: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

Abstract

General Description The MAX9317/MAX9317A/MAX9317B/MAX9317C Iowskew, dual 1-to-5 differential drivers are designed for clock and data distribution. The differential input is reproduced at five LVDS outputs with a low output-tooutput skew of 5ps.

The MAX9317/MAX9317A are designed for low-voltage operation from a 2.375 V to 2.625 V power supply for use in 2.5 V systems. The MAX9317B/MAX9317C operate from a 3.0 V to 3.6 V power supply for use in 3.3 V systems. The MAX9317A/MAX9317C feature 50Ω input termination resistors to reduce component count.

The MAX9317 family is available in 32 -pin $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFP and space-saving $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN packages and operate across the extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The MAX9317A is pin compatible with ON Semiconductor's MC100EP210S.

Applications Precision Clock Distribution Low-Jitter Data Repeaters Data and Clock Drivers and Buffers Central-Office Backplane Clock Distribution DSLAM Backplanes Base Stations ATE

Pin Configurations appear at end of data sheet.

Features

- Guaranteed 1.0GHz Operating Frequency
- 145ps (max) Part-to-Part Skew
- 5ps Output-to-Output Skew
- 330ps Propagation Delay from CLK_ to Q_
- 2.375V to 2.625V Operation (MAX9317/MAX9317A)
- 3.0V to 3.6V Operation (MAX9317B/MAX9317C)
- ESD Protection: $\pm 2 k V$ (Human Body Model)
- Internal 50』 Input Termination Resistors (MAX9317A/MAX9317C)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	NOMINAL SUPPLY VOLTAGE (V)
MAX9317ETJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN	2.5
MAX9317ECJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	2.5
MAX9317AETJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN	2.5
MAX9317AECJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	2.5
MAX9317BETJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN	3.3
MAX9317BECJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	3.3
MAX9317CETJ*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN	3.3
MAX9317CECJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	3.3

*Future product - contact factory for availability.

Functional Diagram

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

ABSOLUTE MAXIMUM RATINGS

VCC to GND
GND \qquad-0.3V to +4.1 V
Input Pins to GND......................................-0.3V to (VCC +0.3 V) Differential Input VoltageVCC or 3.0V, whichever is less Continuous Output Current..28mA
Surge Output Current... 50 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
32-Pin, $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFP
(derate $20.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..................................1.65W
32 -Pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN
(derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).
1.7 W

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V (MAX9317/MAX9317A), $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V (MAX9317B/MAX9317C), all outputs loaded $100 \Omega \pm 1 \%$ between Q_{-}and \bar{Q}_{-}, unless otherwise noted. Typical values are at $V_{C C}=2.5 \mathrm{~V}$ (MAX9317/MAX9317A) , $\mathrm{V}_{C C}=3.3 \mathrm{~V}$ (MAX9317B/MAX9317C), $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{\text {CC }}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUTS (CLK_, $\mathbf{C L K}_{-}$)													
Differential Input High Voltage	VIHD	Figure 1		1.2		VCC	1.2		VCC	1.2		VCC	V
Differential Input Low Voltage	VILD	Figure 1		0		$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	0		$\begin{gathered} V_{C C} \\ -0.1 \end{gathered}$	0		$\begin{aligned} & V_{C C} \\ & -0.1 \end{aligned}$	V
Differential Input Voltage	VID	$\begin{aligned} & \text { VIHD }^{-} \\ & \text {VIILD }^{\text {a }} \end{aligned}$	$\begin{aligned} & \text { MAX9317/ } \\ & \text { MAX9317A } \end{aligned}$	0.1		VCC	0.1		VCC	0.1		VCC	V
			$\begin{aligned} & \text { MAX9317B/ } \\ & \text { MAX9317C } \end{aligned}$	0.1		3.0	0.1		3.0	0.1		3.0	
Input Current	IIH, IIL	$\begin{aligned} & \text { CLK_, or } \overline{\text { CLK_ }}= \\ & \text { VIHD }_{\text {IHI }} \text { or } \\ & \text { MAX9317/MAX9317B } \end{aligned}$		-60		+60	-60		+60	-60		+60	$\mu \mathrm{A}$
Input Termination Resistance	RIN	MAX9317A/MAX9317C, Figure 2 (Note 4)		43	50	57	43	50	57	43	50	57	Ω
OUTPUTS (Q_, $\overline{\mathbf{Q}_{-}}$)													
Output High Voltage	VOH	Figure 1				1.6			1.6			1.6	V
Output Low Voltage	VoL	Figure 1		0.9			0.9			0.9			V

