: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

The MAX9310 is a fast, low-skew 1:5 differential driver with selectable LVPECL/HSTL inputs and LVDS outputs, designed for clock distribution applications. This device features an ultra-low propagation delay of 345ps with 45.5 mA of supply current.
The MAX9310 operates from a 2.375 V to 2.625 V power supply for use in 2.5 V systems. A $2: 1$ input multiplexer is used to select one of two differential inputs. The input selection is controlled through the CLKSEL pin. This device also features a synchronous enable function.
The MAX9310 is offered in a space-saving 20-pin TSSOP package and operates over the extended temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications
Data and Clock Drivers and Buffers
Central-Office Backplane Clock Distribution
DSLAM
Base Stations
ATE

Features

- Guaranteed 1.0 GHz Operating Frequency
- 8ps Output-to-Output Skew
- 345ps Propagation Delay
- Accepts LVPECL and Differential HSTL Inputs
- Synchronous Output Enable/Disable
- Two Selectable Differential Inputs
- 2.375V to 2.625 V Supply Voltage
- ESD Protection: $\pm 2 \mathrm{kV}$ (Human Body Model)
- Input Bias Resistors Drive Output Low for Open Inputs

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9310EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP

Pin Configuration

1:5 Clock Driver with Selectable
 LVPECL Inputs and LVDS Outputs

ABSOLUTE MAXIMUM RATINGS
$V_{C c}$ to GND
\qquad -0.3 V to +4.1 V
EN, CLKSEL, CLK_, $\overline{C L K}_{-}$, to GND.............-0.3V to (VCC + 0.3V)
CLK_ to CLK_ ...IVCC - GNDI
Continuous Output Current.
.24 mA
Surge Output Current.
.50 mA
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
Single-Layer PC Board
20-Pin TSSOP (derate $7.69 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... .615 mW
Multilayer PC Board
20-Pin TSSOP (derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 879 mW
Junction-to-Ambient Thermal Resistance in Still Air
Single-Layer PC Board
20-Pin TSSOP ... $130^{\circ} \mathrm{C} / \mathrm{W}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(VCC $-\mathrm{GND}=2.375 \mathrm{~V}$ to 2.625 V , outputs terminated with $100 \Omega \pm 1 \%$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2.5 \mathrm{~V}$, $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SINGLE-ENDED INPUTS (CLKSEL, $\overline{\text { EN }}$)												
Input High Voltage	V_{IH}		$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$\begin{gathered} \text { VCC - } \\ 0.88 \end{gathered}$	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.88 \end{gathered}$	$\begin{aligned} & V_{C C}- \\ & 1.165 \end{aligned}$		$\begin{gathered} \text { VCC - } \\ 0.88 \end{gathered}$	V
Input Low Voltage	VIL		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$		$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$		$\begin{aligned} & V_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	$\begin{gathered} V_{C C}- \\ 1.81 \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.475 \end{aligned}$	V
Input Current	IIN	$\mathrm{V}_{\mathrm{IH}}(\mathrm{MAX})$, VIL(MAX)	-150		+50	-150		+50	-150		+50	$\mu \mathrm{A}$
DIFFERENTIAL INPUTS (CLK_, CLK_) $^{\text {a }}$												
Differential Input High Voltage	VIHD	Figure 1	1.2		$V_{C C}$	1.2		VCC	1.2		V_{CC}	V
Differential Input Low Voltage	VILD	Figure 1	GND		$\begin{aligned} & \text { VCC }- \\ & 0.095 \end{aligned}$	GND		$\begin{aligned} & \text { VCC }- \\ & 0.095 \end{aligned}$	GND		$\begin{aligned} & \text { VCC }- \\ & 0.095 \end{aligned}$	V
Differential Input Voltage	VID	VIHD - VILD	0.095		VCC	0.095		VCC	0.095		$V_{\text {cc }}$	V
Input Current	IIH, IIL	$\begin{aligned} & \text { CLK_, or } \overline{C L K K_{-}}= \\ & \text {VIHD or }^{\text {VILD }} \end{aligned}$	-60		+50	-60		+50	-60		+60	$\mu \mathrm{A}$
OUTPUTS ($\left.\mathbf{Q}_{-}, \overline{\mathbf{Q}_{-}}\right)$												
Output High Voltage	VOH	Figure 1			1.6			1.6			1.6	V
Output Low Voltage	VoL	Figure 1	0.9			0.9			0.9			V
Differential Output Voltage	VOD	VOH - Vol, Figure 1	250	350	450	250	350	450	250	350	450	mV

