} = +3V \text{ to } +3.6V$	10		50	
I ² C/UART I/O							
Input Leakage Current	I _{ILKG}	$V_I = V_{CCIO}$		-1		+1	μΑ
High-Level Input Voltage SDA/RX	V _{IH2}			0.7 x V _{CCIO}			V
Low-Level Input Voltage SDA/RX	V _{IL2}					0.3 x V _{CCIO}	V
Low-Level Output Voltage SCL, SDA	V _{OL2}	R _{PULLUP} = 1.6kΩ	to V _{CCIO}			0.4	V
LVDS OUTPUTS (SDO+, SDO-)		1					
Differential Output Voltage	V _{OD}			250	350	460	mV
Change in VOD Between Complementary Output States	$\Delta V_{ ext{OD}}$	Preemphasis off				25	mV
Common-Mode Voltage	V _{OS}	(Figure 1)		1.050	1.25	1.375	V
Change in V _{OS} Between Complementary Output States	ΔV _{OS}					30	mV
Output Short-Circuit Current	los	V _{SDO+} or V _{SDO-} =	= 0 or 3.6V	-15		+15	mA
Magnitude of Differential Output Short-Circuit Current	I _{OSD}	V _{OD} = 0V				15	mA
CONTROL CHANNEL TRANSCE	VER						
Differential Output Voltage	V _{OD}			250	350	460	mV
Input Hysteresis	VHYST+	Differential low-to-	high threshold	25	90	165	m\/
(Figure 2)	V _{HYST} -	Differential high-to	o-low threshold	-25	-90	-165	- mV

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9257A DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC_} = +3.0V \text{ to } +3.6V, V_{CCIO} = +1.71V \text{ to } +3.6V, R_L = 50\Omega \pm 1\%, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC_} = +3.3V, T_A = +25^{\circ}\text{C.}) \text{ (Notes 2, 3)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
		±2% spread, preemphasis off, PRATE = 60MHz, SRATE = 840Mbps		102	138	
		No spread, preemphasis off, PRATE = 60MHz, SRATE = 840Mbps		101	130	
		No spread, preemphasis = 20%, PRATE = 60MHz, SRATE = 840Mbps		102	135	
		No spread, preemphasis = 60%, PRATE = 60MHz, SRATE = 840Mbps		111	137	
		No spread, preemphasis = 100%, PRATE = 60MHz, SRATE = 840Mbps		113	139	
		±2% spread, preemphasis off, PRATE = 28.57MHz, SRATE = 400Mbps		80	104	
		No spread, preemphasis off, PRATE = 28.57MHz, SRATE = 400Mbps		79	100	
		No spread, preemphasis = 100%, PRATE = 28.57MHz, SRATE = 400Mbps		88	111	
Worst-Case Supply Current (Figure 3) C _L = 8pF, 12 bits	Iccw	±2% spread, preemphasis off, PRATE = 14.29MHz, SRATE = 200Mbps		56	74	mA
3 <u>.</u> 4pr, 12 and		No spread, preemphasis off, PRATE = 14.29MHz, SRATE = 200Mbps		55	72	
		No spread, preemphasis = 100%, PRATE = 14.29MHz, SRATE = 200Mbps		61	78	
		±2% spread, preemphasis off, PRATE = 7.14MHz, SRATE = 100Mbps		45	59	
		No spread, preemphasis off, PRATE = 7.14MHz, SRATE = 100Mbps		44	57	
		No spread, preemphasis = 100%, PRATE = 7.14MHz, SRATE = 100Mbps		47	61	
		±2% spread, preemphasis off, PRATE = 5MHz, SRATE = 70Mbps		34	45	
		No spread, preemphasis off, PRATE = 5MHz, SRATE = 70Mbps		34	44	
		No spread, preemphasis = 100%, PRATE = 5MHz, SRATE = 70Mbps		36	47	
Sleep Mode Supply Current	Iccs	Sleep mode			92	μΑ

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9257A AC ELECTRICAL CHARACTERISTICS

 $(V_{CC_} = +3.0V \text{ to } +3.6V, V_{CCIO} = +1.71V \text{ to } +3.6V, R_L = 50\Omega \pm 1\%, T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC_} = +3.3V, T_A = +25^{\circ}\text{C.}) \text{ (Notes 5, 9)}$

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS
PCLK_IN TIMING REQUIREMENT	rs						
Clock Period	t _T			14.28		200.00	ns
Clock Frequency	f _{CLK}	1/t _T		5		70	MHz
Clock Duty Cycle	DC	t _{HIGH} /t _T or t _{LOW} /t _T		35	50	65	%
Clock Transition Time	t _R , t _F	(Figure 7)				4	ns
SWITCHING CHARACTERISTICS	,						
LVDS Output Rise Time	t _R	20% to 80% (Figure 4)			315	370	ps
LVDS Output Fall Time	t _F	20% to 80% (Figure 4)			315	370	ps
	t _{R1A} , t _{F1A}			642	970	1390	
Control Transceiver Transition Time	t _{R2} , t _{F2}	20% to 80% (Figure 16	6)	810	1140	1420	ps
Time	t _{R1B} , t _{F1B}			290	386	490	
Input Setup Time	t _S	(Figure 5)		0			ns
Input Hold Time	t _H	(Figure 5)	3			ns	
	t _{PSD1}	Spread off (Figure 6)			(4	4.55 x t _{T)} + 11	
Parallel-to-Serial Delay	t _{PSD2}	±4% spread			(3	(36.55 x t _{T)} + 11	
PLL Lock Time	t _{LOCK}	Combined FPLL and SPLL; PCLK_IN stable				32,768 x t _T	ns
Random Jitter	t _{RJ}	420MHz LVDS output, FPLL = bypassed	spread off,			12	ps (RMS)
Deterministic Jitter	t _{DJ}	2 ¹⁸ - 1 PRBS, SRATE : no spread	= 840Mbps, 18 bits,			142	ps (P-P)
SCL/TX, SDA/RX							
Rise Time	+	0.3 x V _{CCIO} to 0.7 x	$R_{PULLUP} = 10k\Omega$			400	20
Alse Time	t _{RS}	V_{CCIO} , $C_L = 30pF$	$R_{PULLUP} = 1.6k\Omega$			60	ns
Fall Time	t _{FS}	0.7 x V _{CCIO} to 0.3 x V ₀	CCIO, C _L = 30pF			40	ns
		95kbps to 400kbps		100			
Pulse Width of Spike Suppressed		400kbps to 1000kbps		50			20
in SDA	t _{SPK}	1000kbps to 4250kbps	6	10			ns
		DC to 10Mbps (bypass mode)		10			
D. C. C. T.		400kbps		100			
Data Setup Time	t _{SETUP}	4.25Mbps, C _L = 10pF		60			ns
D. I. II. II. T	4	400kbps		100			
Data Hold Time	t _{HOLD}	4.25Mbps, C _L = 10pF		0			ns

