imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Description

The MAX9323 low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS inputs to four differential LVPECL outputs. A single logic control signal (CLK_SEL) selects the input signal to distribute to all outputs. The device operates from 3.0V to 3.6V, making the device ideal for 3.3V systems, and consumes only 25mA (max) of supply current.

The MAX9323 features low 150ps part-to-part skew, low 11ps output-to-output skew, and low 1.7ps RMS jitter, making the device ideal for clock and data distribution across a backplane or board. All outputs are enabled and disabled synchronously with the clock input to prevent partial output clock pulses.

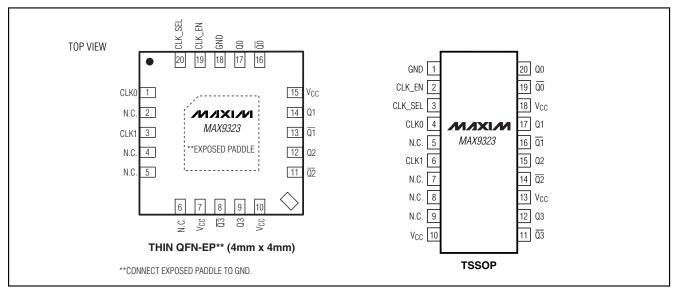
The MAX9323 is available in space-saving 20-pin TSSOP and ultra-small 20-pin 4mm × 4mm thin QFN packages and operates over the extended (-40°C to +85°C) temperature range. The MAX9323 is pin compatible with Integrated Circuit Systems' ICS8535-01.

Applications

Precision Clock Distribution Low-Jitter Data Repeater Data and Clock Driver and Buffer Central-Office Backplane Clock Distribution DSLAM Backplane Base Station Hubs

Features

- 1.7ps_{RMS} Added Random Jitter
- 150ps (max) Part-to-Part Skew
- 11ps Output-to-Output Skew
- 450ps Propagation Delay
- Pin Compatible with ICS8535-01
- Consumes Only 25mA (max) Supply Current (50% Less than ICS8535-01)
- Synchronous Output Enable/Disable
- Two Selectable LVCMOS Inputs
- ♦ 3.0V to 3.6V Supply Voltage Range
- -40°C to +85°C Operating Temperature Range


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9323EUP	-40°C to +85°C	20 TSSOP
MAX9323ETP*	-40°C to +85°C	20 Thin QFN-EP**

*Future product—Contact factory for availability. **EP = Exposed paddle.

Functional Diagram and Typical Operating Circuit appear at end of data sheet.

Pin Configurations

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +4.0\	/
$Q_{,}$, $\overline{Q}_{,}$, CLK_, CLK_SEL,	
CLK_EN to GND0.3V to (V _{CC} + 0.3V)
Continuous Output Current	ł
Surge Output Current100mA	4
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
20-Pin TSSOP (derate 11mW/°C)879.1mW	V
20-Pin 4mm × 4mm Thin QFN (derate 16.9mW/°C)1349.1mW	V
Junction-to-Ambient Thermal Resistance in Still Air	
20-Pin TSSOP+91°C/W	V
20-Pin 4mm × 4mm Thin QFN+59.3°C/M	V

20-Pin TSSOP	+20°C/W
20-Pin 4mm × 4mm Thin QFN	+2°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.0V \text{ to } 3.6V, \text{ outputs terminated with } 50\Omega \pm 1\% \text{ to } (V_{CC} - 2V), \text{ CLK}_SEL = V_{CC} \text{ or GND}, \text{ CLK}_EN = V_{CC}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at $V_{CC} = 3.3V$, $T_A = +25^{\circ}\text{C}.$) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CO	MIN	ТҮР	MAX	UNITS	
INPUTS (CLK0, CLK1, CLK_SE	, CLK_EN)						
Input High Voltage	Mar.	Figure 1	CLK0, CLK1	2		V _{CC}	V
Input High Voltage	VIH	Figure 1	CLK_EN, CLK_SEL	2		V _{CC}	
Input Low Voltage	Ma	Figure 1	CLK0, CLK1	0		1.3	V
	VIL	Figure 1	CLK_EN, CLK_SEL	0		0.8	V
Input High Current	lu i	CLK0, CLK1, CLK_	SEL = V _{CC}			150	
Input High Current	Ιн	$CLK_EN = V_{CC}$		-5		+5	μA
	Lu.	CLK0, CLK1, CLK_SEL = GND		-5		+5	μA
Input Low Current	Ι _{ΙΣ}	CLK_EN = GND	-150				
Input Capacitance	CIN	CLK0, CLK1, CLK_	SEL, CLK_EN (Note 4)			4	pF
OUTPUTS (Q_, $\overline{Q_}$)							
Single-Ended Output High Voltage	V _{OH}	Figure 1		V _{CC} - 1.4		V _{CC} - 1.0	V
Single-Ended Output Low Voltage	V _{OL}	Figure 1		V _{CC} - 2.0		V _{CC} - 1.7	V
Differential Output Voltage	V _{OD}	Figure 1, V _{OD} = V _{OH} - V _{OL}		0.6		0.85	V
SUPPLY							
Supply Current (Note 5)	ICC					25	mA