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

DC ELECTRICAL CHARACTERISTICS (continued)
(VCC $-\mathrm{GND}=2.375 \mathrm{~V}$ to 2.625 V , outputs terminated with $100 \Omega \pm 1 \%$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2.5 \mathrm{~V}$, $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{\text {CC }}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Change in VOD Between Complementary Output States	$\Delta \mathrm{V}_{\text {OD }}$				40			40			40	mV
Output Offset Voltage	Vos		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	mV
Change in Vos Between Complementary Output States	$\Delta \mathrm{V}$ осм				25			25			25	mV
Output ShortCircuit Current	Iosc	Q_ shorted to $\overline{Q_{-}}$			12			12			12	mA
		Q_ or $\overline{Q_{-}}$shorted to GND			28			28			28	
POWER SUPPLY												
Power-Supply Current	Icc	(Note 4)		42	75		45.5	75		48.5	75	mA

AC ELECTRICAL CHARACTERISTICS

(VCC - GND $=2.375 \mathrm{~V}$ to 2.625 V , outputs terminated with $100 \Omega \pm 1 \%, \mathrm{fIN} \leq 1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{C C}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1 and 5)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay CLK_, CLK_ to Q_, Q_ $_{-}$	tphL, tpLH	Figure 1	250	335	600	250	345	600	250	345	600	ps
Output-toOutput Skew	tskoo	(Note 6)		10	25		8	25		5	25	ps
Part-to-Part Skew	tSKPP	(Note 7)			145			145			145	ps
Added Random Jitter	tRJ	$\mathrm{f} / \mathrm{N}=1.0 \mathrm{GHz}$, clock pattern (Note 8)		0.4	1.0		0.4	1.0		0.4	1.0	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$
Added Deterministic Jitter	tDJ	$\begin{aligned} & f / \mathrm{IN}=1.0 \mathrm{Gsps}, \\ & 2^{23}-1 \text { PRBS } \\ & \text { pattern (Note 8) } \end{aligned}$		41	52		41	52		41	52	$\begin{gathered} \text { ps } \\ (\mathrm{P}-\mathrm{P}) \end{gathered}$

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

AC ELECTRICAL CHARACTERISTICS (continued)

(VCC - GND $=2.375 \mathrm{~V}$ to 2.625 V , outputs terminated with $100 \Omega \pm 1 \%, \mathrm{f} \mathrm{N} \leq 1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$,
$\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to $\mathrm{V}_{C C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1 and 5)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Operating Frequency	$f_{\text {max }}$	VOD $\geq 250 \mathrm{mV}$	1.0			1.0			1.0			GHz
Differential Output Rise/Fall Time	tR/tF	20% to 80%, Figure 1	140	205	300	140	205	300	140	205	300	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at $+25^{\circ} \mathrm{C}$. DC limits are guaranteed by design and characterized over the full operating temperature range.
Note 4: All pins are open except $\mathrm{V}_{C C}$ and GND, all outputs are loaded with 100Ω differentially.
Note 5: Guaranteed by design and characterization. Limits are set to ± 6 sigma.
Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
Note 8: Device jitter added to the input signal.

Typical Operating Characteristics
($\mathrm{VCC}-\mathrm{GND}=2.5 \mathrm{~V}$, outputs terminated with $100 \Omega \pm 1 \%, \mathrm{fIN}=1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.)