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9257A AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, V_{CCIO} = +1.71 \text{V to } +3.6 \text{V}, R_L = 50 \Omega \pm 1\%, T_A = -40 ^{\circ}\text{C}$ to $+105 ^{\circ}\text{C}$, unless otherwise noted. Typical values are at $V_{CC}^- = +3.3V$, $T_A = +25^{\circ}C$.) (Notes 5, 9)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I ² C TIMING (Note 8)						
Maximum SCL Clock Frequency	f _{SCL}			4.25		MHz
Minimum SCL Clock Frequency	f _{SCL}			95		kHz
Start Condition Hold Time	t _{HD:STA}	(Figure 30)	0.6			μs
Low Period of SCL Clock	t _{LOW}	(Figure 30)	1.1			μs
High Period of SCL Clock	tHIGH	(Figure 30)	0.6			μs
Repeated START Condition Setup Time	^t SU:STA	(Figure 30)	0.5			μs
Data Hold Time	thd:dat	(Figure 30)	0		0.9	μs
Data Setup Time	tsu:dat	(Figure 30)	100			ns
Setup Time for STOP Condition	t _{SU:STO}	(Figure 30)	0.5			μs
Bus Free Time	t _{BUF}	(Figure 30)	1.1			μs

MAX9258A DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, V_{CCIO} = +1.71 \text{V to } +3.6 \text{V}, R_L = 50 \Omega \pm 1 \%$, differential input voltage $|V_{ID}| = 0.05 \text{V to } 1.2 \text{V}$, input commonmode voltage $V_{CM} = IV_{ID}/2I$ to $V_{CC} - IV_{ID}/2I$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = +3.3V$, $IV_{ID}I$ = 0.2V, V_{CM} = 1.2V, T_A = +25°C) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP N	IAX	UNITS	
SINGLE-ENDED INPUTS								
High-Level Input Voltage	V	$V_{CCOUT} = +1.71V \text{ to } +3V$		0.65 x V _{CCOUT}		OUT 0.3	V	
	V _{IH}	$V_{CCOUT} = +3V \text{ to } +3.6V$		2.0		OUT 0.3	V	
Low-Level Input Voltage	V _{IL}	$V_{CCOUT} = +1.71V \text{ to } +3V$		0		3 x COUT	V	
		$V_{CCOUT} = +3V \text{ to } +3.6V$		0	(0.8		
Input Current	1	\/	TXIN	-60	+	-60		
Input Current	I _{IN}	$V_{IN} = 0$ to V_{CCOUT}	PD	-20	+	-20	- μΑ	
Input Clamp Voltage	V _{CL}	I _{CL} = -18mA			-	1.5	V	

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9258A DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC_} = +3.0 \text{V to } +3.6 \text{V}, V_{CC|O} = +1.71 \text{V to } +3.6 \text{V}, R_L = 50 \Omega \pm 1\%, \text{ differential input voltage } |V_{|D}| = 0.05 \text{V to } 1.2 \text{V}, \text{ input common-mode voltage } |V_{CC_} = |V_{|D}/2|, T_A = -40 ^{\circ} \text{C to } +105 ^{\circ} \text{C}, \text{ unless otherwise noted.} |V_{CC_}| = 1.2 \text{V}, \text{ input common-mode voltage } |V_{CC_}| = 1.2$ = 0.2V, V_{CM} = 1.2V, T_A = +25°C) (Notes 2, 3)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
SINGLE-ENDED OUTPUTS							
High-Level Output Voltage		I _{OH} = -100μ	I _{OH} = -100μA				V
nigh-Level Output voltage	V _{OH}	$I_{OH} = -2mA$		V _{CCOUT} -0.35			V
Low Lovel Output Valtage	\/	I _{OL} = 100µA	4			0.1	V
Low-Level Output Voltage	V _{OL}	I _{OL} = 2mA				0.3	V
High-Impedance Output Current	I _{OZ}	$\overline{PD} = low, V$	$_{O}$ = 0 to V_{CCOUT}	-1		+1	μΑ
		$V_O = 0V$	$V_{CCOUT} = +1.71V \text{ to } +3V$	-4		-44	
Outside Chart Circuit Comment	los	(Note 4)	$V_{CCOUT} = +3V \text{ to } +3.6V$	-16		-65	
Output Short-Circuit Current		PCLK_OUT,	$V_{CCOUT} = +1.71V \text{ to } +3.6V$	-5		-55.1	mA
		$V_O = 0V$	$V_{CCOUT} = +3V \text{ to } +3.6V$	-22		-80	
OPEN-DRAIN OUTPUTS				•			
Output Law Valtage	1 Val E	$V_{CCOUT} = +3V$, $I_{OL} = 6.4$ mA				0.55	V
Output Low Voltage		$V_{CCOUT} = +1.71V, I_{OL} = 1.95mA$				0.3	V
Leakage Current	I _{LEAK}	$V_O = 0V \text{ or } V$	√ccout			1	μΑ
LVDS INPUTS (SDI+, SDI-)							
Differential Input High Threshold	V _{TH}					50	mV
Differential Input Low Threshold	V _{TL}			-50			mV
Input Current	I _{IN+} , I _{IN-}			-60		+60	μΑ
Power-Off Input Current	I _{INO+} , I _{INO-}	$V_{CC} = 0$ or	open	-70		+70	μΑ
		ACTOFFSE	T = 00		23		
A 11 11 D 1 1 1 1 0 1 1	.,	ACTOFFSE	ET = 01		11		
Activity-Detector Input Offset	V _{OFFSET}	ACTOFFSE	ET = 10		59		mV
		ACTOFFSET = 11			75		
CONTROL CHANNEL TRANSCE	IVER						
Differential Output Voltage	V _{OD}			250		460	mV
Input Hysteresis	V _{HYST+}	Differential I	ow-to-high threshold	25	90	165	\/
(Figure 2)	V _{HYST} -	Differential h	nigh-to-low threshold	-25	-90	-165	mV