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.0V \text{ to } 3.6V, \text{ outputs terminated with } 50\Omega \pm 1\% \text{ to } (V_{CC} - 2V), f_{IN} < 266MHz, \text{ input duty cycle} = 50\%, \text{ input transition time} = 1.1ns (20\% to 80\%), V_{IH} = V_{CC}, V_{IL} = GND, CLK_SEL = V_{CC} \text{ or } GND, CLK_EN = V_{CC}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at V_{CC} = 3.3V, T_A = +25^{\circ}\text{C}.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Switching Frequency	factory	$V_{OH} - V_{OL} \ge 0.6V$	266	800		MHz
Switching Frequency	fmax	V _{OH} - V _{OL} ≥ 0.3V	1500			IVILITZ
Propagation Delay	t _{PHL} , t _{PLH}	CLK0 or CLK1 to Q_, \overline{Q} , Figure 1 (Note 6)	100	450	600	ps
Output-to-Output Skew	tskoo	(Note 7)			30	ps
Part-to-Part Skew	t SKPP	(Note 8)			150	ps
Output Rise Time	t _R	20% to 80%, Figure 1	100	203	300	ps
Output Fall Time	tF	80% to 20%, Figure 1	100	198	300	ps
Output Duty Cycle	ODC		48	50	52	%
Added Random Jitter	t _{RJ}	f _{IN} = 266MHz, clock pattern (Note 9)		1.7	3	ps(RMS)
Added Jitter (Note 9)	t _{AJ}	V _{CC} = 3.3V with 25mV superimposed sinusoidal noise at 100kHz			10	PS(P-P)

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Positive current flows into a pin. Negative current flows out of a pin.

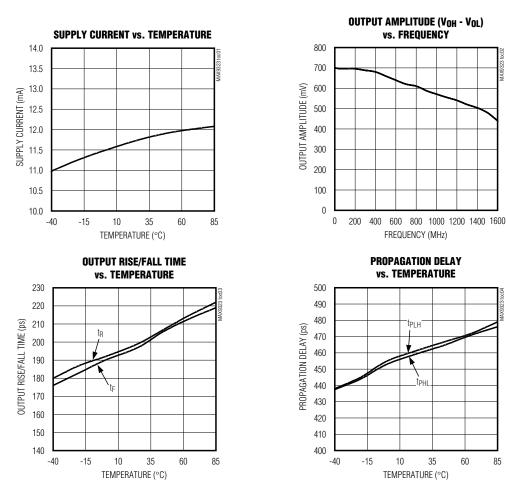
Note 3: DC parameters are production tested at $T_A = +25^{\circ}C$ and guaranteed by design over the full operating temperature range.

Note 4: Guaranteed by design and characterization. Limits are set at ±6 sigma.

Note 5: All pins open except V_{CC} and GND.

Note 6: Measured from the 50% point of the input to the crossing point of the differential output signal.

Note 7: Measured between outputs of the same part at the differential signal crosspoint for a same-edge transition.


Note 8: Measured between outputs of different parts at the differential signal crosspoint under identical conditions for a same-edge transition.

Note 9: Jitter added to the input signal.