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2.5 \mathrm{~V}\right.$, outputs terminated with $100 \Omega \pm 1 \%, \mathrm{f} \mathrm{IN}=1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	Q0	Noninverting Differential Output 0. Typically terminated with 100Ω to $\overline{\mathrm{Q} 0}$.
2	$\overline{\mathrm{Q} 0}$	Inverting Differential Output 0. Typically terminated with 100Ω to Q0.
3	Q1	Noninverting Differential Output 1. Typically terminated with 100Ω to $\overline{\mathrm{Q} 1}$.
4	Q1	Inverting Differential Output 1. Typically terminated with 100Ω to Q1.
5	Q2	Noninverting Differential Output 2. Typically terminated with 100Ω to $\overline{\mathrm{Q} 2}$.
6	Q2	Inverting Differential Output 2. Typically terminated with 100Ω to Q2.
7	Q3	Noninverting Differential Output 3. Typically terminated with 100Ω to $\overline{\mathrm{Q3}}$.
8	$\overline{\text { Q3 }}$	Inverting Differential Output 3. Typically terminated with 100Ω to Q3.
9	Q4	Noninverting Differential Output 4. Typically terminated with 100Ω to $\overline{\text { Q4 }}$.
10	Q4	Inverting Differential Output 4. Typically terminated with 100Ω to Q4.
11	GND	Ground
12	CLKSEL	Clock Select Input. Drive low to select the CLKO, $\overline{\text { CLKO }}$ input. Drive high to select the CLK1, $\overline{\text { CLK1 }}$ input. Internal $60 \mathrm{k} \Omega$ pulldown to GND.
13	CLKO	Noninverting Differential Clock Input 0. Internal $75 \mathrm{k} \Omega$ pulldown to GND.
14	$\overline{\text { CLKO }}$	Inverting Differential Clock Input 0. Internal $75 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{C C}$ and $75 \mathrm{k} \Omega$ pulldown to GND.
15	I.C.	Internally Connect. Do not connect externally.
16	CLK1	Noninverting Differential Input 1. Internal $75 \mathrm{k} \Omega$ pulldown to GND.
17	$\overline{\text { CLK1 }}$	Inverting Differential Input 1. Internal $75 \mathrm{k} \Omega$ pullup to V_{CC} and $75 \mathrm{k} \Omega$ pulldown to GND.

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

PIN	NAME	FUNCTION
18,20	$V_{C C}$	Positive Supply Voltage. Bypass each VCC to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
19	$\overline{\mathrm{EN}}$	Output Enable Input. Outputs are synchronously enabled on the falling edge of the selected clock input when $\overline{\mathrm{EN}}$ is low. Outputs are synchronously driven to a differential low state on the falling edge of the selected clock input when $\overline{\mathrm{EN}}$ is high. Internal $60 \mathrm{k} \Omega$ pulldown to GND (Figure 2).

Figure 1. MAX9310 Timing Diagram

Figure 2. MAX9310 EN Timing Diagram

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

Detailed Description

The MAX9310 is a low-skew 1:5 differential driver with two selectable LVPECL inputs and LVDS outputs, designed for clock distribution applications. The selected clock accepts a differential input signal and reproduces it on five separate differential LVDS outputs. The inputs are biased with internal resistors such that the output is differential low when inputs are open. The output drivers are guaranteed to operate at frequencies up to 1.0 GHz with LVDS output levels conforming to the EIA/TIA-644 standard.
The MAX9310 is designed for 2.375 V to 2.625 V operation in systems with a nominal 2.5 V supply.

Differential LVPECL Input

The MAX9310 has two input differential pairs that accept differential LVPECL/HSTL inputs. Each differential input pair has to be independently terminated. A select pin (CLKSEL) is used to activate the desired input. The maximum magnitude of the differential signal applied to the input is VCC. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.

Synchronous Enable
The MAX9310 is synchronously enabled and disabled with outputs in a differential low state to eliminate shortened clock pulses. $\overline{\mathrm{EN}}$ is connected to the input of an edge-triggered D flip-flop. After power-up, drive EN low and toggle the selected clock input to enable the outputs. The outputs are enabled on the falling edge of the selected clock input after $\overline{\mathrm{EN}}$ goes low. The outputs are set to a differential low state on the falling edge of the selected clock input after EN goes high (Figure 2).

Input Bias Resistors

Internal biasing resistors ensure a (differential) output low condition in the event that the inputs are not connected. The inverting input ($\overline{C L K}_{-}$) is biased with a $75 \mathrm{k} \Omega$ pulldown to GND and a $75 \mathrm{k} \Omega$ pullup to VCC. The noninverting input (CLK_) is biased with a $75 \mathrm{k} \Omega$ pulldown to GND.

Differential LVDS Output

The LVDS outputs must be terminated with 100Ω across Q_{-}and \bar{Q}_{-}, as shown in the Typical Application Circuit. The outputs are short-circuit protected.

Applications Information

Supply Bypassing
Bypass each VCC to GND with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance and reduce power-supply bounce with high-current transients.

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9310. Connect high-frequency input and output signals to 50Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination
Terminate the outputs with 100Ω across Q_{-}and \bar{Q}_{-}, as
shown in the Typical Application Circuit.

Chip Information
TRANSISTOR COUNT: 716
PROCESS: Bipolar

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

