: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Anything-to-LVDS Dual 2×2 Crosspoint Switches

Abstract

General Description The MAX9392/MAX9393 dual 2×2 crosspoint switches perform high-speed, low-power, and low-noise signal distribution. The MAX9392/MAX9393 multiplex one of two differential input pairs to either or both low-voltage differential signaling (LVDS) outputs for each channel. Independent enable inputs turn on or turn off each differential output pair. Four LVCMOS/LVTTL logic inputs (two per channel) control the internal connections between inputs and outputs. This flexibility allows for the following configurations: 2×2 crosspoint switch, 2:1 mux, 1:2 splitter, or dual repeater. This makes the MAX9392/MAX9393 ideal for protection switching in fault-tolerant systems, loopback switching for diagnostics, fanout buffering for clock/data distribution, and signal regeneration. Fail-safe circuitry forces the outputs to a differential low condition for undriven inputs or when the commonmode voltage exceeds the specified range. The MAX9392 provides high-level input fail-safe detection for LVDS, HSTL, and other GND-referenced differential inputs. The MAX9393 provides low-level input fail-safe detection for LVPECL, CML, and other Vcc-referenced differential inputs. Ultra-low 98ps(P-P) (max) pseudorandom bit sequence (PRBS) jitter ensures reliable communications in highspeed links that are highly sensitive to timing error, especially those incorporating clock-and-data recovery, or serializers and deserializers. The high-speed switching performance guarantees 1.5 GHz operation and less than 67ps (max) skew between channels. LVDS inputs and outputs are compatible with the TIA/EIA-644 LVDS standard. The LVDS outputs drive 100Ω loads. The MAX9392/MAX9393 are offered in a 32-pin TQFP package and operate over the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. Also see the MAX9390/MAX9391 for the crossflow version.

Applications

High-Speed Telecom/Datacom Equipment Central-Office Backplane Clock Distribution
DSLAM
Protection Switching
Fault-Tolerant Systems

Functional Diagram and Typical Operating Circuit appear at end of data sheet.

- 1.5 GHz Operation with 250 mV Differential Output Swing
- 2psrms (max) Random Jitter
- AC Specifications Guaranteed for 150 mV Differential Input
- Signal Inputs Accept Any Differential Signaling Standard
- LVDS Outputs for Clock or High-Speed Data
- High-Level Input Fail-Safe Detection (MAX9392)
- Low-Level Input Fail-Safe Detection (MAX9393)
- 3.0V to 3.6V Supply Voltage Range
- LVCMOS/LVTTL Logic Inputs Control Signal Routing

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKKG CODE
MAX9392EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	$\mathrm{H} 32-1$
MAX9392EHJ +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	$\mathrm{H} 32-1$
MAX9393EHJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	$\mathrm{H} 32-1$
MAX9393EHJ +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	$\mathrm{H} 32-1$

+Denotes a lead-free package.
Pin Configurations

Anything-to-LVDS Dual 2×2
 Crosspoint Switches

ABSOLUTE MAXIMUM RATINGS

$V_{C c}$ to GND..
-0.3 V to +4.1 V $\mathrm{IN}_{-}, \overline{\mathrm{IN}_{--}}, O U T_{-}, \overline{O U T} \mathrm{O}_{-}, E N_{-_}$, _SEL_ to GND..-0.3V to (VCC +0.3 V) $I N_{-}$to $\overline{N_{-}}$.. $\pm 3 \mathrm{~V}$ Short-Circuit Duration (OUT_ _, $\overline{\text { OUT_ _ }^{\prime}}$)Continuous Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 32-Pin TQFP (derate $13.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad 1047 mW

