

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX9321/MAX9321A are low-skew differential receiver/drivers designed for clock and data distribution. The differential input can be adapted to accept a single-ended input by connecting the on-chip VBB supply to an input as a reference voltage.

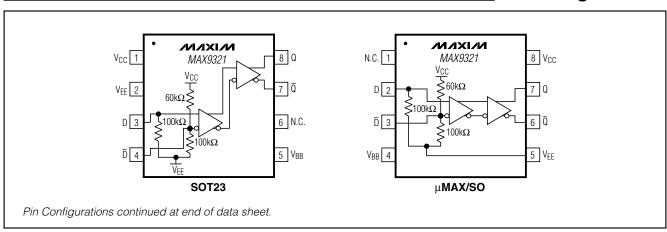
The MAX9321/MAX9321A feature ultra-low propagation delay (172ps) and part-to-part skew (20ps) with 24mA maximum supply current, making these devices ideal for clock buffering or repeating. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock and data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply. Multiple pinouts are provided to simplify routing across a backplane to either side of a double-sided board.

Both devices are offered in space-saving 8-pin SOT23, SO, and µMAX packages.

Applications

Precision Clock Buffers Low-Jitter Data Repeaters

Features


- ♦ Improved Second Source of the MC10LVEP16 (MAX9321)
- ♦ +2.25V to +3.8V Differential HSTL/LVPECL Operation
- ♦ -2.25V to -3.8V Differential LVECL Operation
- ♦ Low 17mA Supply Current
- ♦ 20ps Part-to-Part Skew
- ♦ 172ps Propagation Delay
- ♦ Minimum 300mV Output at 3GHz
- ♦ Output Low for Open Input
- ♦ ESD Protection >2kV (Human Body Model)
- ♦ On-Chip Reference for Single-Ended Input
- ♦ Available in Thermally Enhanced Exposed-Pad SO Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9321EKA-T	-40°C to +85°C	8 SOT23-8	AALK
MAX9321EUA*	-40°C to +85°C	8 µMAX	_
MAX9321ESA	-40°C to +85°C	8 SO	_
MAX9321AEKA-T	-40°C to +85°C	8 SOT23-8	AAIX
MAX9321AEUA*	-40°C to +85°C	8 µMAX	_
MAX9321AESA	-40°C to +85°C	8 SO-EP**	_

^{*}Future product—contact factory for availability.

Pin Configurations

MIXIM

Maxim Integrated Products 1

^{**}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
500 LFPM Airflow 8-Pin SOT23+78°C/W 8-Pin μMAX+155°C/W 8-Pin SO+99°C/W

Junction-to-Case Thermal Resistance	
8-Pin SOT23	+80°C/W
8-Pin μMAX	+39°C/W
8-Pin SO	+40°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (D, \overline{D} , Q, \overline{Q} , V_{BB})	>2kV
Soldering Temperature (10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = +2.25 \text{V to } +3.8 \text{V}, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2.0 \text{V}. \text{ Typical values are at } V_{CC} - V_{EE} = +3.3 \text{V}, V_{IHD} = V_{CC} - 1 \text{V}, V_{ILD} = V_{CC} - 1.5 \text{V}, \text{ unless otherwise noted.})$ (Notes 1–5)