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9258A DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC_{-}} = +3.0 \text{V to } +3.6 \text{V}, V_{CCIO} = +1.71 \text{V to } +3.6 \text{V}, R_{L} = 50 \Omega \pm 1 \%$, differential input voltage $|V_{ID}| = 0.05 \text{V to } 1.2 \text{V}$, input commonmode voltage $V_{CM} = IV_{ID}/2I$ to $V_{CC} - IV_{ID}/2I$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = +3.3V$, $IV_{ID}I$ = 0.2V, V_{CM} = 1.2V, T_A = +25°C) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY	,					
Worst-Case Supply Current		±4% spread, PRATE = 60MHz, SRATE = 840Mbps		95	135	
		Spread off, PRATE = 60MHz, SRATE = 840Mbps		80	120	
		±4% spread, PRATE = 28.57MHz, SRATE = 400Mbps		67	102	
		Spread off, PRATE = 28.57MHz, SRATE = 400Mbps		57	84 mA	
C _L = 8pF, 12 bits (Figure 8)	ICCW	±4% spread, PRATE = 14.29MHz, SRATE = 200Mbps		55	82	mA
		Spread off, PRATE = 14.29MHz, SRATE = 200Mbps		46	67	
		±4% spread, PRATE = 5MHz, SRATE = 70Mbps		42	57	
		Spread off, PRATE = 5MHz, SRATE = 70Mbps		34	49	
Power-Down Supply Current	I _{CCZ}	PD = low		10	50	μΑ

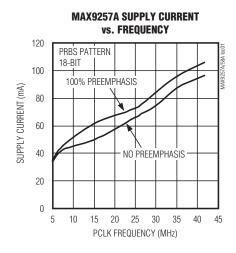
MAX9258A AC ELECTRICAL CHARACTERISTICS

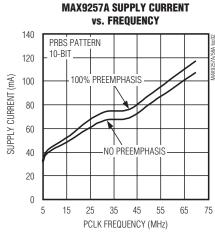
 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, V_{CCIO} = +1.71 \text{V to } +3.6 \text{V}, R_L = 50 \Omega \pm 1 \%, C_L = 8 pF, differential input voltage } IV_{ID}I = 0.1 \text{V to } 1.2 \text{V}, input IV_{CCIO} = +1.71 \text{V to } +3.6 \text{V}, R_L = 50 \Omega \pm 1 \%, C_L = 8 pF, differential input voltage } IV_{ID}I = 0.1 \text{V to } 1.2 \text{V}, input IV_{ID}I = 0.1 \text{V}$ common-mode voltage $V_{CM} = IV_{ID}/2I$ to V_{CC} - IVID/2I, $T_A = -40^{\circ}C$ to $+105^{\circ}C$, unless otherwise noted. Typical values are at V_{CC} = +3.3V, $|V_{ID}| = 0.2V$, $V_{CM} = 1.2V$, $T_A = +25^{\circ}C$) (Notes 5, 6 and 7)

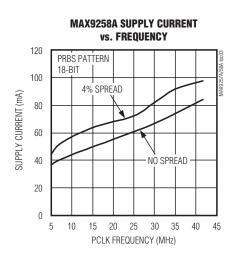
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS	;					
Output Transition Time	t _{R,} t _F	(Figure 9)	0.7		2.2	ns
Output Transition Time, PCLK_OUT	t _{R,} t _F	(Figure 9)	0.5		1.5	ns
Output Transition Time	t _{R,} t _F	V _{CCOUT} = 1.71V (Figure 9)	1.0		2.8	ns
Output Transition Time, PCLK_OUT	t _{R,} t _F	V _{CCOUT} = 1.71V (Figure 9)	0.7		2.2	ns
Control Channel Transition Time	t _{R1A} , t _{F1A} , t _{R1B} , t _{F1B}	(Figure 16)	0.5		1.2	ns
Control Channel Transition Time	t _{R2,} t _{F2}	(Figure 16)	0.6		1.3	ns
PCLK_OUT High Time	tHIGH	(Figure 10)	0.4 x t _T		0.6 x t _T	ns
PCLK_OUT Low Time	t _{LOW}	(Figure 10)	0.4 x t _T		0.6 x t _T	ns

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9258A AC ELECTRICAL CHARACTERISTICS (continued)

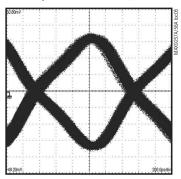

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, V_{CCIO} = +1.71 \text{V to } +3.6 \text{V}, R_L = 50 \Omega \pm 1 \%, C_L = 8 pF, differential input voltage } IV_{ID}I = 0.1 \text{V to } 1.2 \text{V}, input IV_{CCIO} = +1.71 \text{V to } +3.6 \text{V}, R_L = 50 \Omega \pm 1 \%, C_L = 8 pF, differential input voltage } IV_{ID}I = 0.1 \text{V to } 1.2 \text{V}, input IV_{ID}I = 0.1 \text{V}$ common-mode voltage $V_{CM} = |V_{ID}/2|$ to $V_{CC} - |V|D/2|$, $T_{A} = -40^{\circ}$ C to $+105^{\circ}$ C, unless otherwise noted. Typical values are at $V_{CC} = |V_{ID}/2|$ +3.3V, $|V_{ID}| = 0.2V$, $V_{CM} = 1.2V$, $T_A = +25$ °C) (Notes 5, 6 and 7)


PARAMETER	SYMBOL	CONDITION	S	MIN	TYP	MAX	UNITS
Data Valid Before PCLK_ OUT	t _{DVB}	(Figure 11)		0.35 x t _T			ns
Data Valid After PCLK_OUT	t _{DVA}	(Figure 11)		0.35 x t _T			ns
Carial to Darallal Dalay	t _{SPD1}	Spread off (Figure 14)				8t _T	no
Serial-to-Parallel Delay	t _{SPD2}	±4% spread				40t _T	ns
Power-Up Delay	t _{PUD}	(Figure 12)				100	ns
Power-Down to High Impedance	t _{PDD}	(Figure 13)				100	ns
Jitter Tolerance	t _{JT}	Each half of the UI, 12 bit, SRATE = 840Mbps, PRBS pattern (Figure 15)	No spread	0.25	0.30		UI

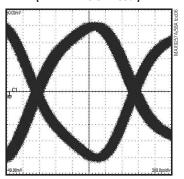

- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except V_{TH} and V_{TL}.
- Note 3: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production tested at $T_A = +105$ °C.
- Note 4: One output at a time.
- Note 5: AC parameters are guaranteed by design and characterization, and are not production tested.
- Note 6: C_I includes probe and test jig capacitance.
- **Note 7:** t_T is the period of the PCLK_OUT.
- Note 8: For high-speed mode timing, see the Detailed Description section.
- Note 9: 12°C timing parameters are specified for fast-mode 12°C. Max data rate = 400kbps.