Junction-to-Ambient Thermal Resistance in Still Air 32-Pin TQFP.. $76.4^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Soldering Temperature (10s)
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, R_{L}=100 \Omega \pm 1 \%, \mathrm{EN}_{-}=\mathrm{V}_{C C}, \mathrm{~V}_{C M}=0.05 \mathrm{~V}$ to ($\mathrm{V}_{C C}-0.6 \mathrm{~V}$) (MAX9392), $\mathrm{V}_{C M}=0.6 \mathrm{~V}$ to ($\mathrm{V}_{C C}-0.05 \mathrm{~V}$) (MAX9393), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{I} \mathrm{V}_{\mathrm{ID}} \mathrm{I}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
LVCMOS/LVTTL INPUTS (EN_ _ , SEL_)							
Input High Voltage	V_{IH}			2.0		VCC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			0		0.8	V
Input High Current	IIH	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		0		20	$\mu \mathrm{A}$
Input Low Current	IIL	$\mathrm{V}_{\mathrm{IN}}=0$ to 0		0		10	$\mu \mathrm{A}$
DIFFERENTIAL INPUTS (IN_ _, $\overline{\mathbf{N}}$-- $)$							
Differential Input Voltage	VID	$\mathrm{V}_{\text {ILD }} \geq 0$ and $\mathrm{V}_{\text {IHD }} \leq \mathrm{V}_{\text {CC }}$, Figure 1		0.1		3.0	V
Input Common-Mode Range	$V_{\text {CM }}$	MAX9392		0.05		$V_{C C}-0.6$	V
		MAX9393		0.6		VCC - 0.05	
Input Current	$\begin{aligned} & \hline \mathrm{IN}_{-1}, \\ & \mathbb{I N N _ { - }} \end{aligned}$	MAX9392	\| $\mathrm{V}_{\text {ID }} \leq 3.0 \mathrm{~V}$	-50		+10	$\mu \mathrm{A}$
		MAX9393	$\|\mathrm{VID}\| \leq 3.0 \mathrm{~V}$	-10		+90	
LVDS OUTPUTS (OUT_ _, OUT_-_)							
Differential Output Voltage	VOD	$R_{L}=100 \Omega$, Figure 2		250	350	450	mV
Change in Magnitude of $V_{O D}$ Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 2			1.0	50	mV
Offset Common-Mode Voltage	VOS	Figure 2		1.125	1.25	1.375	V
Change in Magnitude of VOS Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 2			1.0	50	mV

Anything-to-LVDS Dual 2×2 Crosspoint Switches

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, R_{L}=100 \Omega \pm 1 \%, E N_{-}=V_{C C}, V_{C M}=0.05 \mathrm{~V}$ to $\left(\mathrm{V}_{C C}-0.6 \mathrm{~V}\right)(\mathrm{MAX9392}), \mathrm{V}_{C M}=0.6 \mathrm{~V}$ to ($\left.\mathrm{V}_{C C}-0.05 \mathrm{~V}\right)$ (MAX9393), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{I} \mathrm{V}$ ID $=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Short-Circuit Current (Either Output Shorted to GND)	llos	$\mathrm{V}_{\text {ID }}= \pm 100 \mathrm{mV}$	VOUT__ or V $\mathrm{OUT}_{-}^{-}=0$		30	40	mA
		(Note 4)	$\mathrm{VOUT}_{\text {- }}=\mathrm{V}_{\text {OUT }_{--}^{-}}=0$		18	24	
Output Short-Circuit Current (Outputs Shorted Together)	llosbl	$\begin{aligned} & \mathrm{V}_{\text {ID }}= \pm 100 \mathrm{mV}, \text { Vout }_{--}=\text {VOUT_- }_{--}^{-} \\ & \text {(Note 4) } \end{aligned}$			5.0	12	mA
SUPPLY CURRENT							
Supply Current	ICC	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{EN}_{--}=\mathrm{V}_{C C}$			68	98	mA

AC ELECTRICAL CHARACTERISTICS

 only), $\mathrm{V}_{C M}=0.6 \mathrm{~V}$ to ($\mathrm{VCC}-0.075 \mathrm{~V}$) (MAX9393 only), $E N_{-}=\mathrm{V}_{C C}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{IV}_{\mathrm{ID}}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{fiN}_{\mathrm{IN}}=1.34 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 5)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | :---: | :---: | :---: | UNITS

Note 1: Measurements obtained with the device in thermal equilibrium. All voltages referenced to GND except $\mathrm{V}_{\text {ID }}, \mathrm{V}_{\mathrm{OD}}$, and $\Delta \mathrm{V}_{\text {OD }}$.
Note 2: Current into the device defined as positive. Current out of the device defined as negative.
Note 3: $D C$ parameters tested at $T_{A}=+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization for $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Note 4: Current through either output.
Note 5: Guaranteed by design and characterization. Limits set at ± 6 sigma.
Note 6: tSKEW is the magnitude difference of differential propagation delays for the same output over same conditions. tSKEW = ItpHL - tpLH|.
Note 7: Measured between outputs of the same device at the signal crossing points for a same-edge transition, under the same conditions.
Note 8: Device jitter added to the differential input signal.

Anything-to-LVDS Dual 2×2
 Crosspoint Switches

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V},\left|\mathrm{~V}_{\text {ID }}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=+1.2 \mathrm{~V}, \mathrm{f}\right| \mathrm{N}=1.34 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.

