: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Abstract

General Description The MAX9550/MAX9551/MAX9552 provide a VCOM source for TFT LCDs. The MAX9550/MAX9551/ MAX9552 source and sink a large current to quickly restore the VCOM voltage, making it ideal for TFT LCDs. The output settles to within 0.1% in less than $2 \mu \mathrm{~s}$. In addition, the MAX9550/MAX9551/MAX9552 directly drive the capacitive load in the VCOM layer of the TFT LCDs without the need for a series resistor. The MAX9550/MAX9551/MAX9552 feature single, dual, and quad channel VCOM amplifiers, respectively. The MAX9550/MAX9551/MAX9552 can drive up to 800 mA of peak current per channel and operate up to 20V. The devices feature soft-start to reduce inrush current, output short-circuit protection, and thermal shutdown. The MAX9550 is available in a space-saving 5-pin thin SOT23 package, and an 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$ package with an exposed paddle. The MAX9551 is available in an 8-pin μ MAX package with an exposed paddle. The MAX9552 is available in a 14-pin TSSOP package. All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

TFT-LCD Panels
Instrument Control Voltage Sources

- Operates Up To 20V
- 800mA Peak Output Current
- Settles to Within 0.1\% of Vout in Less than $2 \mu \mathrm{~s}$
- Excellent Load Regulation
- Thermal-Shutdown Protection
- Short-Circuit Protection to Both Rails
- Soft-Start to Reduce Inrush Current

Ordering Information

| PART | AMPS | PIN-PACKAGE | PKG
 CODE | TOP
 MARK |
| :--- | :---: | :--- | :---: | :---: | :---: |
| MAX9550EZK +T | 1 | 5 Thin SOT23-5 | Z5-1 | ADSG |
| MAX9550EUA + | 1 | $8 \mu \mathrm{MAX}-\mathrm{EP}^{*}$ | $\mathrm{U} 8 \mathrm{E}-2$ | AABA |
| MAX9551EUA + | 2 | $8 \mu \mathrm{MAX}-\mathrm{EP}^{*}$ | $\mathrm{U} 8 \mathrm{E}-2$ | - |
| MAX9552EUD + | 4 | 14 TSSOP-EP* | $\mathrm{U} 14 \mathrm{E}-3$ | - |

Note: All devices specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes lead-free package.
*EP = Exposed paddle.

$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

High-Current VCOM Drive Buffers
 for TFT LCDs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD to GND)-0.3V to +22 V
Any Other Pin to GND-0.3V to (VDD +0.3 V)
IN+/IN- (current) ... $\pm 20 \mathrm{~mA}$
OUT, OUT_ (current)... 1 A
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5-Pin Thin SOT23 (derate $2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 219.1 mW

8-Pin $\mu \mathrm{MAX}$ (derate $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 824.7 mW 14-Pin TSSOP (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... .1667 mW Operating Temperature Range . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($V_{D D}=16 \mathrm{~V}, G N D=0 V, V_{C M}=V_{O U T}=V_{D D} / 2, C_{L}=1 \mu F, T_{A}=T_{M I N}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

High-Current VCOM Drive Buffers for TFT LCDs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=16 \mathrm{~V}, G N D=0 V, V_{C M}=V_{O U T}=V_{D D} / 2, C_{L}=1 \mu F, T_{A}=T_{M I N}\right.$ to $T_{M A X}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
AC CHARACTERISTICS							
Settling Time	ts	Settling to 0.1% of VOUT, $\mathrm{IL}=0$ to 600 mA , $C_{L}=1 \mu \mathrm{~F}, \mathrm{RS}_{S}=2.2 \Omega, \mathrm{C}_{\mathrm{S}}=0.1 \mu \mathrm{~F}$ (Figure 1)		2.0			$\mu \mathrm{s}$
Input Capacitance	CIN				1.5		pF
Transconductance	gm				13		S
		$\begin{array}{\|l} \hline \text { IOUT }= \pm 50 \mathrm{~mA} \\ \hline \text { IOUT }= \pm 500 \mathrm{~mA} \\ \hline \end{array}$			42		
Transient Output Current	Ioutmax	$A v=1$	$\mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ pulse for $100 \mu \mathrm{~s}$	± 200	± 290		mA
			$V_{D D}=16 \mathrm{~V}, V_{I N}=1.5 \mathrm{~V}$ pulse for $100 \mu \mathrm{~s}$	± 600	± 830		

Note 1: All devices are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
$\left(V_{D D}=16 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{CL}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