Typical Operating Characteristics

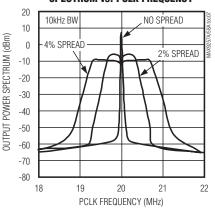
 $(V_{CC} = +3.3V, R_L = 500, C_L = 8pF, T_A = +25^{\circ}C, unless otherwise noted.)$

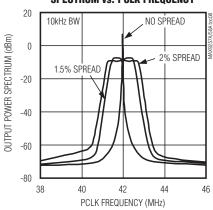

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

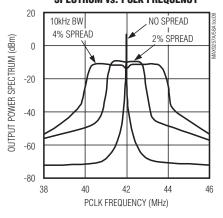
Typical Operating Characteristics (continued)

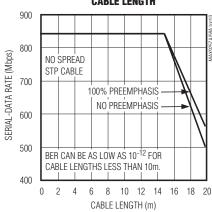

(V_{CC} = +3.3V, R_L = 50O, C_L = 8pF, T_A = +25°C, unless otherwise noted.)

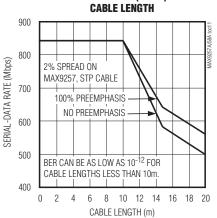
MAX9258A SUPPLY CURRENT vs. FREQUENCY 120 PRBS PATTERN 10-BIT 100 4% SPREAD SUPPLY CURRENT (mA) 80 60 NO SPREAD 40 20 0 10 15 5 20 25 30 PCLK FREQUENCY (MHz)


SERIAL LINK SWITCHING PATTERN WITHOUT PREEMPHASIS (BIT RATE = 840MHz, 2m STP CABLE)

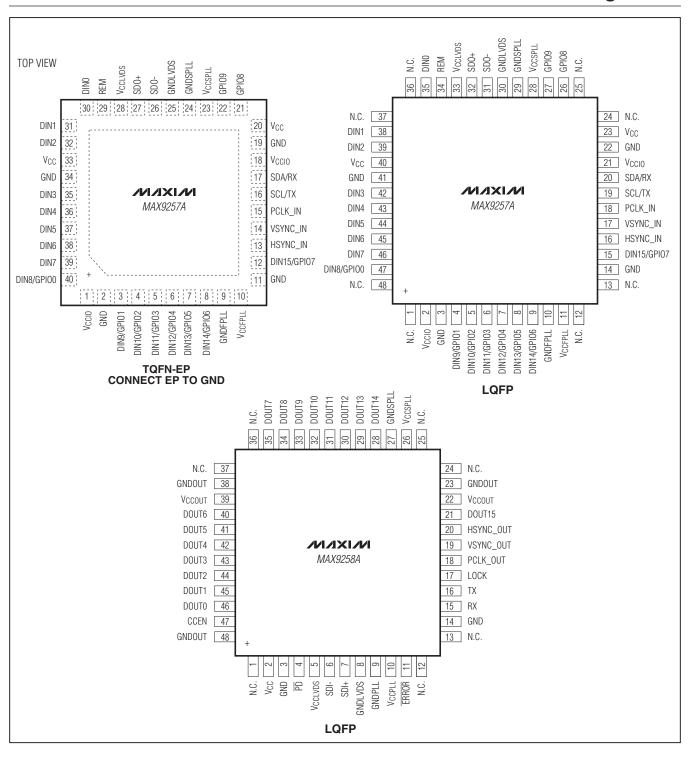

SERIAL LINK SWITCHING PATTERN WITH PREEMPHASIS (BIT RATE = 840MHz, 2m STP CABLE) (PREEMPHASIS = 100%)


MAX9257A OUTPUT POWER SPECTRUM vs. PCLK FREQUENCY


MAX9257A OUTPUT POWER SPECTRUM vs. PCLK FREQUENCY


MAX9258A OUTPUT POWER SPECTRUM vs. PCLK FREQUENCY

BIT ERROR RATE (< 10⁻⁹) vs. **CABLE LENGTH**



BIT ERROR RATE (< 10⁻⁹) vs.

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

Pin Configuration

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9257A Pin Description

P	IN										
TQFN	LQFP	NAME	FUNCTION								
1, 18	2, 21	VCCIO	Single-Ended Input/Output Buffer Supply Voltage. Bypass V _{CCIO} to GND with 0.1µF and 0.001µF capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V _{CCIO} .								
2, 11, 19, 34	3, 14, 22, 41	GND	Digital Supply Ground								
3–8	4–9	DIN[9:14]/ GPIO[1:6]	Data Input/General Purpose Input/Output. When a serial-data word is less than 18 bits word length, DIN_ not programmed as data inputs becomes GPIO (Table 22). DIN[9:14] are internally pulled down to ground.								
9	10	GNDFPLL	Filter PLL Ground								
10	11	V _{CCFPLL}	Filter PLL Supply Voltage. Bypass V_{CCFPLL} to GNDFPLL with 0.1 μ F and 0.001 μ F capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V_{CCFPLL} .								
12	15	DIN15/GPIO7	Data Input/General Purpose Input/Output. When a serial-data word is less than 18 bits word length, DIN_ not programmed as data input becomes GPIO (Table 22). DIN15 is internally pulled down to ground.								
13	16	HSYNC_IN	Horizontal SYNC Input. HSYNC_IN is internally pulled down to ground.								
14	17	VSYNC_IN	Vertical SYNC Input. VSYNC_IN is internally pulled down to ground.								
15	18	PCLK_IN	Parallel Clock Input. PCLK_IN latches data and sync inputs and provides the PLL reference clock. PCLK_IN is internally pulled down to ground.								
16	19	SCL/TX	Open-Drain Control Channel Output. SCL/TX becomes SCL output when UART-to-I2C is active. SCL/TX becomes TX output when UART-to-I2C is bypassed. Externally pull up to VCC.								
17	20	SDA/RX	Open-Drain Control Channel Input/Output. SDA/RX becomes bidirectional SDA when UART-to- 12 C is active. SDA/RX becomes RX input when UART-to- 12 C is bypassed. SDA output requires a pullup to 12 C.								
20, 33	23, 40	V _{CC}	Digital Supply Voltage. Bypass V_{CC} to ground with $0.1\mu F$ and $0.001\mu F$ capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V_{CC} .								
21	26	GPIO8	General Purpose Input/Output								
22	27	GPIO9	General Purpose Input/Output								
23	28	VCCSPLL	Spread PLL Supply Voltage. Bypass V_{CCSPLL} to GNDSPLL with $0.1\mu F$ and $0.001\mu F$ capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V_{CCSPLL} .								
24	29	GNDSPLL	SPLL Ground								
25	30	GNDLVDS	LVDS Ground								
26	31	SDO-	Serial LVDS Inverting Output								
27	32	SDO+	Serial LVDS Noninverting Output								
28	33	V _{CCLVDS}	LVDS Supply Voltage. Bypass V _{CCLVDS} to GNDLVDS with 0.1µF and 0.001µF capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V _{CCLVDS} .								

