imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

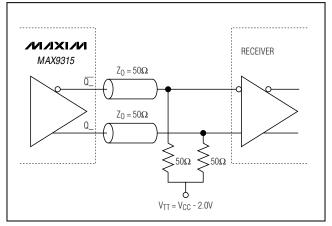
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

19-2220; Rev 1; 11/04 EVALUATION KIT AVAILABLE 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Driver

General Description

The MAX9315 low-skew, 1-to-5 differential driver is designed for clock and data distribution. This device allows selection between two inputs. The selected input is reproduced at five differential outputs. The differential inputs can be adapted to accept a single-ended input by connecting the on-chip V_{BB} supply to one input as a reference voltage.


The MAX9315 features low output-to-output skew (20ps), making it ideal for clock and data distribution across a backplane or a board. For interfacing to differential HSTL and LVPECL signals, this device operates over a +2.375V to +3.8V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, this device operates with a -2.375V to -3.8V supply.

The MAX9315 is offered in a space-saving 20-pin TSSOP package.

Applications

Precision Clock Distribution Low-Jitter Data Repeater Data and Clock Driver and Buffer Central Office Backplane Clock Distribution DSLAM Backplane Base Station

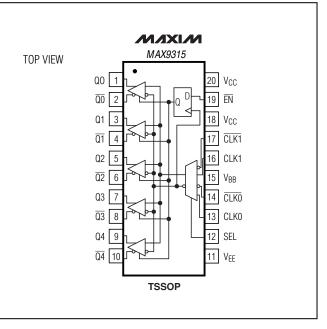
ATE

Typical Application Circuit

Functional Diagram appears at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.


_Features

- +2.375V to +3.8V Supply for Differential HSTL/LVPECL Operation
- -2.375V to -3.8V Supply for Differential LVECL Operation
- Two Selectable Differential Inputs
- Synchronous Output Enable/Disable
- ♦ 20ps Output-to-Output Skew
- ♦ 360ps Propagation Delay
- Guaranteed 400mV Differential Output at 1.5GHz
- On-Chip Reference for Single-Ended Inputs
- Input Biased Low when Left Open
- Pin Compatible with MC100LVEP14

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9315EUP	-40°C to +85°C	20 TSSOP

_Pin Configuration

ABSOLUTE MAXIMUM RATINGS

V _{CC} - V _{EE}
Inputs (CLK_, CLK_, SEL, EN)
to V _{EE} (V _{EE} - 0.3V) to (V _{CC} + 0.3V)
CLK_to CLK±3.0V
Continuous Output Current
Surge Output Current100mA
VBB Sink/Source Current±0.65mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
Single-Layer PC Board
20-Pin TSSOP (derate 7.69mW/°C above +70°C)615mW
Multilayer PC Board
20-Pin TSSOP (derate 10.9mW/°C above +70°C)879mW
Junction-to-Ambient Thermal Resistance in Still Air
Single-Laver PC Board
20-Pin TSSOP+130°C/W

Multilayer PC Board	
20-Pin TSSOP+91°C/W	1
Junction-to-Ambient Thermal Resistance with 500LFPM	
Airflow Single-Layer PC Board	
20-Pin TSSOP+9.6°C/W	1
Junction-to-Case Thermal Resistance	
20-Pin TSSOP+20°C/W	1
Operating Temperature Range40°C to +85°C	;
Junction Temperature+150°C	÷
Storage Temperature Range65°C to +150°C	
ESD Protection	
Human Body Model (Inputs and Outputs)≥2kV	/
Soldering Temperature (10s)+300°C	÷

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = 2.375V \text{ to } 3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{SEL} = \text{high or low}, \overline{EN} = \text{low}, \text{ unless otherwise noted}. Typical values are at V_{CC} - V_{EE} = +3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.)$ (Notes 1, 2, 3)