$\left(V_{D D}=16 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

STARTUP WAVEFORM

High-Current VCOM Drive Buffers for TFT LCDs

Pin Description

PIN				NAME	FUNCTION
MAX9550		MAX9551	MAX9552		
$\begin{aligned} & \text { THIN } \\ & \text { SOT23 } \end{aligned}$	$\mu \mathrm{MAX}$				
1	6	-	-	OUT	VCOM Output
2	4	4	11	GND	Ground
3	3	-	-	$\mathrm{IN}+$	Positive Input
4	2	-	-	IN-	Negative Input
5	7	8	4	VDD	Positive Supply Input
-	-	1	1	OUTA	VCOM Output A
-	-	3	3	INA+	Positive Input A
-	-	2	2	INA-	Negative Input A
-	1, 5, 8	-	-	N.C.	No Connection. Not internally connected.
-	-	5	5	INB+	Positive Input B
-	-	6	6	INB-	Negative Input B
-	-	7	7	OUTB	VCOM Output B
-	-	-	8	OUTC	VCOM Output C
-	-	-	9	INC-	Negative Input C
-	-	-	10	INC+	Positive Input C
-	-	-	12	IND+	Positive Input D
-	-	-	13	IND-	Negative Input D
-	-	-	14	OUTD	VCOM Output D
-	EP	EP	EP	EP	Exposed Paddle. EP is internally connected to GND. Connect EP to GND.

High-Current VCOM Drive Buffers for TFT LCDs

Detailed Description

The MAX9550/MAX9551/MAX9552 operational transconductance amplifiers (OTA) hold the VCOM voltage stable while providing the ability to source and sink a high current quickly (800 mA typ) into a capacitive load such as the backplane of a TFT-LCD panel. The output settles to within 0.1% in less than $2 \mu \mathrm{~s}$. The fast settling time is achieved by increasing the transconductance of the buffer as the output current increases (see the Typical Operating Characteristics).
In addition, the MAX9550/MAX9551/MAX9552 directly drive the capacitive load in the VCOM layer of the TFT LCD without the need for a series resistor.
The MAX9550/MAX9551/MAX9552 unity-gain bandwidth is:
GBW = gm / 2лCOUT
where Cout is the capacitive load at the output and gm is the transconductance.

To insure buffer stability, place a $1 \mu \mathrm{~F}$ low-ESR capacitor as close to the OUT pin as possible. However, this value may be reduced if the TFT-LCD panel load provides some of the capacitance and the resistance in series when this capacitance is low. Connect the feedback at OUT using a Kelvin connection at the low-ESR capacitor.

Thermal Shutdown with Temperature Hysteresis

The MAX9550/MAX9551/MAX9552 are capable of high output currents and therefore, feature thermal-shutdown protection with temperature hysteresis. When the die temperature reaches $+160^{\circ} \mathrm{C}$, the devices shut down. When the die cools down by $15^{\circ} \mathrm{C}$, the devices turn on again.

Figure 1. Settling Time Test Circuit

High-Current VCOM Drive Buffers for TFT LCDs

Applications Information

Output Load Capacitor

The output load capacitor must have a low ESR value ($50 \mathrm{~m} \Omega$ or lower) and it must be placed as close as possible to the OUT pin to ensure buffer stability (see Figure 2). Ceramic capacitors are an excellent choice.

Power Supplies and Bypass Capacitors The MAX9550/MAX9551/MAX9552 operate from a 6V to 20 V single supply, or from $\pm 3 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$ dual supplies. Proper supply bypassing ensures stability while driving high transient loads. The MAX9550/MAX9551/MAX9552 require minimum $4.7 \mu \mathrm{~F}(\mathrm{C} 1)$ and $0.1 \mu \mathrm{~F}(\mathrm{C} 2)$ power-supply bypass capacitors placed as close as possible to
the power-supply pin (VDD). See Figure 2. For dualsupply operation, use $4.7 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ bypass capacitors on both supplies (VDD and GND) with each capacitor placed as close as possible to the VDD and GND pins.

Layout and Grounding
The exposed paddle on the $\mu \mathrm{MAX}$ and TSSOP packages provides a low thermal resistance for heat dissipation. Solder the exposed paddle to a ground plane for best results. Do not route traces under these packages. For dual-supply operation, the exposed paddle (EP) must be electrically connected to the negative supply or it can be left unconnected.

*PLACE 4.7 $\mu \mathrm{F}$ AND $0.1 \mu \mathrm{~F}$ CAPACITORS AS CLOSE TO PIN AS POSSIBLE.
NOTE: PLACE CL AS CLOSE TO THE OUT PIN AS POSSIBLE AND KELVIN SENSE THE FEEDBACK LOOP CONNECTION AS SHOWN.