Typical Operating Characteristics

 $(V_{CC} = 3.3V, outputs terminated to (V_{CC} - 2V) through 50\Omega, CLK_SEL = V_{CC} or GND, CLK_EN = V_{CC}, T_A = +25^{\circ}C.)$

MAX9323

Pin Description

P	IN		FUNCTION
TSSOP	QFN	NAME	FUNCTION
1	18	GND	Ground. Provide a low-impedance connection to the ground plane.
2	19	CLK_EN	Synchronous Output Enable. Connect CLK_EN to V _{CC} or leave floating to enable the differential outputs. Connect CLK_EN to GND to disable the differential outputs. When disabled, Q_ asserts low and \overline{Q} asserts high. An internal 51k Ω pullup resistor to V _{CC} allows CLK_EN to be left floating.
3	20	CLK_SEL	Clock Select Input. Connect CLK_SEL to V _{CC} to select the CLK1 input. Connect CLK_SEL to GND or leave floating to select the CLK0 input. Only the selected CLK_ signal is reproduced at each output. An internal $51k\Omega$ pulldown resistor to GND allows CLK_SEL to be left floating.
4	1	CLK0	LVCMOS Clock Input. When CLK_SEL = GND, each set of outputs differentially reproduces CLK0. An internal 51k Ω pulldown resistor to GND forces the outputs (Q_, Q_) to differential low when CLK0 is left open or at GND, CLK_SEL = GND, and the outputs are enabled.
5, 7, 8, 9	2, 4, 5, 6	N.C.	No Connect. Not internally connected.
6	3	CLK1	LVCMOS Clock Input. When CLK_SEL = V _{CC} , each set of outputs differentially reproduces CLK1. An internal 51k Ω pulldown resistor to GND forces the outputs (Q_, Q_) to differential low when CLK1 is left open or at GND, CLK_SEL = V _{CC} , and the outputs are enabled.
10, 13, 18	7, 10, 15	V _{CC}	Positive Supply Voltage. Bypass V _{CC} to GND with three 0.01μ F and one 0.1μ F ceramic capacitors. Place the 0.01μ F capacitors as close to each V _{CC} input as possible (one per V _{CC} input). Connect all V _{CC} inputs together, and bypass to GND with a 0.1μ F ceramic capacitor.
11	8	$\overline{Q3}$	Inverting Differential LVPECL Output. Terminate $\overline{Q3}$ to (V _{CC} - 2V) with a 50 Ω ±1% resistor.
12	9	Q3	Noninverting Differential LVPECL Output. Terminate Q3 to (V _{CC} - 2V) with a 50 Ω ±1% resistor.
14	11	Q2	Inverting Differential LVPECL Output. Terminate $\overline{\text{Q2}}$ to (V _{CC} - 2V) with a 50 Ω ±1% resistor.
15	12	Q2	Noninverting Differential LVPECL Output. Terminate Q2 to (V _{CC} - 2V) with a 50 Ω ±1% resistor.
16	13	Q1	Inverting Differential LVPECL Output. Terminate $\overline{Q1}$ to (V _{CC} - 2V) with a 50 Ω ±1% resistor.
17	14	Q1	Noninverting Differential LVPECL Output. Terminate Q1 to (V _{CC} - 2V) with a 50 Ω ±1% resistor.
19	16	QO	Inverting Differential LVPECL Output. Terminate $\overline{\text{Q0}}$ to (V _{CC} - 2V) with a 50 Ω ±1% resistor.
20	17	Q0	Noninverting Differential LVPECL Output. Terminate Q0 to (V _{CC} - 2V) with a 50 Ω ±1% resistor.

Detailed Description

The MAX9323 low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS input signals to four differential LVPECL outputs. An input multiplexer allows selection of one of the two input signals. The output drivers operate at frequencies up to 1.5GHz. The MAX9323 operates from 3.0V to 3.6V, making it ideal for 3.3V systems.

Data Inputs

Single-Ended LVCMOS Inputs

The MAX9323 accepts two single-ended LVCMOS inputs (CLK0 and CLK1, Figure 1). An internal reference (V_{CC}/2) provides the input thresold voltage for CLK0 and CLK1. CLK_SEL selects the CLK0 input or CLK1 input to be converted to four differential LVPECL signals (see Table 1). Connect CLK_SEL to GND to

select CLK0. Connect CLK_SEL to V_{CC} to select CLK1. CLK0 and CLK1 are pulled to GND through internal $51k\Omega$ resistors, when not connected.

CLK_EN Input

CLK_EN enables/disables the differential outputs of the MAX9323. Connect CLK_EN to V_{CC} to enable the differential outputs. The (Q_, \overline{Q}) outputs are driven to a differential low condition when CLK_EN = GND. Each differential output pair disables following successive rising and falling edges on CLK_, after CLK_EN connects to GND. Both a rising and falling edge on CLK_ are required to complete the enable/disable function (Figure 2).

CLK_SEL Input

CLK_SEL selects which single-ended LVCMOS input signal is output differentially as four LVPECL signals. Connect CLK_SEL to GND to select the CLK0 input.