PARAMETER	SYMBOL	CONDITIONS		-40°C		+25°C			+85°C			UNITS
PARAMETER	STIVIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DIFFERENTIAL	NPUT (D,	D)										
Single-Ended Input High Voltage	ViH	V_{BB} connected to \overline{D} (V_{IL} for V_{BB} connected to D), Figure 1	V _{CC} - 1.210		Vcc	V _{CC} - 1.145		Vcc	V _{CC} - 1.085		Vcc	V
Single-Ended Input Low Voltage	VIL	V _{BB} connected to \overline{D} (V _{IH} for V _{BB} connected to D), Figure 1	V _{EE}		V _{CC} - 1.65	V _{EE}		V _{CC} - 1.545	V _{EE}		V _{CC} - 1.485	>
High Voltage of Differential Input	V _{IHD}		V _{EE} + 1.2		Vcc	V _{EE} + 1.2		V _C C	V _{EE} + 1.2		Vcc	V
Low Voltage of Differential Input	V _{ILD}		VEE		V _{CC} - 0.1	VEE		V _{CC} - 0.1	VEE		V _{CC} - 0.1	V
Differential Input Voltage	V _{IHD} - V _{ILD}	For V _{CC} - V _{EE} < 3.0V	0.1		V _{CC} - V _{EE}	0.1		V _{CC} - V _{EE}	0.1		V _{CC} - V _{EE}	٧
		For V _{CC} - V _{EE} ≥ 3.0V	0.1		3.0	0.1		3.0	0.1		3.0	
Input High Current	Ιιн				150			150			150	μΑ
D Input Low Current	I _{ILD}		-10		100	-10		100	-10		100	μΑ
D Input Low Current	Iı∟Ō		-150		+150	-150		+150	-150		+150	μΑ

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} - V_{EE} = +2.25 \text{V to } +3.8 \text{V}, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2.0 \text{V}. \text{ Typical values are at } V_{CC} - V_{EE} = +3.3 \text{V}, V_{IHD} = V_{CC} - 1 \text{V}, V_{ILD} = V_{CC} - 1.5 \text{V}, \text{ unless otherwise noted.})$ (Notes 1–5)

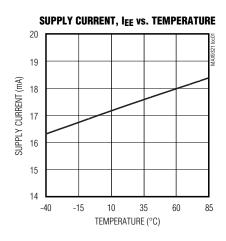
PARAMETER	SYMBOL	CONDITIONS		-40°C			+25°C			+85°C		LINUTO
PARAMETER	STINIBUL	COMDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DIFFERENTIAL	OUTPUT ($Q, \overline{Q})$										
Single-Ended Output High Voltage	V _{OH}	Figure 1	V _{CC} - 1.135		V _{CC} - 0.885	V _{CC} - 1.07		V _{CC} - 0.82	V _{CC} - 1.01		V _{CC} - 0.76	V
Single-Ended Output Low Voltage	V _{OL}	Figure 1	V _{CC} - 1.935		V _{CC} - 1.685	V _{CC} - 1.87		V _{CC} - 1.62	V _{CC} - 1.81		V _{CC} - 1.56	V
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1	550			550			550			mV
REFERENCE (V	вв)		•			ı						
Reference Voltage Output (Note 6)	V _{BB}	$I_{BB} = \pm 0.5 \text{mA}$	V _{CC} - 1.55		V _{CC} - 1.31	V _{CC} - 1.445		V _{CC} - 1.245	V _{CC} - 1.385		V _{CC} - 1.185	V
POWER SUPPL	Υ		1			ı						
Supply Current (Note 7)	IEE			16	24		17	24		18	24	mA

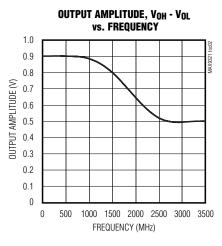
AC ELECTRICAL CHARACTERISTICS

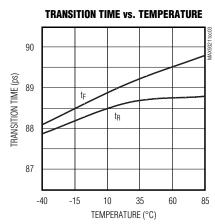
 $(V_{CC} - V_{EE} = +2.25V \text{ to } +3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V, \text{ input frequency} = 1.5GHz, \text{ input transition time} = 125ps (20\% \text{ to } 80\%), V_{IHD} = V_{EE} + 1.2V \text{ to } V_{CC}, V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.15V, V_{IHD} - V_{ILD} = 0.15V \text{ to the smaller of } 3V \text{ or } V_{CC} - V_{EE}. \text{ Typical values are at } V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted.}) (Notes 8, 11)$