Anything-to-LVDS Dual 2×2 Crosspoint Switches

Pin Description

PIN	NAME	FUNCTION
$\begin{aligned} & 1,12 \\ & 20,25 \end{aligned}$	GND	Ground
2	INBO	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Noninverting Input. An internal $128 \mathrm{k} \Omega$ resistor to V_{CC} pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
3	$\overline{\text { INBO }}$	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Inverting Input. An internal $128 \mathrm{k} \Omega$ resistor to V_{CC} pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
4	BSELO	Input Select for B0 Output. Selects the differential input to reproduce at the B0 differential outputs. Connect BSELO to GND or leave open to select the INBO (INBO) set of inputs. Connect BSELO to VCC to select the INB1 (INB1) set of inputs. An internal $435 \mathrm{k} \Omega$ resistor pulls BSELO low when unconnected.
$\begin{aligned} & 5,16 \\ & 24,29 \end{aligned}$	VCC	Power-Supply Input. Bypass each V_{Cc} to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Install both bypass capacitors as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device.
6	INB1	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Noninverting Input. An internal $128 \mathrm{k} \Omega$ resistor to VCC pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
7	$\overline{\text { INB1 }}$	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Inverting Input. An internal $128 \mathrm{k} \Omega$ resistor to V_{CC} pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
8	BSEL1	Input Select for B1 Output. Selects the differential input to reproduce at the B1 differential outputs. Connect BSEL1 to GND or leave open to select the INBO (INB0) set of inputs. Connect BSEL1 to VCC to select the INB1 (INB1) set of inputs. An internal $435 \mathrm{k} \Omega$ resistor pulls BSEL1 low when unconnected.
9	ENB1	B1 Output Enable. Drive ENB1 high to enable the B1 LVDS outputs. An internal $435 \mathrm{k} \Omega$ resistor pulls ENB1 low when unconnected.
10	$\overline{\text { OUTB1 }}$	B1 LVDS Inverting Output. Connect a 100Ω termination resistor between OUTB1 and $\overline{\text { OUTB1 }}$ at the receiver inputs to ensure proper operation.
11	OUTB1	B1 LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTB1 and $\overline{\text { OUTB1 }}$ at the receiver inputs to ensure proper operation.
13	ENBO	BO Output Enable. Drive ENBO high to enable the BO LVDS outputs. An internal $435 \mathrm{k} \Omega$ resistor pulls ENBO low when unconnected.
14	$\overline{\text { OUTB0 }}$	BO LVDS Inverting Output. Connect a 100Ω termination resistor between OUTBO and $\overline{\text { OUTBO }}$ at the receiver inputs to ensure proper operation.
15	OUTB0	BO LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTBO and $\overline{\text { OUTBO }}$ at the receiver inputs to ensure proper operation.

Anything-to-LVDS Dual 2×2
 Crosspoint Switches

Pin Description (continued)

PIN	NAME	FUNCTION
17	ENA1	A1 Output Enable. Drive ENA1 high to enable the A1 LVDS outputs. An internal $435 \mathrm{k} \Omega$ resistor pulls ENA1 low when unconnected.
18	$\overline{\text { OUTA1 }}$	A1 LVDS Inverting Output. Connect a 100Ω termination resistor between OUTA1 and $\overline{\text { OUTA1 }}$ at the receiver inputs to ensure proper operation.
19	OUTA1	A1 LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTA1 and OUTA1 at the receiver inputs to ensure proper operation.
21	ENAO	AO Output Enable. Drive ENAO high to enable the AO LVDS outputs. An internal $435 \mathrm{k} \Omega$ resistor pulls ENAO low when unconnected.
22	$\overline{\text { OUTAO }}$	AO LVDS Inverting Output. Connect a 100Ω termination resistor between OUTAO and $\overline{\text { OUTAO }}$ at the receiver inputs to ensure proper operation.
23	OUTAO	AO LVDS Noninverting Output. Connect a 100Ω termination resistor between OUTAO and $\overline{\text { OUTAO }}$ at the receiver inputs to ensure proper operation.
26	INAO	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Noninverting Input. An internal 128k Ω resistor to VCC pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
27	$\overline{\text { INAO }}$	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Inverting Input. An internal $128 \mathrm{k} \Omega$ resistor to V_{CC} pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
28	ASELO	Input Select for AO Output. Selects the differential input to reproduce at the AO differential outputs. Connect ASELO to GND or leave open to select the INAO (INAO) set of inputs. Connect ASELO to V_{CC} to select the INA1 (INA1) set of inputs. An internal $435 \mathrm{k} \Omega$ resistor pulls ASELO low when unconnected.
30	INA1	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Noninverting Input. An internal 128k Ω resistor to VCc pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
31	$\overline{\text { INA1 }}$	LVDS/HSTL (MAX9392) or LVPECL/CML (MAX9393) Inverting Input. An internal $128 \mathrm{k} \Omega$ resistor to V_{CC} pulls the input high when unconnected (MAX9392). An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected (MAX9393).
32	ASEL1	Input Select for A1 Output. Selects the differential input to reproduce at the A1 differential outputs. Connect ASEL1 to GND or leave open to select the INAO (INAO) set of inputs. Connect ASEL1 to V_{CC} to select the INA1 (INA1) set of inputs. An internal $435 \mathrm{k} \Omega$ resistor pulls ASEL1 low when unconnected.