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9257A Pin Description (continued)

Р	IN	NAME	FUNCTION							
TQFN	LQFP	INAIVIE	TONOTION							
29	34	REM	Remote Power-Up/Power-Down Select Input. Connect REM to ground for power-up to follow $V_{CC}.$ Connect REM high to V_{CC} through $10k\Omega$ resistor for remote power-up. REM is internally pulled down to GND.							
30, 31, 32, 35–39	35, 38, 39, 42–46	DIN[0:7]	Data Inputs. DIN[0:7] are internally pulled down to ground.							
40	47	DIN8/GPIO0	Data Input/General Purpose Input/Output. When a serial-data word is less than 18 bits word length, DIN_ not programmed as data input becomes GPIO (Table 22). DIN8 is internally pulled down to ground.							
_	1, 12, 13 24, 25, 36, 37, 48	N.C.	No Connection. Not internally connected.							
_	_	EP	Exposed Pad for TQFN Package Only. Connect EP to ground.							

MAX9258A Pin Description

PIN	NAME	FUNCTION
1, 12, 13, 24, 25, 36, 37	N.C.	No Connection. Not internally connected.
2	V _{CC}	Digital Supply Voltage. Bypass V_{CC} to GND with 0.1 μ F and 0.001 μ F capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V_{CC} .
3, 14	GND	Digital Supply Ground
4	PD	LVCMOS/LVTTL Power-Down Input. Drive \overline{PD} high to power up the device and enable all outputs. Drive \overline{PD} low to put all outputs in high impedance and reduce supply current. \overline{PD} is internally pulled down to ground.
5	V _{CCLVDS}	LVDS Supply Voltage. Bypass V_{CCLVDS} to GNDLVDS with 0.1 μ F and 0.001 μ F capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V_{CCLVDS} .
6	SDI-	Serial LVDS Inverting Input
7	SDI+	Serial LVDS Noninverting Input
8	GNDLVDS	LVDS Supply Ground
9	GNDPLL	PLL Supply Ground
10	V _{CCPLL}	PLL Supply Voltage. Bypass V _{CCPLL} to GNDPLL with 0.1µF and 0.001µF capacitors in parallel as close to the device as possible with the smallest value capacitor closest to V _{CCPLL} .
11	ERROR	Active-Low, Open-Drain Error Output. ERROR asserts low to indicate a data transfer error was detected (parity, PRBS, or UART control channel error). ERROR is high to indicate no error detected. ERROR resets when the error registers are read for parity, control channel errors, and when PRBS enable bit is reset for PRBS errors. Pull up to V_{CCOUT} with a $1k\Omega$ resistor.
15	RX	LVCMOS/LVTTL Control Channel UART Output

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

MAX9258A Pin Description (continued)

PIN	NAME	FUNCTION
16	TX	LVCMOS/LVTTL Control Channel UART Input. TX is internally pulled up to V _{CCOUT} .
17	LOCK	Open-Drain Lock Output. LOCK asserts high to indicate PLLs are locked with correct serial-word boundary alignment. LOCK asserts low to indicate PLLs are not locked or incorrect serial-word boundary alignment was detected. Pull up to $V_{\mbox{CCOUT}}$ with a $1k\Omega$ resistor.
18	PCLK_OUT	LVCMOS/LVTTL Recovered Clock Output
19	VSYNC_OUT	LVCMOS/LVTTL Vertical SYNC Output
20	HSYNC_OUT	LVCMOS/LVTTL Horizontal SYNC Output
21, 28–35, 40–46	DOUT[15:0]	LVCMOS/LVTTL Data Outputs
22, 39	V _{CCOUT}	Output Supply Voltage. V_{CCOUT} is the supply for all output buffers. Bypass V_{CCOUT} to GNDOUT with $0.1\mu F$ and $0.001\mu F$ capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V_{CCOUT} .
23, 38, 48	GNDOUT	Output Supply Ground
26	V _{CCSPLL}	Spread-Spectrum PLL Supply Voltage. Bypass V_{CCSPLL} to GNDSPLL with $0.1\mu F$ and $0.001\mu F$ capacitors in parallel as close as possible to the device with the smallest value capacitor closest to V_{CCSPLL} .
27	GNDSPLL	SPLL Ground
47	CCEN	LVCMOS/LVTTL Control Channel Enabled Output. CCEN asserts high to indicate that control channel is enabled.