DADAMETER	CYMPOL	CONDITIONS	-40°C			+25°C			+85°C			UNITS
PARAMETER	SYMBOL		MIN	ТҮР	МАХ	MIN	ΤΥΡ	MAX	MIN	ТҮР	MAX	UNITS
SINGLE-ENDED INPUTS (SEL, EN)												
Input High Voltage	VIH		V _{CC} - 1.225		Vcc	V _{CC} - 1.225		Vcc	V _{CC} - 1.225		Vcc	V
Input Low Voltage	VIL		VEE		V _{CC} - 1.625	V _{EE}		V _{CC} - 1.625	V_{EE}		V _{CC} - 1.625	V
Input Current	l _{IN}	VIH(MAX), VIL(MIN)	-500		500	-500		500	-500		500	μA
DIFFERENTIAL INP	UTS (CLK_	, <u>CLK</u> _)										
Single-Ended Input High Voltage (Note 4)	ViH	V_{BB} connected to \overline{CLK}_{-} , Figure 1	V _{CC} - 1.225		Vcc	V _{CC} - 1.225		Vcc	V _{CC} - 1.225		Vcc	V
Single-Ended Input Low Voltage (Note 4)	VIL	V _{BB} connected to CLK_, Figure 1	V _{EE}		V _{CC} - 1.625	VEE		V _{CC} - 1.625	VEE		V _{CC} - 1.625	V
High Voltage of Differential Input	VIHD		V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		Vcc	V
Low Voltage of Differential Input	VILD		V _{EE}		V _{CC} - 0.1	V _{EE}		V _{CC} - 0.1	V_{EE}		V _{CC} - 0.1	V

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} - V_{EE} = 2.375V \text{ to } 3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ SEL} = \text{high or low}, \overline{EN} = \text{low}, \text{ unless otherwise noted}.$ Typical values are at $V_{CC} - V_{EE} = +3.3V$, $V_{IHD} = V_{CC} - 1V$, $V_{ILD} = V_{CC} - 1.5V$.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS		-40°C		+25°C			+85°C			
	SYMBOL		MIN	ТҮР	MAX	MIN	ΤΥΡ	МАХ	MIN	TYP	MAX	UNITS
Differential Input Voltage	V _{IHD} -	For (V _{CC} - V _{EE}) < +3.0V	0.1		V _{CC} - V _{EE}	0.1		V _{CC} - V _{EE}	0.1		V _{CC} - V _{EE}	V
	VILD	For $(V_{CC} - V_{EE}) \ge$ +3.0V	0.1		3.0	0.1		3.0	0.1		3.0	v
Input Current	l _{IN}	$V_{IH},V_{IL},V_{IHD},V_{ILD}$	-150		150	-150		150	-150		150	μA
OUTPUTS ($Q_{,} \overline{Q}_{)$												
Single-Ended Output High Voltage	V _{OH}	Figure 1	V _{CC} - 1.145		V _{CC} - 0.865	V _{CC} - 1.145		V _{CC} - 0.865	V _{CC} - 1.145		V _{CC} - 0.865	V
Single-Ended Output Low Voltage	V _{OL}	Figure 1	V _{CC} - 1.945		V _{CC} - 1.695	V _{CC} - 1.945		V _{CC} - 1.695			V _{CC} - 1.695	V
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1	550		910	550		910	550		910	mV
REFERENCE	REFERENCE											
Reference Voltage Output (Note 5)	V _{BB}	$I_{BB} = \pm 0.5 \text{mA}$	V _{CC} - 1.525		V _{CC} - 1.325			V _{CC} - 1.325			V _{CC} - 1.325	V
SUPPLY												
Supply Current (Note 6)	IEE			41	48		45	55		49	65	mA

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = 2.375V \text{ to } 3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ input frequency} = 1.5GHz, \text{ input transition time} = 125ps (20\% \text{ to } 80\%), \text{SEL} = \text{high or low}, \overline{EN} = \text{low}, V_{IHD} = V_{EE} + 1.2V \text{ to } V_{CC}, V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.15V, V_{IHD} - V_{ILD} = 0.15V \text{ to the smaller of } 3V \text{ or } V_{CC} - V_{EE}, \text{ unless otherwise noted}. Typical values are at <math>V_{CC} - V_{EE} = +3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.$) (Notes 1, 7)

			-40°C			+25°C			+85°C			UNITS
PARAMETER	SYMBOL	CONDITIONS	ΜΙΝ	ТҮР	МАХ	MIN	ТҮР	МАХ	MIN	ТҮР	МАХ	ps
Differential Input- to-Output Delay	tPLHD, tPHLD	Figure 2	290		400	310		440	300		520	ps
Output-to-Output Skew (Note 8)	tskoo			5	30		20	40		20	50	ps
Part-to-Part Skew (Note 9)	tSKPP				110			130			220	ps
Added Random Jitter (Note 10)	t _{RJ}	f _{IN} = 1.5GHz clock		0.8	1.2		0.8	1.2		0.8	1.2	ps (RMS)
Added Deterministic Jitter (Note 10)	tDJ	1.5Gbps 2E ²³ -1 PRBS pattern		50	70		50	70		50	70	ps (p-p)
Switching Frequency	fMAX	(V _{OH} - V _{OL}) ≥ 400mV, Figure 2	1.5			1.5			1.5			GHz
Output Rise/Fall Time (20% to 80%)	t _R , t _F	Figure 2	80		120	90		130	90		145	ps

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.