Figure 2. Typical TFT-LCD Backplane Drive Circuit

High-Current VCOM Drive Buffers for TFT LCDs

Chip Information
PROCESS: BiCMOS

High-Current VCOM Drive Buffers for TFT LCDs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Current VCOM Drive Buffers for TFT LCDs

\qquad
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. - DP AND EEI ARE REFERENCE DATUM AND DD NOT INCLUDE MDLD FLASH OR PRUTUSINS, AND ARE MEASURED AT THE BOTTIM PARTING LINE. MILD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm ON "D AND 0.25 nm ON "E" PER SIDE.
3. THE LEAD WIDTH DIMENSION DIES NDT INCLUDE DAMBAR PROTRUSION. ALLOVABLE DAMBAR PROTTUSIIN SHALL BE O.O7m TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMM MATERIAL CONDITION
4. datum plane r. lotacated at mold parting line and coincident vith lead, VHERE LEAD EXITS PLAStic body at the bottam af parting line.
THE LEAD TIPS MUST LINE WITHIN A SPECIFIED TDLERANCE ZONE. THIS TOLERANCE ZONE IS DEFINED BY TWO PARALLEL LINESN ONE PLANE IS THE SEATNG PLANE, DATM TC-CJ AND THE DTER P LANE IS AT THE SPRECIFIED Distance from c-c-1 IN iHE Direction initcated formed teads shat
5. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION MD-193 EXCEPT FIR THE "e" DIMENSION WHICH IS 0.95 Mm INSTEAD DF 1.00 mm . THIS PART IS IN FULL CIMPLIANCE TO EIAJ SPECIFICATION SC-74.
6. CIPLanarity applies to the expased pad as well as the terminals. CIPLANARITY SHALL NOT EXCEED 0.08 Mm .
7. Varpage shall nat exceed 0.10 mm .
8. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CINVENTION SHALL CDNFIRM TD JESD 95-1 PP-012. DETAILS OF TERMINAL \#1 OPTITNAL. THE TERMINAL \#I IDENTIFIER MAY BE EITHER A MDLD DR MARKED feature.
9. MARKing is for package orientation reference anly.
10. ALL dimensions apply to both leaded (-) and lead free (t) package codes.
-drawing not to scale-

SYMBCLS			
	MIN	NDM	MAX
A	-	-	1.10
A1	0.00	0.075	0.10
A2	0.85	0.88	0.90
A3	0.50 BSC		
6	0.30	-	0.45
b1	0.25	0.35	0.40
c	0.15	-	0.20
c1	0.12	0.127	0.15
D	2.80	2.90	3.00
E	2.75 BSC		
E1	1.55	1.60	1.65
L	0.30	0.40	0.50
e1	1.90 BSC		
e	0.95 BSC		
\propto	$0 \times$	4°	8
a,a.	0.20		
Pkg. codes ${ }^{\text {Z }}$ Z5-1/ Z5-2			

High－Current VCOM Drive Buffers for TFT LCDs

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

High－Current VCOM Drive Buffers for TFT LCDs

＿＿Package Information（continued）
（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

$\begin{array}{\|c} \hline s_{1} \\ r_{1} \\ y_{L} \\ \hline \end{array}$	CDMMDN DIMENSIDNS			
	MILLIMETERS		INCHES	
	MIN．	MAX，	MIN．	MAX．
A	－－	1.10	－－	0.043
A1	0.00	0.15	0.000	0.006
A2	0.85	0.95	0.033	0.037
6	0.19	0.30	0.007	0.012
b1	0.19	0.25	0.007	0.010
c	0.090	0.20	0.004	0.008
c1	0.090	0.135	0.004	0.0053
D	SEE VARIATIDNS		SEE VARIATIDNS	
E	4.30	4.50	0.169	0.177
e	0.65 BSC		0.026 BSC	
H	6.25	6.50	0.246	0.256
L	0.50	0.70	0.020	0.028
N	SEE VARIATIDNS		SEE VARIATIDNS	
Y	2.85	3.15	0.112	0.124
$\boldsymbol{\sim}$	$0{ }^{\circ}$	8°	0°	8°

1．DIMENSIDNS D AND E DD NDT INCLUDE FLASH．
2．MILD FLASH GR PROTRUSIONS NGT TI EXCEED 0.15 mm PER SIDE．
3．CINTRLLLING DIMENSION MILLIMETERS．
4．MEETS JEDEC DUTLINE MD－153，SEE JEDEC VARIATIONS TABLE．
5．＂N＂REFERS TO NUMBER OF LEADS．
6．EXPISED PAD FLUSH WITH BOTTOM IF PACKAGE WITHIN ．002＾
今．THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZINE．THIS TL
THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZUNE．THIS TOLERANCE ZUNE IS DEFINED BY
TWI PARALLEL PLANES．DNE PLANE IS THE SEATING PLANE，DATUM［ $-\mathrm{C}-\mathrm{]}$ ；THE T THER PLANE
IS AT THE SPECIFIED DISTANCE FRDM［－C－］IN THE DIRECTION INDICATED．
8．MARKING IS FIR PACKAGE GRIENTATIUN REFERENCE UNLY．
18．DALLAS ノUAXI／VI

9．NUMBER DF LEADS SHDWN ARE FIR REFERENCE \quad INLY．
－DRAWING NロT TI SCALE－

Revision History
Pages changed at Rev 3：1，2，9，10， 12

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

