imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX9320B low-skew, 1-to-2 differential driver is designed for clock and data distribution. The input is reproduced at two differential outputs. The differential input can be adapted to accept single-ended inputs by applying an external reference voltage.

The MAX9320B features ultra-low propagation delay (208ps), part-to-part skew (20ps), and output-to-output skew (6ps) with 30mA maximum supply current, making this device ideal for clock distribution. For interfacing to differential PECL and LVPECL signals, this device operates over a +3.0V to +5.5V supply range, allowing high-performance clock or data distribution in systems with a nominal 3.3V or 5V supply. For differential ECL and LVECL operation, this device operates from a -3.0V to -5.5V supply.

The MAX9320B is offered in industry-standard 8-pin TSSOP and SO packages.

Applications

Precision Clock Distribution Low-Jitter Data Repeater Protection Switching

_Features

- Improved Second Source of the MC10EP11D
- +3.0V to +5.5V Differential PECL/LVPECL Operation
- ♦ -3.0V to -5.5V ECL/LVECL Operation
- Low 22mA Supply Current
- ♦ 20ps Part-to-Part Skew
- ♦ 6ps Output-to-Output Skew
- 208ps Propagation Delay
- Minimum 300mV Output at 3GHz
- Outputs Low for Open Input
- ESD Protection >2kV (Human Body Model)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9320BESA	-40°C to +85°C	8 SO
MAX9320BEUA	-40°C to +85°C	8 TSSOP

ΜΛΧΙ/Μ

MAX9320B

 $50k\Omega \ge 80k\Omega$

100kΩ≶

TSSOP/SO

60kQ

Q0 1

Q1 3

Q1 4

Pin Configuration

8 Vcc

7 D

6 D

5 VEE

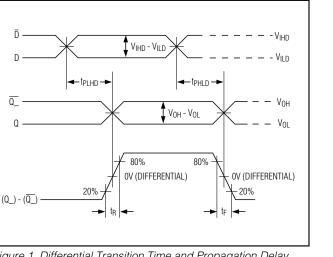


Figure 1. Differential Transition Time and Propagation Delay Timing Diagram

M/XX/M

er ^{es} MAX9320B

For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

$\begin{array}{llllllllllllllllllllllllllllllllllll$	
8-Pin TSSOP (derate 4.5mW/°C above +70°C)362mW	
8-Pin SO (derate 5.9mW/°C above +70°C)471mW	
Junction-to-Ambient Thermal Resistance in Still Air	
8-Pin TSSOP+221°C/W	
8-Pin SO+170°C/W	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(VCC - VEE = 3.0V to 5.5V, outputs loaded with 50 Ω ±1% to VCC - 2V. Typical values are at VCC - VEE = 5.0V, VIHD = VCC - 1.0V, VILD = VCC - 1.5V, unless otherwise noted.) (Notes 1, 2, 3)

DADAMETER		CONDITIONS		-40°C			+25°C		+85°C			
PARAMETER	SYMBOL		MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ΤΥΡ	MAX	UNITS
DIFFERENTIAL I	NPUT (D, \overline{D}))										
High Voltage of Differential Input	VIHD		V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V
Low Voltage of Differential Input	V _{ILD}		V_{EE}		Vcc - 0.1	VEE		V _{CC} - 0.1	V_{EE}		V _{CC} - 0.1	V
Differential Input Voltage	V _{IHD} - V _{ILD}		0.1		3.0	0.1		3.0	0.1		3.0	V
Input High Current	IIН				150			150			150	μA
D Input Low	lu p	V_{CC} - $V_{EE} \le 3.8V$	-100		+100	-100		+100	-100		+100	
Current	lild	$V_{CC} - V_{EE} \ge 3.8V$	-140		+140	-140		+140	-140		+140	μA
D Input Low		$V_{CC} - V_{EE} \le 3.8V$	-150		+150	-150		+150	-150		+150	
Current	lild	$V_{CC} - V_{EE} \ge 3.8V$	-175		+175	-175		+175	-175		+175	μA
DIFFERENTIAL (OUTPUTS (C	Q_, <u>Q_</u>)										
Single-Ended Output High Voltage	V _{OH}	Figure 1	V _{CC} - 1.135		V _{CC} - 0.885	V _{CC} - 1.07		V _{CC} - 0.82	V _{CC} - 1.01		V _{CC} - 0.76	V

