

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX9320/MAX9320A are low-skew. 1-to-2 differential drivers designed for clock and data distribution. The input is reproduced at two differential outputs. The differential input can be adapted to accept single-ended inputs by applying an external reference voltage.

The MAX9320/MAX9320A feature ultra-low propagation delay (208ps), part-to-part skew (20ps), and output-tooutput skew (6ps) with 30mA maximum supply current, making these devices ideal for clock distribution. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock or data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.

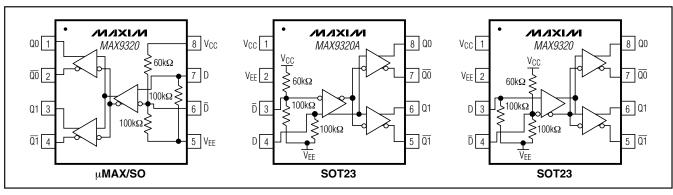
The pinout is the only difference between the MAX9320 and MAX9320A. Multiple pinouts are provided to simplify routing across a backplane to either side of a doublesided board.

These devices are offered in space-saving 8-pin SOT23, µMAX, and SO packages.

Applications

Precision Clock Distribution Low-Jitter Data Repeater **Protection Switching**

Features


- ♦ Improved Second Source of the MC10LVEP11 (MAX9320)
- ♦ +2.25V to +3.8V Differential HSTL/LVPECL Operation
- ♦ -2.25V to -3.8V LVECL Operation
- ♦ Low 22mA (typ) Supply Current
- ♦ 20ps (typ) Part-to-Part Skew
- ♦ 6ps (typ) Output-to-Output Skew
- ♦ 208ps (typ) Propagation Delay
- ♦ Minimum 300mV Output at 3GHz
- ♦ Outputs Low for Open Input
- ♦ ESD Protection >2kV (Human Body Model)
- ♦ Available in Thermally Enhanced Exposed-Pad SO Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9320 EKA-T	-40°C to +85°C	8 SOT23-8	AALJ
MAX9320ESA	-40°C to +85°C	8 SO	_
MAX9320XESA	-40°C to +85°C	8 SO-EP*	_
MAX9320EUA	-40°C to +85°C	8 µMAX	_
MAX9320AEKA-T	-40°C to +85°C	8 SOT23-8	AAIW

^{*}Contact factory for availability.

Pin Configurations

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

VCC to VEE	VCC + 0.3V ±3.0V 50mA 100mA +112°C/W +221°C/W
LFPM Airflow 8-Pin SOT23 8-Pin µMAX 8-Pin SO	+155°C/W

Junction-to-Case Thermal Resistance	
8-Pin SOT23	+80°C/W
8-Pin μMAX	+39°C/W
8-Pin SO	+40°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (D, \overline{D} , Q_, \overline{Q})	>2kV
Soldering Temperature (10s)	+300°C
= ' ' '	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = +2.25V \text{ to } +3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V. \text{ Typical values are at } V_{CC} - V_{EE} = +3.3V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted.})$ (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS		-40°C		+25°C			+85°C			UNITS
PARAMETER	FARAMETER STMBUL		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DIFFERENTIAL I	NPUT (D, \overline{D}))										
High Voltage of Differential Input	VIHD		V _{EE} + 1.2		Vcc	VEE + 1.2		V _C C	V _{EE} + 1.2		V _C C	V
Low Voltage of Differential Input	V _{ILD}		VEE		V _C C - 0.1	VEE		V _C C - 0.1	VEE		V _C C - 0.1	V
Differential	Differential V _{IHD}	For V _{CC} - V _{EE} < +3.0V	0.1		V _C C - V _{EE}	0.1		V _C C - V _E E	0.1		V _C C - V _E E	.,,
Input Voltage	- VILD	For V _{CC} - V _{EE} ≥ +3.0V	0.1		3.0	0.1		3.0	0.1		3.0	V
Input High Current	lін				150			150			150	μА
D Input Low Current	lild		-10		100	-10		100	-10		100	μА
D Input Low Current	lı∟⊡		-150		+150	-150		+150	-150		+150	μА
DIFFERENTIAL (OUTPUTS (C	Q_, Q_)				•						•
Single-Ended Output High Voltage	Vон	Figure 1	V _C C - 1.135		V _C C - 0.885	V _{CC} - 1.07		V _{CC} - 0.82	V _C C - 1.01		V _{CC} - 0.76	V