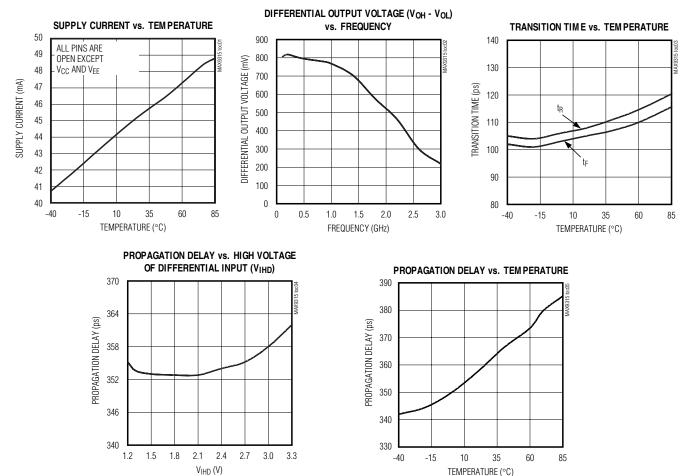
Note 3: DC parameters production tested at $T_A = +25^{\circ}C$ and guaranteed by design over the full operating temperature range.

Note 4: Single-ended input operation using V_{BB} is limited to V_{CC} - V_{EE} = 3.0V to 3.8V.

Note 5: Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.

Note 6: All pins open except V_{CC} and V_{EE}.

Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma.


Note 8: Measured between outputs of the same part at the signal crossing points for a same-edge transition.

Note 9: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition. **Note 10:** Device jitter added to the input signal.

Typical Operating Characteristics

TEMPERATURE (°C)

(V_{CC} = +3.3V, V_{EE} = 0, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.15V, input transition time = 125ps (20% to 80%), f_{IN} = 2GHz, outputs loaded with 50 Ω to V_{CC} - 2V, T_A = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	Q0	Noninverting Q0 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
2	$\overline{Q0}$	Inverting Q0 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
3	Q1	Noninverting Q1 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
4	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
5	Q2	Noninverting Q2 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
6	Q2	Inverting Q2 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
7	Q3	Noninverting Q3 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
8	Q3	Inverting Q3 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
9	Q4	Noninverting Q4 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
10	Q4	Inverting Q4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
11	VEE	Negative Supply Voltage
12	SEL	Clock Select Input (Single Ended). Drive low to select the CLK0, $\overline{CLK0}$ input. Drive high to select the CLK1, $\overline{CLK1}$ input. The SEL threshold is equal to V _{BB} .
13	CLK0	Noninverting Differential Clock Input 0. Internal 75k Ω pulldown to V _{EE} .
14	CLKO	Inverting Differential Clock Input 0. Internal $75k\Omega$ pullup to V _{CC} and $75k\Omega$ pulldown to V _{EE} .
15	V _{BB}	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass with a 0.01μ F ceramic capacitor to V _{CC} ; otherwise, leave open.
16	CLK1	Noninverting Differential Clock Input 1. Internal 75k Ω pulldown to V _{EE} .
17	CLK1	Inverting Differential Clock Input 1. Internal $75k\Omega$ pullup to V _{CC} and $75k\Omega$ pulldown to V _{EE} .
18, 20	V _{CC}	Positive Supply Voltage. Bypass V_{CC} to V_{EE} with 0.1μ F and 0.01μ F ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
19	ĒN	Output Enable Input. Outputs are synchronously enabled on the falling edge of the selected clock input when \overline{EN} is low. Outputs are synchronously driven low on the falling edge of the selected clock input when \overline{EN} is high.

Detailed Description

The MAX9315 is a low-skew, 1-to-5 differential driver designed for clock or data distribution. A 2-to-1 MUX selects one of the two differential clock inputs, CLK0, $\overline{CLK0}$ or CLK1, $\overline{CLK1}$. The MUX is switched by the single-ended SEL input. A logic low selects the CLK0, $\overline{CLK0}$ input and a logic high selects the $\overline{CLK1}$, $\overline{CLK1}$ input. The SEL logic threshold is set by the internal voltage reference V_{BB}. SEL can be driven to V_{CC} and V_{EE} or by a single-ended LVPECL/LVECL signal. The selected input is reproduced at five differential outputs.

Synchronous Enable

The MAX9315 is synchronously enabled and disabled with outputs in the low state to eliminate shortened clock pulses. \overline{EN} is connected to the input of an edge-triggered D flip-flop. After power-up, drive \overline{EN} low and

toggle the selected clock input to enable the outputs. The outputs are enabled on the falling edge of the selected clock input after \overline{EN} goes low. The outputs are set to a low state on the falling edge of the selected clock input after \overline{EN} goes high. The threshold for \overline{EN} is equal to V_{BB}.