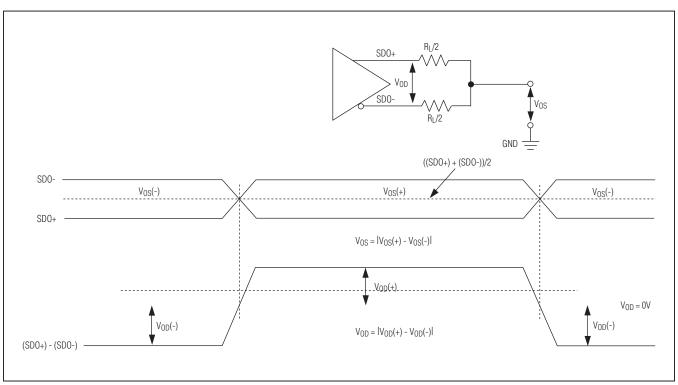


Figure 1. MAX9257A LVDS DC Output Parameters

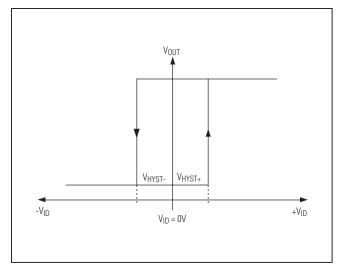


Figure 2. Input Hysteresis

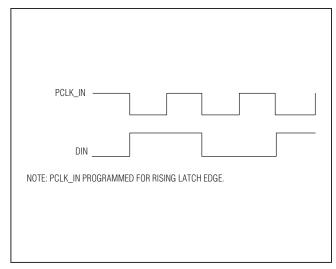


Figure 3. MAX9257A Worst-Case Pattern Input

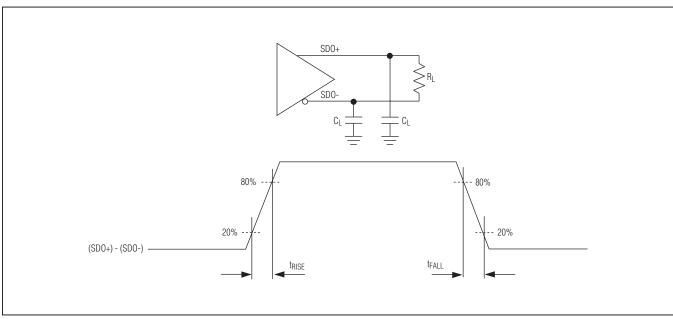


Figure 4. MAX9257A LVDS Control Channel Output Load and Output Rise/Fall Times

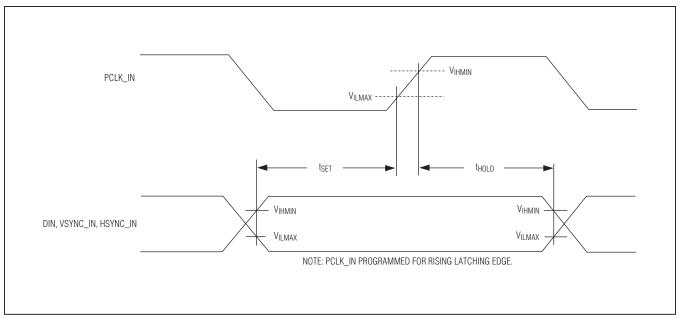


Figure 5. MAX9257A Input Setup and Hold Times

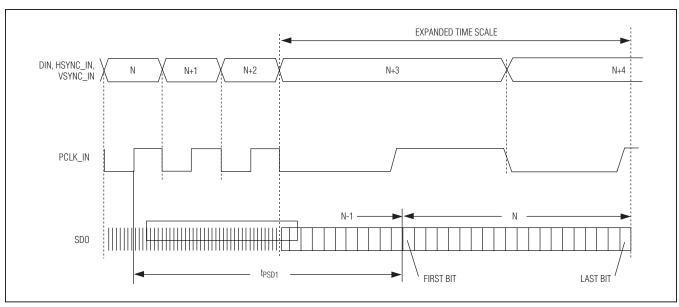


Figure 6. MAX9257A Parallel-to-Serial Delay

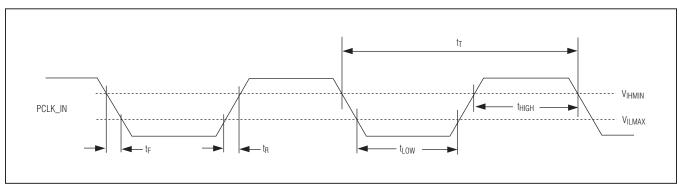


Figure 7. MAX9257A Parallel Input Clock Requirements



Figure 8. MAX9258A Worst-Case Pattern Output

Figure 9. MAX9258A Output Rise and Fall Times

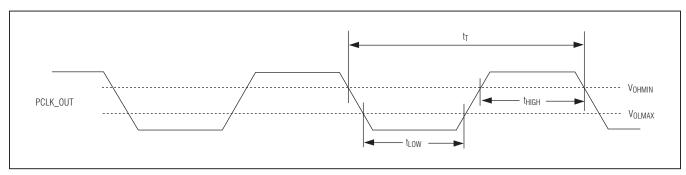


Figure 10. MAX9258A Clock Output High and Low Time

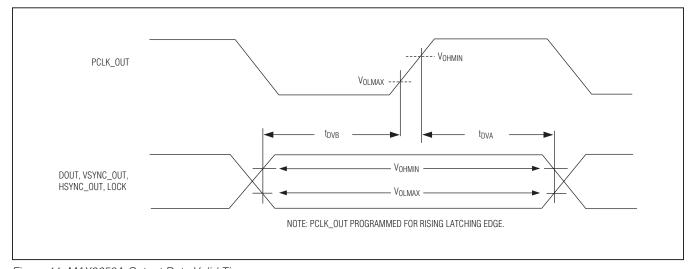


Figure 11. MAX9258A Output Data Valid Times

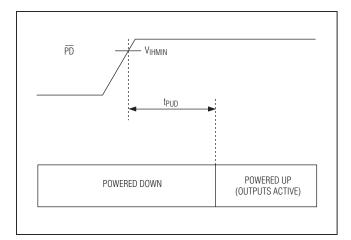


Figure 12. MAX9258A Power-Up Delay

Figure 13. MAX9258A Power-Down Delay

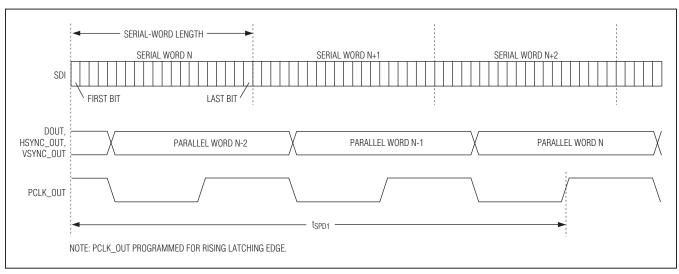


Figure 14. MAX9258A Serial-to-Parallel Delay

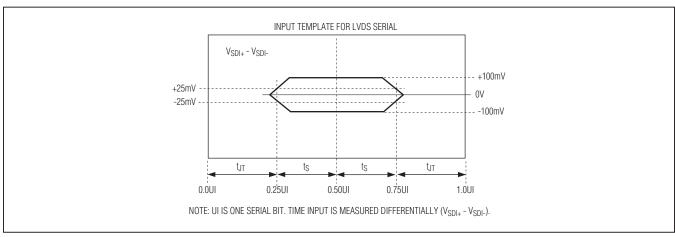


Figure 15. MAX9258A Jitter Tolerance

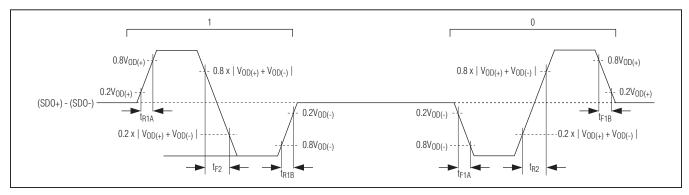


Figure 16. Control Channel Transition Time

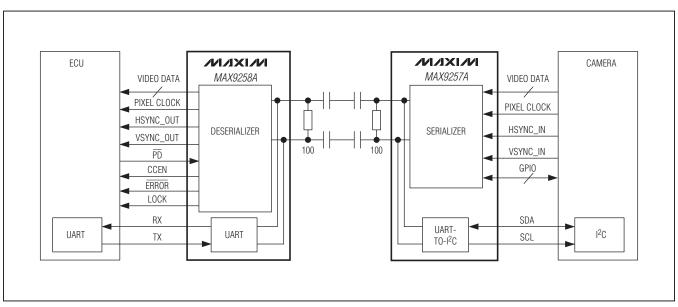


Figure 17. Serial Link with I2C Camera Programming Interface (Base Mode)