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} - V_{EE} = +2.25V \text{ to } +3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V. \text{ Typical values are at } V_{CC} - V_{EE} = +3.3V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted.})$ (Notes 1, 2, 3)

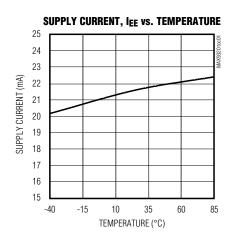
PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C			+85°C			UNITS
PANAMETER	STIMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Single-Ended Output Low Voltage	V _{OL}	Figure 1	V _C C - 1.935		V _C C - 1.685	V _{CC} - 1.87		V _C C - 1.62	V _{CC} - 1.81		V _{CC} - 1.56	V
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1	550			550			550			mV
POWER SUPPLY	7											
Supply Current	lee	(Note 4)		20	28		22	28		23	30	mA

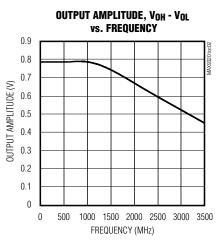
AC ELECTRICAL CHARACTERISTICS

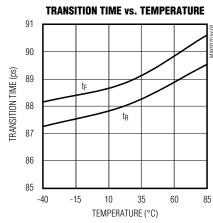
 $(V_{CC} - V_{EE} = +2.25V \ to \ +3.8V, \ outputs \ loaded \ with \ 50\Omega \ \pm1\% \ to \ V_{CC} - 2V, \ input \ frequency = 1.5GHz, \ input \ transition \ time = 125ps \ (20\% \ to \ 80\%), \ V_{IHD} = V_{EE} + 1.2V \ to \ V_{CC}, \ V_{ILD} = V_{EE} \ to \ V_{CC} - 0.15V, \ V_{IHD} - V_{ILD} = 0.15V \ to \ the \ smaller \ of \ 3V \ or \ V_{CC} - V_{EE}. \ Typical values are at \ V_{CC} - V_{EE} = +3.3V, \ V_{IHD} = V_{CC} - 1V, \ V_{ILD} = V_{CC} - 1.5V, \ unless \ otherwise \ noted.) (Note 5)$

PARAMETER	SYMBOL	OL CONDITIONS		-40°C		+25°C				UNITS		
PARAMETER	STWIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Input-to- Output Delay	tPLHD, tPHLD	Figure 1	145	203	265	155	208	265	160	220	270	ps
Output-to- Output Skew	tskoo	(Note 6)		6	30		6	30		6	30	ps
Part-to-Part Skew	tskpp	(Note 7)		20	120		20	110		20	110	ps
Added Random Jitter	to	f _{IN} = 1.5GHz, clock pattern		1.7	2.8		1.7	2.8		1.7	2.8	ps
(Note 8)	t _{RJ}	f _{IN} = 3.0GHz, clock pattern		0.6	1.5		0.6	1.5		0.6	1.5	(RMS)
Added Deterministic Jitter	t _{DJ}	3.0Gbps 2 ²³ -1 PRBS pattern (Note 8)		57	80		57	80		57	80	ps (p-p)

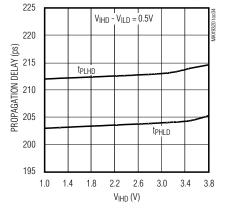
AC ELECTRICAL CHARACTERISTICS (continued)

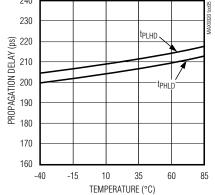

 $(V_{CC} - V_{EE} = +2.25V \ to \ +3.8V, \ outputs \ loaded \ with \ 50\Omega \ \pm1\% \ to \ V_{CC} - 2V, \ input \ frequency = 1.5GHz, \ input \ transition \ time = 125ps \ (20\% \ to \ 80\%), \ V_{IHD} = V_{EE} + 1.2V \ to \ V_{CC}, \ V_{ILD} = V_{EE} \ to \ V_{CC} - 0.15V, \ V_{IHD} - V_{ILD} = 0.15V \ to \ the \ smaller \ of \ 3V \ or \ V_{CC} - V_{EE}. \ Typical values are at \ V_{CC} - V_{EE} = +3.3V, \ V_{IHD} = V_{CC} - 1V, \ V_{ILD} = V_{CC} - 1.5V, \ unless \ otherwise \ noted.) (Note 5)$