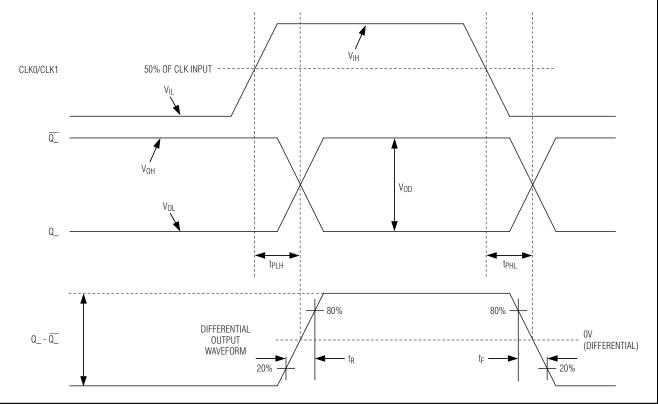


Figure 1. MAX9323 Clock Input-to-Output Delay and Rise/Fall Time

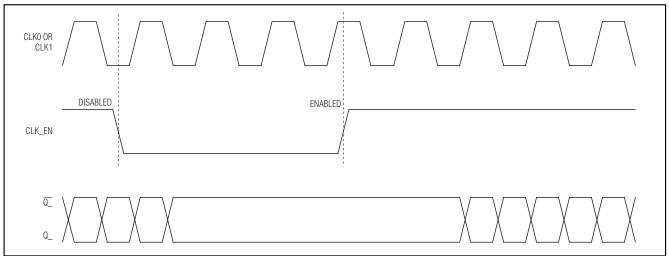


Figure 2. MAX9323 CLK_EN Timing Diagram

Table 1. Control Input Table

INPUTS			OUTPUTS		
CLK_EN	_EN CLK_SEL SELECTED SOURCE		Q0–Q3	$\overline{\mathbf{Q0}}$ – $\overline{\mathbf{Q3}}$	
0	0	CLK0	Disabled, pulled to logic low	Disabled, pulled to logic high	
0	1	CLK1	Disabled, pulled to logic low	Disabled, pulled to logic high	
1	0	CLK0	Enabled	Enabled	
1	1	CLK1	Enabled	Enabled	

Connect CLK_SEL to V_{CC} to select the CLK1 input. An internal $51k\Omega$ pulldown resistor to GND allows CLK_SEL to be left floating.

_Applications Information

Output Termination

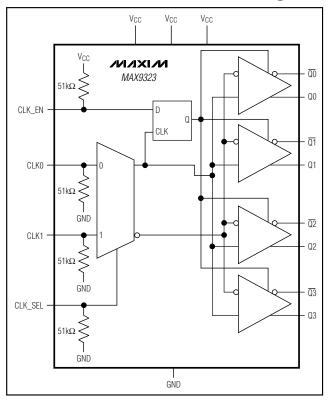
Terminate both outputs of each differential pair through 50Ω to (V_{CC} - 2V) or use an equivalent Thevenin termination. Use identical termination on each output for the lowest output-to-output skew. Terminate both outputs when deriving a single-ended signal from a differential output. For example, using Q0 as a single-ended output requires termination for both Q0 and Q0.

Ensure that the output currents do not violate the current limits as specified in the *Absolute Maximum Ratings* table. Observe the device's total thermal limits under all operating conditions.

Power-Supply Bypassing

Bypass V_{CC} to GND using three 0.01μ F ceramic capacitors and one 0.1μ F ceramic capacitor. Place the 0.01μ F capacitors (one per V_{CC} input) as close to V_{CC} as possible (see the *Typical Operating Circuit*). Use multiple bypass vias to minimize parasitic inductance.

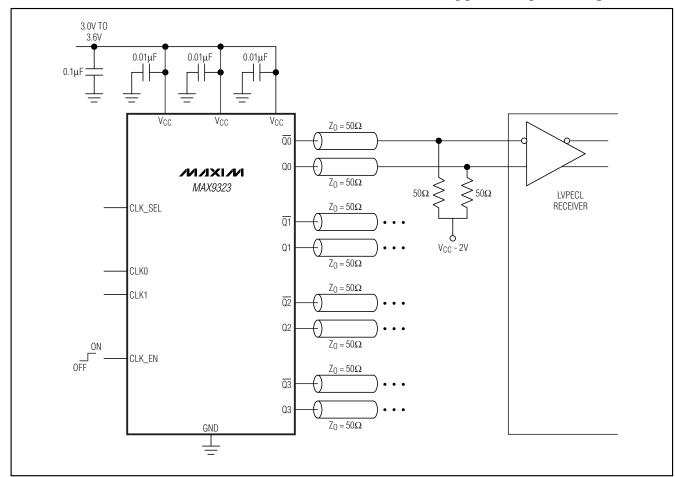
Circuit Board Traces


Input and output trace characteristics affect the performance of the MAX9323. Connect each input and output to a 50 Ω characteristic impedance trace to minimize reflections. Avoid discontinuities in differential imped-