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=2.375 \mathrm{~V}\right.$ to 2.625 V (MAX9317/MAX9317A), $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V (MAX9317B/MAX9317C), all outputs loaded $100 \Omega \pm 1 \%$ between Q_{-}and \bar{Q}_{-}, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=2.5 \mathrm{~V}$ (MAX9317/MAX9317A), $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$ (MAX9317B/MAX9317C), $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$\underline{+25}{ }^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Output Voltage	VOD	Figure 1	250	350	450	250	350	450	250	350	450	mV
Change in VOD Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$			7	50		6	50		6	50	mV
Output Offset Voltage	Vos		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	V
Change in VOS Between Complementary Output States	$\Delta \mathrm{V}$ OS				25			25			25	mV
		Q_ shorted to $\overline{Q_{-}}$			12			12			12	
Output ShortCircuit Current	IOSC	Q_ or $\overline{Q_{-}}$shorted to GND			28			28			28	mA
POWER SUPPLY												
Power-Supply Current (Note 5)	Icc	MAX9317/9317A		69	107		75	107		80	107	mA
		MAX9317B/9317C		75	107		81	107		86	107	

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V (MAX9317/MAX9317A) or $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V (MAX9317B/MAX9317C), all outputs loaded with $100 \Omega \pm 1 \%$, between Q_{-}and $\bar{Q}_{-}, \mathrm{f}_{\mathrm{IN}} \leq 1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to V_{CC}, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=2.5 \mathrm{~V}$ (MAX9317/MAX9317A), $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (MAX9317B/MAX9317C), $\mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{GHz}, \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$, $\mathrm{V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1 and 4)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay CLK_, $\overline{C L K}$ to $Q_{-}, \overline{Q_{-}}$	tPHL tpLH	Figure 1	250	310	600	250	330	600	250	335	600	ps
Output-to-Output Skew	tSKEW1	(Note 6)		9	55		5	45		4	25	ps
Part-to-Part Skew	tSkEW2	(Note 7)			145			145			145	ps
Added Random Jitter	tr J	$\mathrm{fiN}=1.0 \mathrm{GHz}$, clock pattern (Note 8)		0.8	2.0		0.8	2.0		0.8	2.0	ps(RMS)
Added Deterministic Jitter	tDJ	$\begin{aligned} & \mathrm{f} / \mathrm{N}=1.0 \mathrm{GHz}, 2^{23}-1 \\ & \text { PRBS pattern (Note 8) } \end{aligned}$		80	105		80	105		80	105	ps(P-P)
Operating Frequency	$f_{\text {max }}$	VOD $\geq 250 \mathrm{mV}$	1.0			1.0			1.0			GHz

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

AC ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V (MAX9317/MAX9317A) or $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V (MAX9317B/MAX9317C), all outputs loaded with $100 \Omega \pm 1 \%$, between Q_{-}and $\bar{Q}_{-}, f / \mathrm{IN} \leq 1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%)$, $\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.15 \mathrm{~V}$ to $\mathrm{V}_{C C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=2.5 \mathrm{~V}$ (MAX9317/MAX9317A), $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (MAX9317B/MAX9317C), $\mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{GHz}, \mathrm{V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$, VILD $=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$, unless otherwise noted.) (Notes 1 and 4)

PARAMETER	SYMBOL	CONDITIONS	-40 ${ }^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Differential Output Rise/Fall Time	tR/tF	20\% to 80\%, Figure 1	140	200	300	140	205	300	140	205	300	ps

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters are production tested at $+25^{\circ} \mathrm{C}$. DC limits are guaranteed by design and characterization over the full operating temperature range.
Note 4: Guaranteed by design and characterization, and are not production tested. Limits are set to ± 6 sigma.
Note 5: All outputs loaded with 100Ω differential, all inputs biased differential high or low except V_{T}.
Note 6: Measured between outputs of the same device at the signal crossing points for a same-edge transition.
Note 7: Measured between outputs on different devices for identical transitions and V_{CC} levels.
Note 8: Device jitter added to the input signal.