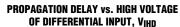
PARAMETER	SYMBOL	CONDITIONS	-40°C			+25°C			+85°C			UNITS	
PANAMETEN	STIMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Differential Input-to- Output Delay	tPLHD, tPHLD	Figure 2	145	184	235	145	172	245	130	167	230	ps	
Part-to-Part Skew (Note 9)	tskpp			25	90		20	100		20	100	ps	
Added	tou	f _{IN} = 1.5GHz, Clock pattern		1.7	2.8		1.7	2.8		1.7	2.8	ps	
Random Jitter (Note 10)			f _{IN} = 3.0GHz, Clock pattern		0.6	1.5		0.6	1.5		0.6	1.5	(RMS)

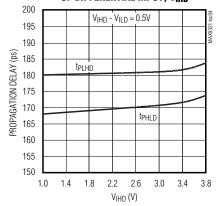
AC ELECTRICAL CHARACTERISTICS (continued)


 $(V_{CC} - V_{EE} = +2.25 V \ to \ +3.8 V, \ outputs \ loaded \ with \ 50 \Omega \ \pm1\% \ to \ V_{CC} - 2 V, \ input \ frequency = 1.5 GHz, \ input \ transition \ time = 125 ps (20\% \ to 80\%), \ V_{IHD} = V_{EE} + 1.2 V \ to \ V_{CC}, \ V_{ILD} = V_{EE} \ to \ V_{CC} - 0.15 V, \ V_{IHD} - V_{ILD} = 0.15 V \ to \ the \ smaller \ of 3 V \ or \ V_{CC} - V_{EE}. \ Typical values are at V_{CC} - V_{EE} = 3.3 V, \ V_{IHD} = V_{CC} - 1 V, \ V_{ILD} = V_{CC} - 1.5 V, \ unless \ otherwise \ noted.) (Notes 8, 11)$


PARAMETER	SYMBOL	CONDITIONS	-40°C +25°C			+85°C		UNITS				
PANAMETER	STWIDOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Added Deterministic Jitter (Note 10)	t _D J	3.0Gbps 2 ²³ -1 PRBS pattern		57	80		57	80		57	80	ps (p-p)
Switching	fMAX	V _{OH} - V _{OL} ≥ 300mV, Clock pattern, Figure 2	3.0			3.0			3.0			GHz
Frequency	IWAX	V _{OH} - V _{OL} ≥ 550mV, Clock pattern, Figure 2	2.0			2.0			2.0			GHZ
Output Rise/ Fall Time (20% to 80%)	t _R , t _F	Figure 2	50	88	120	50	89	120	50	90	120	ps


- Note 1: Guaranteed by design and characterization.
- Note 2: Measurements are made with the device in thermal equilibrium.
- Note 3: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- Note 4: DC parameters production tested at T_A = +25°C. Guaranteed by design and characterization over the full operating temperature range
- **Note 5:** Single-ended input operation is limited to V_{CC} $V_{EE} \ge 3.0V$.
- Note 6: Use VBB as a reference for inputs on the same device only.
- Note 7: All pins open except V_{CC} and V_{EE}.
- Note 8: Guaranteed by design and characterization. Limits are set at ±6 sigma.
- Note 9: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 10: Device jitter added to the input signal.


Typical Operating Characteristics


(SO packages) (V_{CC} = +3.3V, V_{EE} = 0, input transition time = 125ps (20% to 80%), V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, f_{IN} = 1.5GHz, outputs loaded with 50 Ω to V_{CC} - 2V, T_A = +25°C, unless otherwise noted.)

35

TEMPERATURE (°C)

60

85

120

-40

-15

PROPAGATION DELAY vs. TEMPERATURE

Pin Description (MAX9321)

PII	N	NAME	FUNCTION
μMAX/SO	SOT23	NAME	FUNCTION
1	6	N.C.	No Connection
2	3	D	Noninverting Differential Input. 100kΩ pulldown to V _{EE} .
3	4	D	Inverting Differential Input. $60k\Omega$ pullup to V_{CC} and $100k\Omega$ pulldown to V_{EE} .
4	5	V _{BB}	Reference Output Voltage. Connect to the inverting or noninverting input to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise leave open.
5	2	VEE	Negative Supply Voltage
6	7	Q	Inverting Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
7	8	Q	Noninverting Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
8	1	Vcc	Positive Supply Voltage. Bypass from V _{CC} to V _{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.