Anything-to-LVDS Dual 2×2 Crosspoint Switches

Figure 1. Output Transition Time and Propagation Delay Timing Diagram

ع6ع6XVW/Z6\&6XVW

Figure 3. Input to Rising/Falling Edge Select and Mux Switch Timing Diagram

Anything-to-LVDS Dual 2×2
 Crosspoint Switches

Figure 4. Output Active-to-Disable and Disable-to-Active Test Circuit and Timing Diagram

Figure 5. Output Transition Time, Propagation Delay, and Output Channel-to-Channel Skew Test Circuit
\qquad

Anything-to-LVDS Dual 2×2 Crosspoint Switches

Figure 6. Output Channel-to-Channel Skew

Detailed Description

The LVDS interface standard provides a signaling method for point-to-point communication over a con-trolled-impedance medium as defined by the ANSI TIA/EIA-644 standard. LVDS utilizes a lower voltage swing than other communication standards, achieving higher data rates with reduced power consumption, while reducing EMI emissions and system susceptibility to noise.
The MAX9392/MAX9393 1.5GHz dual 2×2 crosspoint switches optimize high-speed, low-power, point-topoint interfaces. The MAX9392 accepts LVDS and HSTL signals, while the MAX9393 accepts LVPECL and CML signals. Both devices route the input signals to either or both LVDS outputs.
When configured as a 1:2 splitter, the outputs repeat the selected inputs. This configuration creates copies of signals for protection switching. When configured as a repeater, the device operates as a two-channel buffer. Repeating restores signal amplitude, allowing isolation of media segments or longer media drive. When configured as a $2: 1$ mux, select primary or backup signals to provide a protection-switched, fault-tolerant application.

Input Fail-Safe

The differential inputs of the MAX9392/MAX9393 possess internal fail-safe protection. Fail-safe circuitry forces the outputs to a differential low condition for undriven inputs or when the common-mode voltage exceeds the specified range. The MAX9392 provides high-level input fail-safe detection for LVDS, HSTL, and other GND-referenced differential inputs. The MAX9393 provides low-level input fail-safe detection for LVPECL, $C M L$, and other $V_{C C}$-referenced differential inputs.

Figure 7. Programmable Configurations

Select Function

The _SEL_ logic inputs control the input and output signal connections. Two logic inputs control the signal routing for each channel. _SELO and _SEL1 allow the devices to be configured as a differential crosspoint switch, 2:1 mux, dual repeater, or 1:2 splitter (Figure 7). See Table 1 for mode-selection settings (insert A or B for the _). Channels A and B possess separate select inputs, allowing different configurations for each channel.

Enable Function

The EN_ _ logic inputs enable and disable each set of differential outputs. Connect EN_ 0 to $V_{C c}$ to enable the OUT_O/OUT_0 differential output pair. Connect EN_O to GND to disable the OUT_O/OUT_O differential output pair. The differential output pairs assert to a differential low condition when disabled.

Anything-to-LVDS Dual 2×2 Crosspoint Switches

Table 1. Input/Output Function Table

_SELO	_SEL1	OUT_0 / $\overline{\text { OUT_0 }}$	OUT_1/ $\overline{\text { OUT_1 }}$	MODE
0	0	IN_0/ $\overline{\text { IN_O }}$	IN_0 / $\overline{\text { N_S }}$	1:2 splitter
0	1	IN_0 / $\overline{\text { N_O }}$	IN_1/TN_1	Repeater
1	0	IN_1/TN_1	IN_0 / $\overline{\text { N_O }}$	Switch
1	1	IN_1/TN_1	IN -1/ $\overline{\mathrm{TN}}$-1	1:2 splitter

Applications Information

Differential Inputs

The MAX9392/MAX9393 inputs accept any differential signaling standard within the specified common-mode voltage range. The fail-safe feature detects commonmode input signal levels and generates a differential output low condition for undriven inputs or when the common-mode voltage exceeds the specified range. Leave unused inputs unconnected or connect to Vcc for the MAX9392 or to GND for the MAX9393.