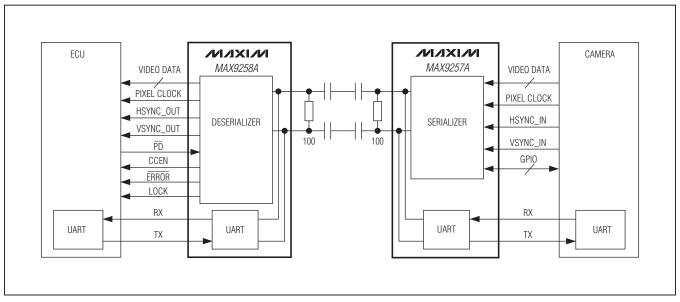


Figure 18. Serial Link with UART Camera Programming Interface (Bypass Mode)

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

Detailed Description

The MAX9257A serializer pairs with the MAX9258A deserializer to form a complete digital video serial link. The electronic control unit (ECU) programs the registers in the MAX9257A, MAX9258A, and peripheral devices, such as a camera, during the control channel phase that occurs at startup or during the vertical blanking time. All control channel communication is half-duplex. The UART communication between the MAX9258A and the MAX9257A is encoded to allow transmission through AC-coupling capacitors. The MAX9257A communicates to the peripheral device through UART or I2C.

The MAX9257A/MAX9258A DC-balanced serializer and deserializer operate from a 5MHz-to-70MHz parallel clock frequency, and are capable of serializing and deserializing programmable 10, 12, 14, 16, and 18 bits parallel data during the video phase. The devices have two phases of operation: video and control channel (Figure 19 and 20). During the video phase, the MAX9257A accepts parallel video data and transmits serial encoded data over the LVDS link. The MAX9258A accepts the encoded serial LVDS data and converts it back to parallel output data. The MAX9257A has dedicated inputs for HSYNC and VSYNC. The selected VSYNC edge causes the MAX9257A/MAX9258A to enter the control channel phase. Nonactive VSYNC edge can be asserted after eight pixel clock cycles.

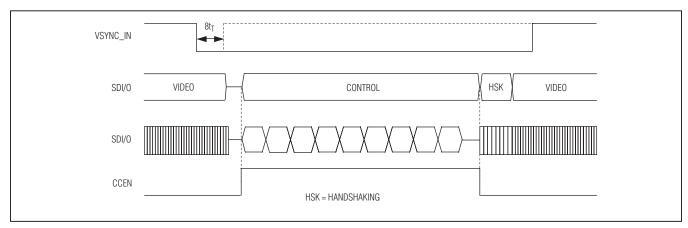


Figure 19. Video and Control Channel Phases (Spread Off)

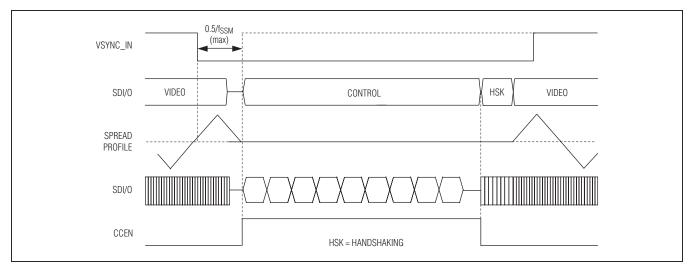


Figure 20. Video and Control Channel Phases (MAX9257A Spread is Enabled)

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

The video data are coded using two overhead bits (ENO and EN1) resulting in a serial-word length of N+2 bits. The devices feature programmable parity encoding that adds two parity bits to the serial word. Bit 0 (EN0) is the LSB that is serialized first without parity enabled. The parity bits are serialized first when parity is enabled.

The ECU programs the MAX9258A, MAX9257A, and peripheral devices at startup and during the control channel phase. In a digital video system, the control channel phase occurs during the vertical blanking time and synchronizes to the VSYNC signal. The programmable active edge of VSYNC initiates the control channel phase. Nonactive edge of VSYNC can transition at any time after 8 x t_T if MAX9257A spread is not enabled and 0.5/fssm when enabled. At the end of video phase, the MAX9258A drives CCEN high to indicate to the ECU that the control channel is open. Programmable timers and ECU signal activity determine how long the control channel stays open. The timers are reset by ECU signal activity. ECU programming must not exceed the vertical blanking time to avoid loss of video data.

After the control channel phase closes, the MAX9257A sends a 546 or 1090 word pattern as handshaking (HSK) to synchronize the MAX9258A's internal clock recovery circuit to the MAX9257A's transmitted data. Following the handshaking, the control channel is closed and the video phase begins. The serial LVDS data is recovered and parallel data is valid on the programmed edge of the recovered pixel clock.

Table 1 and 2 show the default power-up values for the MAX9257A/MAX9258A registers. Tables 3 and 4 show the input and output supply references.

Table 1. MAX9257A Power-Up Default Register Map (see the MAX9257A Register Table)

REGISTER NAME	REGISTER ADDRESS (hex)	POWER-UP VALUE (hex)	POWER-UP DEFAULT SETTINGS
REG0	0x00	0xB5	PRATE = 10, 20MHz to 40MHz SRATE = 11, 400Mbps to 840Mbps PAREN = 0, parity disabled PWIDTH = 101, parallel data width = 18
REG1	0x01	0x1F	SPREAD = 000, spread = off Reserved = 11111
REG2	0x02	0xA0	STODIV = 1010, STO clock is pixel clock divided by 1024 STOCNT = 0000, STO counter counts to 1
REG3	0x03	0xA0	ETODIV = 1010, ETO clock is pixel clock divided by 1024 ETOCNT = 0000, ETO counter counts to 1
REG4	0x04	1) REM = 0, 0x28 2) REM = 1, 0x30	VEDGE = 0, VSYNC active edge is falling Reserved = 0 CKEDGE = 1, pixel clock active edge is rising PD: 1) If REM = 0, PD = 0 2) If REM = 1, PD = 1 SEREN: 1) If REM = 0, SEREN = 1 2) If REM = 1, SEREN = 0 BYPFPLL = 0, filter PLL is active Reserved = 0 PRBSEN = 0, PRBS test disabled

Table 1. MAX9257A Power-Up Default Register Map (continued)