Typical Operating Characteristics

(MAX9317, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$, all outputs loaded with $100 \Omega \pm 1 \%$, between Q_{-}and $\bar{Q}_{-}, \mathrm{f}_{\mathrm{I}} \mathrm{N}=1.0 \mathrm{GHz}$, input transition time $=125 \mathrm{ps}(20 \%$ to $80 \%), \mathrm{V}_{I H D}=\mathrm{V}_{\text {CC }}-1.0 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$, unless otherwise noted.)

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

Pin Description

PIN	NAME		FUNCTION
	$\begin{gathered} \text { MAX9317 } \\ \text { MAX9317B } \end{gathered}$	$\begin{aligned} & \hline \text { MAX9317A } \\ & \text { MAX9317C } \end{aligned}$	
1, 8	GND	GND	Ground
2	N.C.	-	No Connection. Connect this pin to ground or leave floating.
	-	$V_{\text {TA }}$	CLKA Input Termination Voltage. This pin is connected to CLKA and CLKA through 50 Ω termination resistors. Connect this pin to VCC - 2V for an LVPECL input signal on CLKA or leave floating for an LVDS input signal.
3	CLKA	CLKA	Noninverting Differential Clock Input A
4	$\overline{C L K A}$	CLKA	Inverting Differential Clock Input A
5	N.C.	-	No Connection. Connect this pin to ground or leave floating.
	-	$V_{\text {TB }}$	CLKB Input Termination Voltage. This pin is connected to CLKB and $\overline{\text { CLKB }}$ through 50Ω termination resistors. Connect this pin to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ for an LVPECL input signal on CLKB or leave floating for an LVDS input signal.
6	CLKB	CLKB	Noninverting Differential Clock Input B
7	$\overline{\text { CLKB }}$	$\overline{\text { CLKB }}$	Inverting Differential Clock Input B
$\begin{aligned} & 9,16 \\ & 25,32 \end{aligned}$	VCC	Vcc	Positive Supply Voltage. Bypass each V_{CC} pin to ground with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device.
10	$\overline{\text { QB4 }}$	$\overline{\text { QB4 }}$	CLKB Inverting Differential Output 4. Terminate with 100Ω to QB4.
11	QB4	QB4	CLKB Noninverting Differential Output 4. Terminate with 100Ω to $\overline{\text { QB4 }}$.
12	$\overline{\text { QB3 }}$	$\overline{\text { QB3 }}$	CLKB Inverting Differential Output 3. Terminate with 100Ω to QB3.
13	QB3	QB3	CLKB Noninverting Differential Output 3. Terminate with 100Ω to $\overline{\text { QB3 }}$.
14	$\overline{\text { QB2 }}$	$\overline{\text { QB2 }}$	CLKB Inverting Differential Output 2. Terminate with 100Ω to QB2.
15	QB2	QB2	CLKB Noninverting Differential Output 2. Terminate with 100Ω to $\overline{\text { QB2 }}$.
17	$\overline{\text { QB1 }}$	$\overline{\text { QB1 }}$	CLKB Inverting Differential Output 1. Terminate with 100Ω to QB1.
18	QB1	QB1	CLKB Noninverting Differential Output 1. Terminate with 100Ω to $\overline{\text { QB1 }}$.
19	$\overline{\mathrm{QB0}}$	$\overline{\mathrm{QB0}}$	CLKB Inverting Differential Output 0. Terminate with 100Ω to QB0.
20	QB0	QB0	CLKB Noninverting Differential Output 0. Terminate with 100Ω to $\overline{\mathrm{QBO}}$.
21	$\overline{\mathrm{QA4}}$	$\overline{\text { QA4 }}$	CLKA Inverting Differential Output 4. Terminate with 100Ω to QA4.
22	QA4	QA4	CLKA Noninverting Differential Output 4. Terminate with 100Ω to $\overline{\text { QA4 }}$.
23	$\overline{\text { QA3 }}$	$\overline{\text { QA3 }}$	CLKA Inverting Differential Output 3. Terminate with 100Ω to QA3.
24	QA3	QA3	CLKA Noninverting Differential Output 3. Terminate with 100Ω to $\overline{\text { QA3 }}$.
26	$\overline{\text { QA2 }}$	$\overline{\text { QA2 }}$	CLKA Inverting Differential Output 2. Terminate with 100Ω to QA2.
27	QA2	QA2	CLKA Noninverting Differential Output 2. Terminate with 100Ω to $\overline{\text { QA2 }}$.
28	$\overline{\text { QA1 }}$	$\overline{\text { QA1 }}$	CLKA Inverting Differential Output 1. Terminate with 100Ω to QA1.
29	QA1	QA1	CLKA Noninverting Differential Output 1. Terminate with 100Ω to $\overline{\text { QA1 }}$.
30	$\overline{\text { QAO }}$	$\overline{\text { QA0 }}$	CLKA Inverting Differential Output 0. Terminate with 100Ω to QAO.
31	QAO	QA0	CLKA Noninverting Differential Output 0 . Terminate with 100Ω to $\overline{\text { QAO }}$.
-	EP	EP	Exposed Pad. QFN package only. Internally connected to ground.