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} - V_{EE} = 3.0V \text{ to } 5.5V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V. \text{ Typical values are at } V_{CC} - V_{EE} = 5.0V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted.}$ (Notes 1, 2, 3)

PARAMETER	R SYMBOL	CONDITIONS		-40°C		+25°C			+85°C			
FANAMETEN		CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	МАХ	MIN	ТҮР	MAX	UNITS
Single-Ended Output Low Voltage	V _{OL}	Figure 1	V _{CC} - 1.935		V _{CC} - 1.685	V _{CC} - 1.87		V _{CC} - 1.62	V _{CC} - 1.81		V _{CC} - 1.56	V
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1	550			550			550			mV
POWER SUPPLY	,											
Supply Current	IEE	(Note 4)		20	28		22	28		23	30	mA

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = 3.0V \text{ to } 5.5V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ input frequency} \le 1.5GHz, \text{ input transition time} = 125ps (20\% \text{ to } 80\%), V_{IHD} = V_{EE} + 1.2V \text{ to } V_{CC}, V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.15V, V_{IHD} - V_{ILD} = 0.15V \text{ to } 3.0V.$ Typical values are at $V_{CC} - V_{EE} = 5.0V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted.}$ (Note 5)

PARAMETER	SYMBOL			-40°C			+25°C				UNITS	
	STMBOL		MIN	ТҮР	MAX	MIN	ΤΥΡ	MAX	MIN	ТҮР	MAX	
Differential Input-to- Output Delay	tplhd, tphld	Figure 1	145	220	265	155	208	265	160	203	270	ps
Output-to- Output Skew	tsкоо	(Note 6)		6	30		6	30		6	30	ps
Part-to-Part Skew	^t SKPP	(Note 7)		20	120		20	110		20	110	ps
Added	+= .	f _{IN} = 1.5GHz, clock pattern (Note 8)		1.7	2.8		1.7	2.8		1.7	2.8	ps
Random Jitter	t _{RJ}	f _{IN} = 3.0GHz, clock pattern (Note 8)		0.6	1.5		0.6	1.5		0.6	1.5	(RMS)
Added Deterministic Jitter	t _{DJ}	3.0Gbps 2 ²³ - 1 PRBS pattern (Note 8)		57	80		57	80		57	80	ps (_{P-P})

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} - V_{EE} = 3.0V \text{ to } 5.5V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ input frequency} \le 1.5GHz, \text{ input transition time} = 125ps (20\% \text{ to } 80\%), V_{IHD} = V_{EE} + 1.2V \text{ to } V_{CC}, V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.15V, V_{IHD} - V_{ILD} = 0.15V \text{ to } 3.0V.$ Typical values are at $V_{CC} - V_{EE} = 5.0V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted.}$ (Note 5)

PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C			+85°C			
PARAMETER	STMBUL	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
Switching	4	V _{OH} - V _{OL} ≥ 300mV, clock pattern, Figure 1	3.0			3.0			3.0			
Frequency		V _{OH} - V _{OL} ≥ 550mV, clock pattern, Figure 1	2.0			2.0			2.0			GHz
Output Rise/Fall Time (20% to 80%)	t _R , t _F	Figure 1	50	95	120	50	98	120	50	105	120	ps

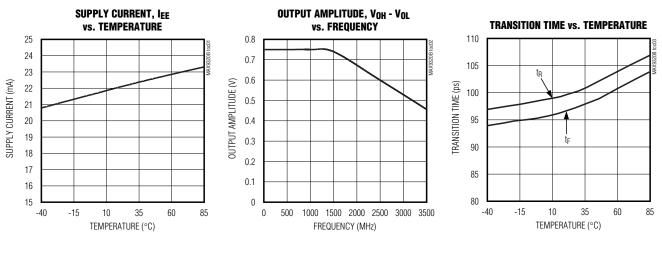
Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.

Note 3: DC parameters production tested at $T_A = +25^{\circ}$ C. Guaranteed by design and characterization over the full operating temperature range.

Note 4: All pins open except V_{CC} and V_{EE}.

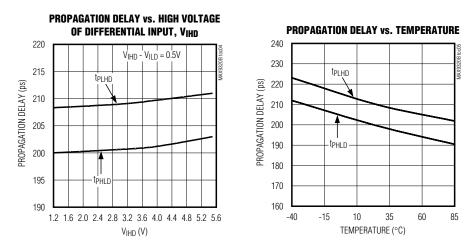
Note 5: Guaranteed by design and characterization. Limits are set at ±6 sigma.


Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.

Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.

Note 8: Device jitter added to the input signal.

Typical Operating Characteristics


 $(V_{CC} = 5V, V_{EE} = 0, input transition time = 125ps (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz$, outputs loaded with 50 Ω to V_{CC} - 2V, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{EE} = 0, input transition time = 125ps (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz$, outputs loaded with 50 Ω to V_{CC} - 2V, T_A = +25°C, unless otherwise noted.)

MAX9320B

Pin Description

PIN	NAME	FUNCTION
1	Q0	Noninverting Q0 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
2	$\overline{Q0}$	Inverting Q0 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
3	Q1	Noninverting Q1 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
4	Q1	Inverting Q1 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.
5	VEE	Negative Supply Voltage
6	D	Inverting Differential Input. 50k Ω pullup to V _{CC} and 100k Ω pulldown to V _{EE} .
7	D	Noninverting Differential Input. 80k Ω pullup to V _{CC} and 60k Ω pulldown to V _{EE} .
8	V _{CC}	Positive Supply Voltage. Bypass from V_{CC} to V_{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.

Detailed Description

The MAX9320B low-skew, 1-to-2 differential driver is designed for clock and data distribution. For interfacing to differential PECL and LVPECL signals, this device operates over a +3.0V to +5.5V supply range, allowing high-performance clock and data distribution in systems with a nominal 3.3V or 5V supply. For differential ECL and LVECL operation, this device operates from a -3.0V to -5.5V supply.

Inputs

The maximum magnitude of the differential input from D to \overline{D} is 3.0V. This limit also applies to the difference between any reference voltage input and a single-ended input.

The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open. The inverting input, \overline{D} , is biased with a 50k Ω pullup to V_{CC} and a 100k Ω pulldown to V_{EE}. The noninverting input, D, is biased with an 80k Ω pullup to V_{CC} and a 60k Ω pulldown to V_{EE}.

Specifications for the high and low voltages of the differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously (V_{ILD} cannot be higher than V_{IHD}).

Outputs

Output levels are referenced to V_{CC} and are considered PECL/LVPECL or ECL/LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and V_{EE} connected to GND, the outputs are PECL/LVPECL. The outputs are ECL/LVECL when V_{CC} is connected to GND and V_{EE} is connected to a negative supply.

A differential input of at least ± 100 mV switches the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table.

Applications Information

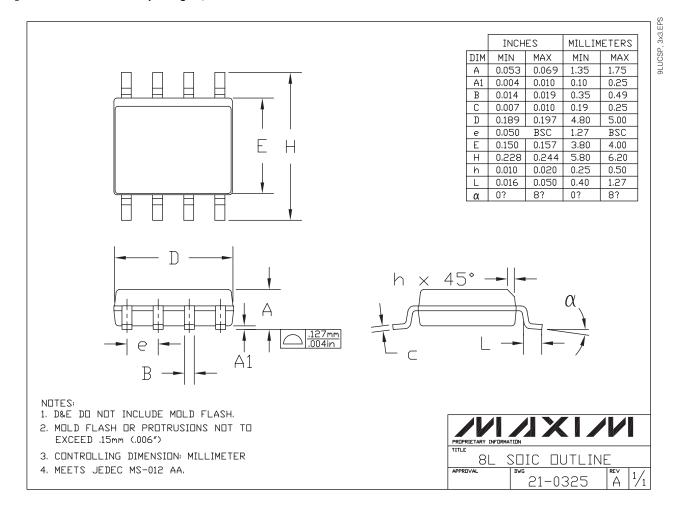
Supply Bypassing

Bypass VCC to VEE with high-frequency surface-mount ceramic 0.1μ F and 0.01μ F capacitors in parallel as close to the device as possible, with the 0.01μ F value capacitor closest to the device. Use multiple parallel ground vias for low inductance.

Traces

Input and output trace characteristics affect the performance of the MAX9320B. Connect each signal of a differential input or output to a 50 Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50 Ω characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination


Terminate outputs through 50Ω to V_{CC} - 2V or use an equivalent Thevenin termination. Terminate both outputs and use the same termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and $\overline{Q0}$.

Chip Information

TRANSISTOR COUNT: 182

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 __

© 2002 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

MAX9320B

_ 7