Supply

For interfacing to differential HSTL and LVPECL signals, the V_{CC} range is from +2.375V to +3.8V (with V_{EE} grounded), allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For interfacing to differential LVECL, the V_{EE} range is -2.375V to -3.8V (with V_{CC} grounded). Output levels are referenced to V_{CC} and are considered LVPECL or LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and

VEE connected to ground, the outputs are LVPECL. The outputs are LVECL when V_{CC} is connected to ground and VEE is connected to a negative supply.

Input Bias Resistors

When the inputs are open, the internal bias resistors set the inputs to low state. The inverting inputs ($\overline{CLK0}$ and $\overline{CLK1}$) are each biased with a 75k Ω pullup to V_{CC} and a 75k Ω pulldown to V_{EE}. The noninverting inputs (CLK0 and CLK1) are each biased with a 75k Ω pulldown to V_{EE}.

Differential Clock Input Limits

The maximum magnitude of the differential signal applied to the clock input is 3.0V or V_{CC} - V_{EE} , whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously.

Single-Ended Clock Input and VBB

The differential clock inputs can be configured to accept single-ended inputs. This is accomplished by connecting the on-chip reference voltage, VBB, to the inverting or noninverting input of a differential input as a reference. For example, the differential CLK0, CLK0 input is converted to a noninverting, single-ended input by connecting V_{BB} to CLKO and connecting the singleended input signal to CLK0. Similarly, an inverting configuration is obtained by connecting VBB to CLK0 and connecting the single-ended input to CLKO. With a differential input configured as single ended (using VBB), the single-ended input can be driven to V_{CC} and V_{FF} or with a single-ended LVPECL/LVECL signal. Note that single-ended input must be at least VBB ±100mV or a differential input of at least 100mV to switch the outputs to the VOH and VOL levels specified in the DC Electrical Characteristics table.

If V_{BB} is used, the supply must be in the V_{CC} - V_{EE} = +2.725V to +3.8V range because one of the inputs must be V_{EE} + 1.2V or higher for proper input stage operation. V_{BB} must be at least V_{EE} + 1.2V because it becomes the high-level input when the other (single-ended) input swings below it. Therefore, minimum V_{BB} = V_{EE} + 1.2V. The minimum V_{BB} output of the MAX9315 is V_{CC} - 1.525V. Substituting the minimum V_{BB} output into V_{BB} = V_{EE} + 1.2V results in a minimum supply of +2.725V. Rounding up to standard supplies gives the single-ended operating supply range of V_{CC} - V_{EE} = +3.0V to +3.8V.

When using the V_{BB} reference output, bypass it with a 0.01μ F ceramic capacitor to V_{CC}. If the V_{BB} reference is not used, leave it open. The V_{BB} reference can source or sink 0.5mA, which is sufficient to drive two inputs. Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.

Applications Information

Supply Bypassing

Bypass V_{CC} to V_{EE} with high-frequency surface-mount ceramic 0.1µF and 0.01µF capacitors in parallel as close to the device as possible, with the 0.01µF capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the V_{BB} reference output, bypass it with a 0.01µF ceramic capacitor to V_{CC} (if the V_{BB} reference is not used, it can be left open).

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9315. Connect high-frequency input and output signals with 50 Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50 Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination

Terminate outputs with 50Ω to \dot{V}_{CC} - 2V or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and $\overline{Q0}$.