REGISTER NAME	REGISTER ADDRESS (hex)	POWER-UP VALUE (hex)	POWER-UP DEFAULT SETTINGS
REG5	0x05	0xFA	MAX9257A address = 1111 1010
REG6	0x06	0xFF	End frame = 1111 1111
REG7	0x07	0xF8	MAX9258A address = 1111 1000
REG8	0x08	0x00	INTMODE = 0, interface with peripheral is UART INTEN = 0, interface with peripheral is disabled FAST = 0, UART bit rate = DC to 4.25Mbps CTO = 000, never come back BITRATE = 00, base mode bit rate = 95kbps to 400kbps
REG9	0x09	0x00	PRBSLEN = 0000, PRBS word length = 2 ²¹ GPIO9DIR = 0, GPIO9 = input GPIO8DIR = 0, GPIO8 = input GPIO9 = 0 GPIO8 = 0
REG10	0x0A	0x00	GPIO7DIR = 0, GPIO7 = input GPIO6DIR = 0, GPIO6 = input GPIO5DIR = 0, GPIO5 = input GPIO4DIR = 0, GPIO4 = input GPIO3DIR = 0, GPIO3 = input GPIO2DIR = 0, GPIO2 = input GPIO1DIR = 0, GPIO1 = input GPIO0DIR = 0, GPIO0 = input
REG11	0x0B	0x00	GPIO7 = 0 GPIO6 = 0 GPIO5 = 0 GPIO4 = 0 GPIO3 = 0 GPIO2 = 0 GPIO1 = 0 GPIO0 = 0
REG12	0x0C	0xE0	PREEMP = 111, preemphasis = 0% Reserved = 00000
REG13	0x0D	0x00	Reserved = 000000 I2CFILT = 00, I ² C glitch filter settings: 1) 95kbps to 400kbps = 100ns 2) 400kbps to 1000kbps = 50ns 3) 1000kbps to 4250kbps = 10ns
REG14	0x0E	0x00	Reserved = 0000 000 LOCKED = read only

Table 2. MAX9258A Power-Up Default Register Map (see the MAX9258A Register Table)

	_	_								
REGISTER NAME	REGISTER ADDRESS (hex)	POWER-UP VALUE (hex)	POWER-UP DEFAULT SETTINGS							
REG0	0x00	0xB5	PRATE = 10, 20MHz to 40MHz SRATE = 11, 400Mbps to 840Mbps PAREN = 0, parity disabled PWIDTH = 101, parallel data width = 18							
REG1	0x01	0x00	SPREAD = 00, spread spectrum = off AER = 0, error count is reset by reading error registers ACTOFFSET = 00, 23mV offset Reserved = 000							
REG2	0x02	0xA0	STODIV = 1010, STO clock is pixel clock divided by 1024 STOCNT = 0000, STO counter counts to 1							
REG3	0x03	0xA0	ETODIV = 1010, ETO clock is pixel clock divided by 1024 ETOCNT = 0000, ETO counter counts to 1							
REG4	0x04	0x20	VEDGE = 0, VSYNC active edge is falling HEDGE = 0, HSYNC active edge is falling CKEDGE = 1, pixel clock active edge is rising Reserved = 0 ACTLP = 0, short stretcher output pulse Reserved = 00 PRBSEN = 0, PRBS test disabled							
REG5	0x05	0xF8	MAX9258 address = 1111 1000							
REG6	0x06	0xFF	End frame = 1111 1111							
REG7	0x07	0x00	INTMODE = 0, interface with peripheral is UART INTEN = 0, interface with peripheral is disabled FAST = 0, UART bit rate = DC to 4.25Mbps CTO = 000, never come back BITRATE = 00, base mode bit rate = 95kbps to 400kbps							
REG8	0x08	0x10	PATHRLO = 0001 0000 parity threshold = 16							
REG9	0x09	0x00	PATHRHI = 0000 0000, parity threshold = 16							
REG10	0x0A	0x00	Parity errors video (8 LSBs) = read only							
REG11	0x0B	0x00	Parity errors video (8 MSBs) = read only							
REG12	0x0C	0x00	PRBS bit errors = read only							
REG13	0x0D	0x00	Reserved = 000 Parity error, communication with MAX9258A = read only Frame error, communication with MAX9258A = read only Parity error, communication with MAX9257A = read only Frame error, communication with MAX9257A = read only I2C error, communication with peripheral = read only							

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel

Parallel-Word Width

The parallel-word width is made up of the video data bits, HSYNC, and VSYNC. The video data bits are programmable from 8 to 16 depending on the pixel clock,

Table 3. MAX9257A I/O Supply

INPUTS/OUTPUTS	SUPPLY
PCLK_IN, HSYNC_IN, VSYNC_IN, DIN[0:7], DIN[8:15]/GPIO[0:7], GPIO8, GPIO9, SCL/TX, SDA/RX	Vccio
SDO+, SDO-	V _{CCLVDS}
REM	V _{CC}

serial-data rate, and parity. Table 16 shows the parallelword width.

Serial-Word Length

The serial-word length is made up of the parallel-word width, encoding bits, and parity bits. Tables 5-9 show the serial video format and serial-word lengths without parity. Tables 10–13 show with parity bits included.

Table 4. MAX9258A I/O Supply

INPUTS/OUTPUTS	SUPPLY
All inputs and outputs	V _{CCOUT}
SDI+, SDI-	V _{CCLVDS}

Table 5. Serial Video Data Format for 20-Bit Serial-Word Length (Parallel-Word Width = 18)

BIT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
NAME	EN0	EN1	HSYNC	VSYNC	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15

Table 6. Serial Video Data Format for 18-Bit Serial-Word Length (Parallel-Word Width = 16)

BIT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NAME	EN0	EN1	HSYNC	VSYNC	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13

Table 7. Serial Video Data Format for 16-Bit Serial-Word Length (Parallel-Word Width = 14)

BIT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
NAME	EN0	EN1	HSYNC	VSYNC	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11

Table 8. Serial Video Data Format for 14-Bit Serial-Word Length (Parallel-Word Width = 12)

BIT	1	2	3	4	5	6	7	8	9	10	11	12	13	14
NAME	EN0	EN1	HSYNC	VSYNC	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9

Table 9. Serial Video Data Format for 12-Bit Serial-Word Length (Parallel-Word Width = 10)

BIT	1	2	3	4	5	6	7	8	9	10	11	12
NAME	EN0	EN1	HSYNC	VSYNC	D0	D1	D2	D3	D4	D5	D6	D7

Table 10. Format for 20-Bit Serial-Word Length with Parity (Parallel-Word Width = 16)

BIT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
NAME	PR	PRB	EN0	EN1	HSYNC	VSYNC	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13