ance and maximize common-mode noise immunity by maintaining the distance between differential traces and avoiding sharp corners. Minimize the number of vias to prevent impedance discontinuities. Minimize skew by matching the electrical length of the traces.

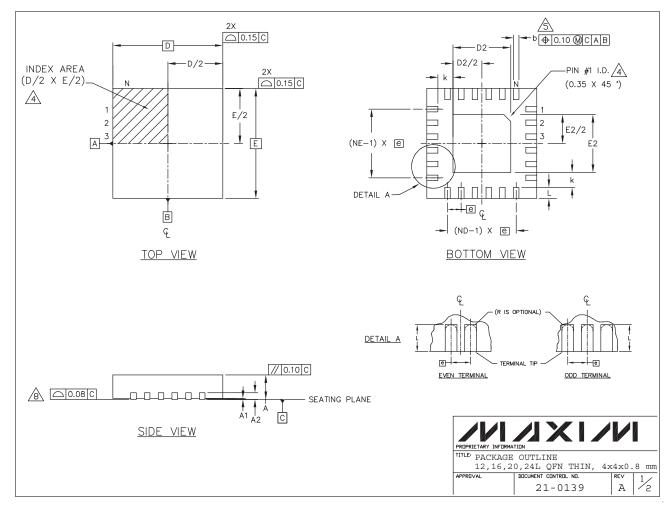
Chip Information

MAX9323


TRANSISTOR COUNT: 4430 PROCESS: BICMOS

Functional Diagram

7


_Typical Operating Circuit

MAX9323

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

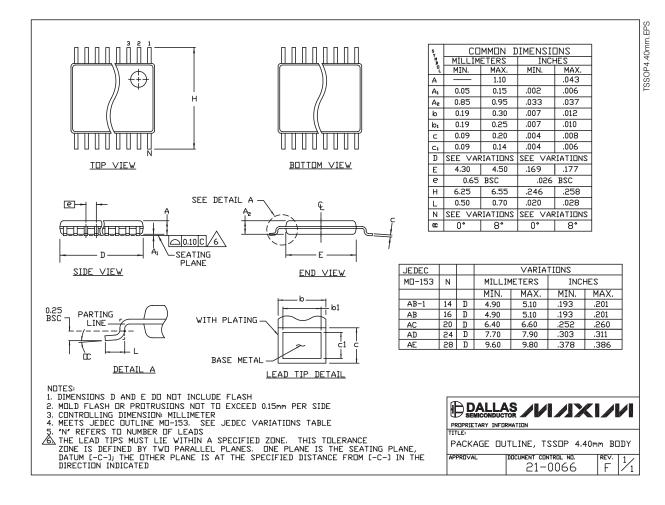
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

	COMMON DIMENSIONS											
PKG	1	2L 4×4	ł	16L 4×4		20L 4×4		24L 4×4				
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05
A2	0.20 REF				0.20 REF		(0.20 REF			0.20 REF	
ю	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
e		0.80 BSC	2.		0.65 BSC		0.50 BSC.		0.50 BSC.			
ĸ	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50
N		12		16			20			24		
ND		3		4		5		6				
NE		З		4		5		6				
Jedec Var.		WGGB			WGGC			WGGD-	1	WGGD-2		

EXPOSED PAD VARIATIONS							
PKG. D2					E2		
CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
T1244-2	1.95	2.10	2.25	1.95	2.10	2.25	
T1644-2	1.95	2.10	2.25	1.95	2.10	2.25	
T2044-1	1.95	2.10	2.25	1.95	2.10	2.25	
T2444-1	2.45	2.60	2.63	2.45	2.60	2.63	

NOTES:

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- A THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- BIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- & COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 9. DRAWING CONFORMS TO JEDEC MO220.



MAX9323

M \X | M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2002 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

MAX9323

_ 11