Chip Information

TRANSISTOR COUNT: 616 PROCESS: Bipolar

M/IXI/M

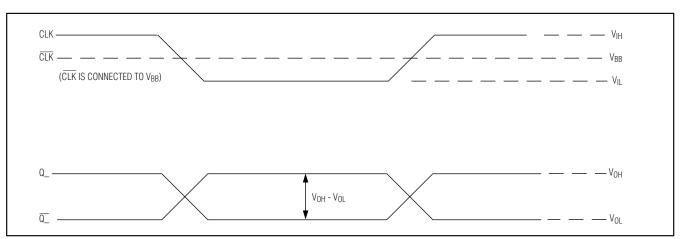


Figure 1. MAX9315 Switching Characteristics with Single-Ended Input

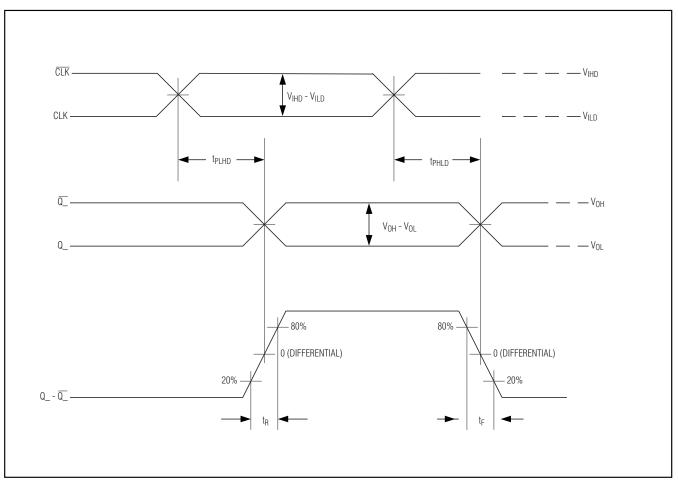
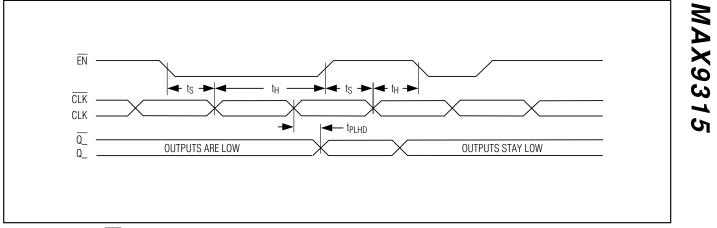
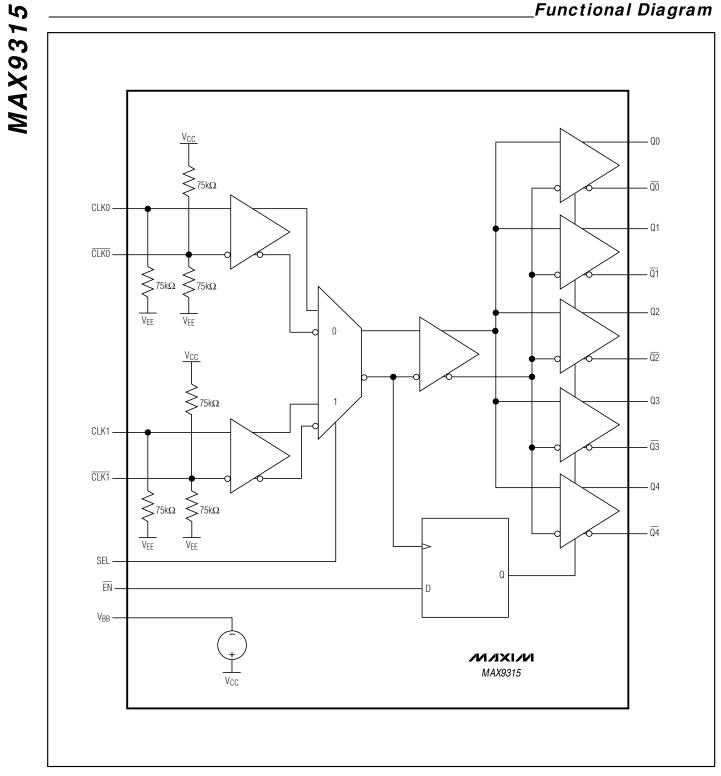
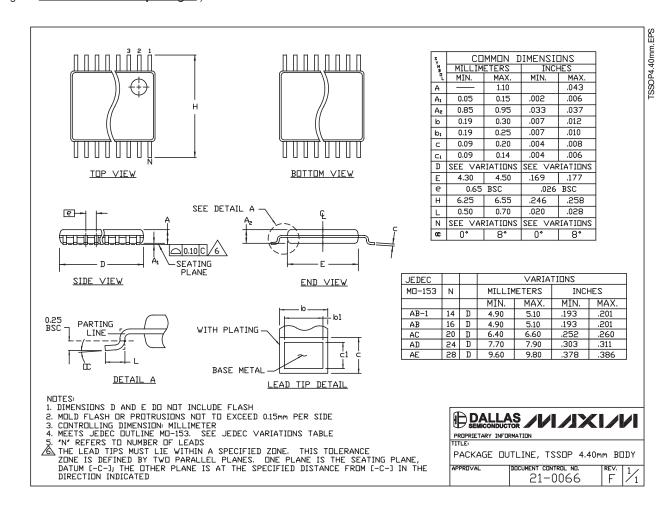


Figure 2. MAX9315 Timing Diagram


Figure 3. MAX9315 EN Timing Diagram

Functional Diagram

_Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 __

© 2004 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

_ 11