_____Pin Description (MAX9321A)

PIN		NAME	FUNCTION
μMAX/SO	SOT23	NAME	FUNCTION
1	6	N.C.	No Connection
2	3	D	Inverting Differential Input. $60k\Omega$ pullup to V_{CC} and $100k\Omega$ pulldown to V_{EE} .
3	4	D	Noninverting Differential Input. 100kΩ pulldown to V _{EE} .
4	5	V _{BB}	Reference Output Voltage. Connect to the inverting or noninverting input to provide a reference for single-ended operation. When used, bypass with a $0.01\mu F$ ceramic capacitor to V_{CC} ; otherwise leave open.
5	2	VEE	Negative Supply Voltage
6	8	Q	Noninverting Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
7	7	Q	Inverting Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
8	1	V _C C	Positive Supply Voltage. Bypass from V _{CC} to V _{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.

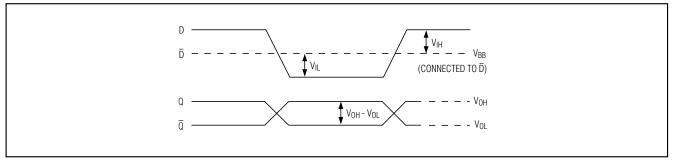


Figure 1. Switching with Single-Ended Input

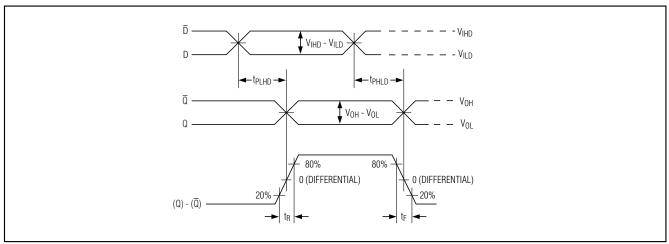


Figure 2. Differential Transition Time and Propagation Delay Timing Diagram

Detailed Description

The MAX9321/MAX9321A are low-skew differential receiver/drivers designed for clock and data distribution. For interfacing to differential HSTL and LVPECL signals, these devices operate over a +2.25V to +3.8V supply range, allowing high-performance clock and data distribution in systems with a nominal +2.5V or +3.3V supply. For differential LVECL operation, these devices operate from a -2.25V to -3.8V supply.

Inputs

The differential input can be configured to accept a single-ended input when operating at approximately VCC - VEE = 3.0V to 3.8V. This is accomplished by connecting the on-chip reference voltage, VBB, to an input as a reference. For example, the differential D, \overline{D} input is converted to a noninverting, single-ended input by connecting VBB to \overline{D} and connecting the single-ended input to D. An inverting input is obtained by connecting

VBB to D and connecting the single-ended input to \overline{D} . With the differential input configured as single ended (using VBB), the single-ended input can be driven to VCC and VEE or with a single-ended LVPECL/LVECL signal.

When the differential input is configured as a single-ended input (using VBB), the approximate supply range is VCC - VEE = 3.0V to 3.8V. This is because one of the inputs must be VEE + 1.2V or higher for proper operation of the input stage. VBB must be at least VEE + 1.2V because it becomes the high-level input when the other (single-ended) input swings below it. Therefore, minimum VBB = VEE + 1.2V.

The minimum VBB output is V_{CC} - 1.510V. Substituting the minimum VBB into VBB = VEE + 1.2V results in a minimum supply of 2.71V. Rounding up to a standard supply gives the single-ended operating supply range of V_{CC} - V_{EE} = 3.0V to 3.8V.