Differential Outputs

The output common-mode voltage is not properly established if the LVDS output is higher than 0.6 V when the supply voltage is ramping up at power-on. This condition can occur when an LVDS output drives an LVDS input on the same chip. To avoid this situation for the MAX9392/MAX9393, connect a 10k Ω resistor from the noninverting output (OUT_) to ground, and connect a $10 \mathrm{k} \Omega$ resistor from the inverting output ($\overline{\text { OUT_) to }}$ ground. These pulldown resistors keep the output below 0.6 V when the supply is ramping up (Figure 8).

Expanding the Number of LVDS Output

 PortsCascade devices to make larger switches. Consider the total propagation delay and total jitter when determining the maximum allowable switch size.

Power-Supply Bypassing

Bypass each Vcc to GND with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible. Install the $0.01 \mu \mathrm{~F}$ capacitor closest to the device.

Differential Traces
Input and output trace characteristics affect the performance of the MAX9392/MAX9393. Connect each input and output to a 50Ω characteristic impedance trace. Maintain the distance between differential traces and eliminate sharp corners to avoid discontinuities in differential impedance and maximize common-mode noise immunity. Minimize the number of vias on the differential input and output traces to prevent impedance
discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Output Termination

Terminate LVDS outputs with a 100Ω resistor between the differential outputs at the receiver inputs. LVDS outputs require 100Ω termination for proper operation.
Ensure that the output currents do not exceed the current limits specified in the Absolute Maximum Ratings. Observe the total thermal limits of the MAX9392/ MAX9393 under all operating conditions.

Cables and Connectors
Use matched differential impedance for transmission media. Use cables and connectors with matched differential impedance to minimize impedance discontinuities. Avoid the use of unbalanced cables. Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to canceling effects.

Board Layout
Use a four-layer printed circuit (PC) board providing separate signal, power, and ground planes for highspeed signaling applications. Bypass Vcc to GND as close to the device as possible. Install termination resistors as close to receiver inputs as possible. Match the electrical length of the differential traces to minimize signal skew.

Figure 8. Pulldown Resistor Configuration for LVDS Outputs

Anything-to-LVDS Dual 2×2 Crosspoint Switches

Typical Operating Circuit

ع6ع6XVW/Z6E6XVW

Anything-to-LVDS Dual 2×2
 Crosspoint Switches

Anything-to-LVDS Dual 2×2 Crosspoint Switches

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Anything-to-LVDS Dual 2×2
 Crosspoint Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NOTES:

1. ALL DIMENSIDNING AND TZLERANCING CDNFDRM TD ANSI Y14.5-1982
2. DATUM PLANE EH- IS LDCATED AT MDLD PARTING LINE AND CDINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BDDY AT CIINCIDENT WITH LEAD, W
BOTTOM $\square F$ PARTING LINE.
3. DIMENSIDNS D1 AND E1 DU NDT INCLUDE MILD PROTRUSIDN. ALLDWABLE MILD PROTRUSION IS 0.25 MM ON D1 AND E1 DIMENSIDNS.
4. THE TOP DF PACKAGE IS SMALLER THAN THE BDTTDM DF PACKAGE BY 0.15 MILLIMETERS.
5. DIMENSIDN b DDES NDT INCLUDE DAMBAR PRDTRUSIDN. ALLDWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS DF THE b DIMENSIUN AT MAXIMUM MATERIAL CZNDITION.
6. ALL DIMENSIDNS ARE IN MILLIMETERS.
7. THIS OUTLINE CINFORMS TO JEDEC PUBLICATION 95, REGISTRATION MS-026.
8. LEADS SHALL BE CDPLANAR WITHIN .004 INCH.
9. TUPMARK SHOWN IS FUR PACKAGE DRIENTATIUN REFERENCE \quad NLY.

	JEDEC VARIATIDNS dImensidns in millimeters	
	AAA	
	$5 \times 5 \times 1.0$ MM	
	MIN.	MAX.
A	-	1.20
A_{1}	0.05	0.15
A_{2}	0.95	1.05
D	6.80	7.20
D_{1}	4.80	5.20
E	6.80	7.20
E_{1}	4.80	5.20
L	0.45	0.75
N	32	
e	0.50 BSC.	
b	0.17	0.27
b1	0.17	0.23
c	0.09	0.20
c1	0.09	0.16

-drawing nat ta scale-

Revision History
Pages changed at Rev 1: 1-4, 6, 8, 10-14
\qquad