PARAMETER	SYMBOL	OL CONDITIONS		-40°C			+25°C			+85°C		
PANAMETER	STWIBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Switching	faces	V _{OH} - V _{OL} ≥ 300mV, clock pattern, Figure 1	3.0			3.0			3.0			GHz
Frequency f _{MAX}	IMAX	V _{OH} - V _{OL} ≥ 550mV, clock pattern, Figure 1	2.0			2.0			2.0			GHZ
Output Rise/Fall Time (20% to 80%)	t _R , t _F	t _F Figure 1		88	120	50	89	120	50	90	120	ps


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- Note 3: DC parameters production tested at T_A = +25°C. Guaranteed by design and characterization over the full operating temperature range.
- Note 4: All pins open except VCC and VEE.
- Note 5: Guaranteed by design and characterization. Limits are set at ±6 sigma.
- Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
- **Note 7:** Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 8: Device jitter added to the input signal.

Typical Operating Characteristics


 $(V_{CC} = +3.3V, V_{EE} = 0, input transition time = 125ps (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded (20\% to 80\%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{ID} = V_{CC} - 1.5V, f_{ID$ with 50Ω to V_{CC} - 2V, T_A = +25°C, unless otherwise noted.)



PROPAGATION DELAY vs. TEMPERATURE 240 230

_____Pin Description (MAX9320)

PIN	PIN		PIN NAME		FUNCTION
μMAX/SO	SOT23	INAIVIE	FUNCTION		
1	8	Q0	Noninverting Q0 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.		
2	7	Q0	Inverting Q0 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.		
3	6	Q1	Noninverting Q1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.		
4	5	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.		
5	2	VEE	Negative Supply Voltage		
6	4	D	Inverting Differential Input. $60k\Omega$ pullup to V_{CC} and $100k\Omega$ pulldown to V_{EE} .		
7	3	D	Noninverting Differential Input. 100kΩ pulldown to VEE.		
8	1	Vcc	Positive Supply Voltage. Bypass from V _{CC} to V _{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.		

Pin Description (MAX9320A)

PIN SOT23	NAME	FUNCTION
1	Vcc	Positive Supply Voltage. Bypass from V _{CC} to V _{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	VEE	Negative Supply Voltage
3	D	Inverting Differential Input. $60k\Omega$ pullup to V_{CC} and $100k\Omega$ pulldown to V_{EE} .
4	D	Noninverting Differential Input. $100k\Omega$ pulldown to V_{EE} .
5	Q1	Inverting Q1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
6	Q1	Noninverting Q1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
7	Q0	Inverting Q0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
8	Q0	Noninverting Q0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.

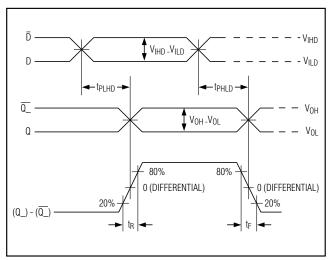


Figure 1. Differential Transition Time and Propagation Delay Timing Diagram

Detailed Description

The MAX9320/MAX9320A low-skew, 1-to-2 differential drivers are designed for clock and data distribution. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock and data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.

Inputs

The maximum magnitude of the differential input from D to \overline{D} is VCC - VEE or 3.0V, whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input.

The differential inputs have bias resistors that drive the outputs to a differential low when the inputs are open. The inverting input, \overline{D} , is biased with a $60k\Omega$ pullup to VCC and a $100k\Omega$ pulldown to VEE. The noninverting input, D, is biased with a $100k\Omega$ pulldown to VEE.

Specifications for the high and low voltages of the differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously (V_{ILD} cannot be higher than V_{IHD}).

Outputs

Output levels are referenced to V_{CC} and are considered LVPECL or LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and V_{EE} connected to GND, the outputs are LVPECL. The outputs are LVECL when V_{CC} is connected to GND and V_{EE} is connected to a negative supply.