When using the VBB reference output, bypass it with a $0.01\mu\text{F}$ ceramic capacitor to VCC. If the VBB reference is not used, it can be left open. The VBB reference can source or sink 0.5mA. Use VBB only for an input on the same device as the VBB reference.

The maximum magnitude of the differential input from D to \overline{D} is 3.0V or V_{CC} - V_{EE}, whichever is less. This limit also applies to the difference between any reference voltage input and a single-ended input.

The differential input has bias resistors that drive the output to a differential low when the inputs are open. The inverting input is biased with a $60k\Omega$ pullup to VCC and a $100k\Omega$ pulldown to VEE. The noninverting input is biased with a $100k\Omega$ pulldown to VEE.

Specifications for the high and low voltage of the differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously (VILD cannot be higher than VIHD).

Outputs

Output levels are referenced to V_{CC} and are considered LVPECL or LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and V_{EE} connected to GND, the output is LVPECL. The output is LVECL when V_{CC} is connected to GND and V_{EE} is connected to a negative supply.

A single-ended input of at least $V_{BB} \pm 100 mV$ or a differential input of at least $\pm 100 mV$ switches the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table.

_Applications Information

Supply Bypassing

Bypass VCC to VEE with high-frequency surface-mount ceramic $0.1\mu F$ and $0.01\mu F$ capacitors in parallel as close to the device as possible, with the $0.01\mu F$ value

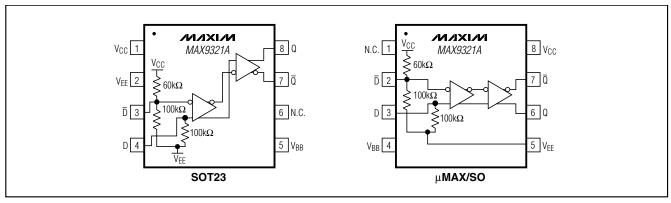
capacitor closest to the device. Use multiple parallel vias for low inductance. When using the V_{BB} reference output, bypass it with a $0.01\mu F$ ceramic capacitor to V_{CC} (if the V_{BB} reference is not used, it can be left open).

Traces

Input and output trace characteristics affect the performance of the MAX9321/MAX9321A. Connect each signal of a differential input or output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.

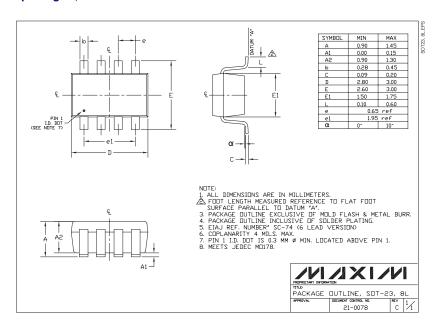
The exposed-pad (EP) SO package can be soldered to the PC board for enhanced thermal performance. If the EP is not soldered to the PC board, the thermal resistance is the same as the regular SO package. The EP is connected to the chip VEE supply. Be sure that the pad does not touch signal lines or other supplies.

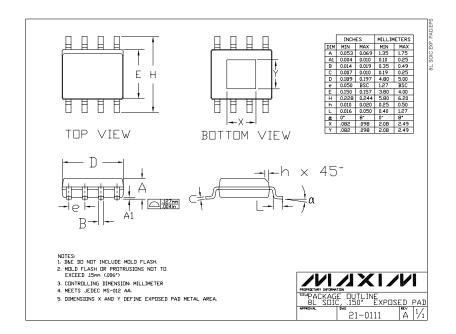
Contact Maxim's Packaging department for guidelines on the use of EP packages.


Output Termination

Terminate outputs through 50Ω to VCC - 2V or use an equivalent Thevenin termination. When a single-ended signal is taken from the differential output, terminate both outputs. For example, when Q is used as a single-ended output, terminate both Q and \overline{Q} .

Chip Information


TRANSISTOR COUNT: 162


Pin Configurations (continued)

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.