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

Figure 1. MAX9317 Timing Diagram

Detailed Description

The MAX9317 family of low-skew, 1-to-5 dual differential drivers are designed for clock or data distribution. Two independent 1-to-5 splitters accept a differential input signal and reproduce it on five separate differential LVDS outputs. The output drivers are guaranteed to operate at frequencies up to 1.0 GHz with the LVDS output levels conforming to the EIA/TIA-644 standard.
The MAX9317/MAX9317A operate from a 2.375 V to 2.625 V power supply for use in 2.5 V systems. The MAX9317B/MAX9317C operate from a 3.0V to 3.6V supply for 3.3 V systems.

Differential LVPECL and LVDS Input
The MAX9317 family has two input differential pairs: CLKA and $\overline{C L K A}$, and CLKB and $\overline{C L K B}$. Each differential input pair can be configured or terminated independently. The inputs are designed to be driven by either LVPECL or LVDS signals with a maximum differential voltage of V_{CC} or 3.0 V , whichever is less.
The MAX9317A/MAX9317C reduce external component count by having the input 50Ω termination resistors on chip. Configure the MAX9317A/MAX9317C to receive LVPECL signals by connecting $\mathrm{V}_{\mathrm{T}_{-}}$to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ (Figure 2(a)). Leaving the $\mathrm{V}_{T_{-}}$input floating configures the

(a) MAX9317A/MAX9317C CONFIGURED FOR LVPECL INPUT SIGNALS.

(b) MAX9317A/MAX9317C CONFIGURED FOR LVDS INPUT SIGNALS.

Figure 2. MAX9317A/MAX9317C Input Terminations

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

respective input with a differential 100Ω termination to receive LVDS signals (Figure 2(b)).
The MAX9317/MAX9317B accept LVPECL if the inputs are externally terminated with 50Ω resistors from CLKA and $\overline{C L K A}$ or CLKB and $\overline{C L K B}$ to $\mathrm{V}_{C C}-2 \mathrm{~V}$. Alternatively, if the inputs are differentially terminated with 100Ω, they accept an LVDS input signal.
The LVDS input signal must adhere to the specifications given in the Electrical Characteristics table. Note that the signal must be at least 1.2 V to be a valid logic HIGH.

Applications Information

Output Termination

Terminate the outputs with 100Ω across each differential pair (Q_{-}to $\left.\bar{Q}_{-}\right)$. Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings table. Under all operating conditions, observe the device's total thermal limits.

Power-Supply Bypassing
Bypass each Vcc pin to ground with high-frequency sur-face-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel and as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance and reduce power-supply bounce with high-current transients.

Circuit Board Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Use 50Ω traces for CLK_, CLK_, Q_, and \bar{Q}_{-}. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing common-mode noise immunity by keeping the differential traces close together.
Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, and not using sharp corners or vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Chip Information
TRANSISTOR COUNT: 1119 PROCESS: Bipolar

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Dual 1:5 Differential Clock Drivers with LVPECL Inputs and LVDS Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