A single-ended input of $\pm 100 \text{mV}$ around a reference voltage or a differential input of at least $\pm 100 \text{mV}$ switches the outputs to the VOH and VOL levels specified in the *DC Electrical Characteristics* table.

Applications Information

Supply Bypassing

Bypass V_{CC} to V_{EE} with high-frequency surface-mount ceramic 0.1μ F and 0.01μ F capacitors in parallel as close to the device as possible, with the 0.01μ F value capacitor closest to the device. Use multiple parallel vias for low inductance.

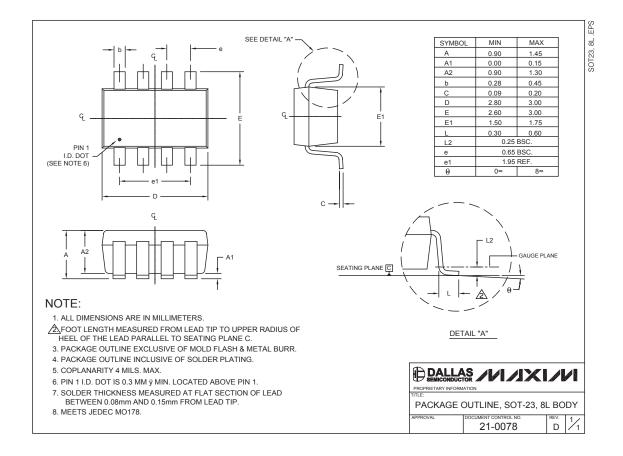
Traces

Input and output trace characteristics affect the performance of the MAX9320/MAX9320A. Connect each signal of a differential input or output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.

The exposed-pad (EP) SO package can be soldered to the PC board for enhanced thermal performance. If the EP is not soldered to the PC board, the thermal resistance is the same as the regular SO package. The EP is connected to the chip VEE supply. Be sure that the pad does not touch signal lines or other supplies.

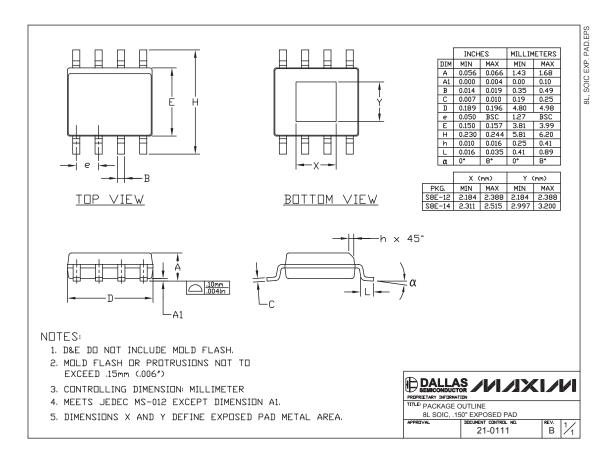
Contact the Maxim Packaging department for guidelines on the use of EP packages.

Output Termination

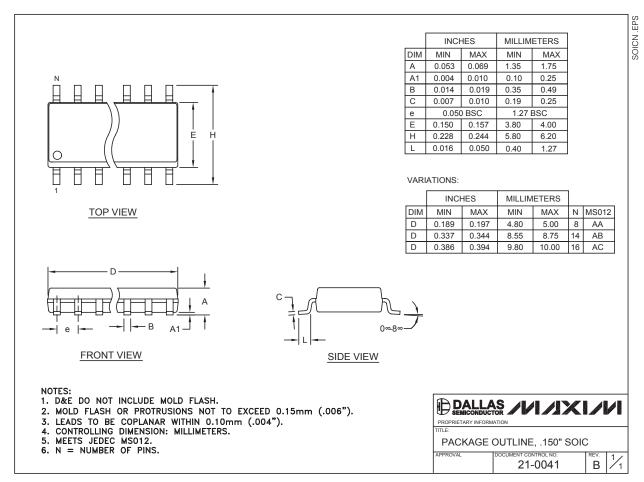

Terminate outputs through 50Ω to V_{CC} - 2V or use an equivalent Thevenin termination. Terminate both outputs and use the same termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q0 is used as a single-ended output, terminate both Q0 and $\overline{Q0}$.

Chip Information

TRANSISTOR COUNT: 182


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)


Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.