: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Precision, High-Bandwidth Op Amp

General Description

The MAX9622 op amp features rail-to-rail output and 50 MHz GBW at just 1 mA supply current. At power-up, this device autocalibrates its input offset voltage to less than $100 \mu \mathrm{~V}$. It operates from a single-supply voltage of 2.0 V to 5.25 V .

The MAX9622 is available in a tiny $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 5 -pin SC70 package and is rated over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Applications
Power Modules
Automotive Power Supplies
ADC Drivers for Industrial Systems
Instrumentation
Filters
-

- 50MHz UGBW
- Low Input Voltage Offset Voltage (100 1 V max)
- Input Common-Mode Voltage Range Extends Below Ground
- Wide 2.0V to 5.25V Supply Range
- Low 1mA Supply Current

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9622AXK +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SC 70	AUA

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Precision, High-Bandwidth Op Amp

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to GND)..............................-0.3V to +5.5 V
All Other Pins................................(GND - 0.3V) to (VCC + 0.3V)
Short-Circuit Duration to GND or VCC 1s
Continuous Input Current (any pins)............................... $\pm 20 \mathrm{~mA}$
Thermal Limits (Note 1)
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
5-Pin SC70 (derate 3.1mW/ ${ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 245.4 mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $260^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}+=\mathrm{V} / \mathrm{N}-=0 \mathrm{~V}, \mathrm{RL}=10 \mathrm{k} \Omega\right.$ to $\mathrm{VCC} / 2, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLY							
Supply Voltage Range	VCC	Guaranteed by PSRR		2		5.25	V
Supply Current	ICC	No load	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	1.5	mA
			$-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+125^{\circ} \mathrm{C}$			2.1	
Power-Supply Rejection Ratio	PSRR	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		97	126		dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		93			
Power-Up Time	ton				3		ms

DC SPECIFICATIONS

Input Offset Voltage	Vos	After power-up auto	alibration		8	100	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			8	3000	
Input Offset Voltage Drift	$\Delta \mathrm{V}$ OS				3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	IB	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			62	150	nA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				320	
Input Offset Current	Ios	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			3	12	nA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				30	
Input Common-Mode Range	VCM	Guaranteed by CMRR, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		-0.1		VCC -1.3	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		87	121		dB
				80			
Large-Signal Gain	Avol	$400 \mathrm{mV} \leq \mathrm{V}_{\text {OUT }} \leq$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	91	103		dB
		Vcc - 400mV	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	84			
		$400 \mathrm{mV} \leq$ VOUT \leq Vcc - 400mV, RL = $1 \mathrm{k} \Omega$ to $\mathrm{VCC} / 2$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	77	89		
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	69			
Output Voltage Swing	$\mathrm{VOH}-\mathrm{VCC}$	$R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{C C} / 2$				60	mV
	VOL	$R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{C C} / 2$				60	
		RL $=10 \mathrm{k} \Omega$ to GND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				40	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND				48	
Short-Circuit Current	ISC	(Note 3)			80		mA

Precision, High-Bandwidth Op Amp

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}+=\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, R \mathrm{R}=10 \mathrm{k} \Omega\right.$ to $\mathrm{VCC} / 2, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
AC SPECIFICATIONS					
Gain-Bandwidth Product	GBW		50		MHz
Large-Signal Bandwidth	BWLS	VOUT $=2 \mathrm{VP}_{\text {P-P }}$	3		MHz
Slew Rate	SR	VOUT = 2VP-P, 10\% to 90\%	20		V/us
Settling Time	ts	To 0.1\%, Vout = 2VP-P, CL = 10pF	200		ns
Total Harmonic Distortion	THD	$\mathrm{f}=10 \mathrm{kHz}$, VOUT $=2 \mathrm{VP}$-P	90		dB
Input Voltage Noise Density	EN	$\mathrm{f}=10 \mathrm{kHz}$	13		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current Noise Density	IN	$\mathrm{f}=10 \mathrm{kHz}$	3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 2: The device is 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Temperature limits are guaranteed by design.
Note 3: Guaranteed by design.

Typical Operating Characteristics

$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$ to $\mathrm{VCC} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Precision, High-Bandwidth Op Amp

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Precision, High-Bandwidth Op Amp

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{C}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT RECOVERY FROM SATURATION Vout Saturated to positive rail

Precision, High-Bandwidth Op Amp

Typical Operating Characteristics (continued)

($\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$1 \mu \mathrm{~s} / \mathrm{div}$

CAPACITIVE LOADING STABILITY
vs. ISOLATION RESISTANCE, Av = 1V/V

Precision, High-Bandwidth Op Amp

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	IN+	Positive Input
2	GND	Ground
3	IN-	Negative Input
4	OUT	Output
5	VCC	Positive Power Supply. Bypass with a 0.1 $\mu \mathrm{F}$ capacitor to ground.

Precision, High-Bandwidth Op Amp

Detailed Description

The MAX9622 is a power-efficient, high-speed op amp ideal for capturing fast edges in a wide variety of signal processing applications.
It precisely calibrates its VOS on power-up to eliminate the effects of package stresses, power supplies, and temperature.

Applications Information

Power-Up Autotrim

The MAX9622 features power-up autotrimming that allows the devices to achieve less than $100 \mu \mathrm{~V}$ of input offset voltage. The startup sequence takes approximately 4 ms to complete after the supply voltage exceeds an internal threshold of 1.8 V . During this time, the inputs and outputs are connected to an auxiliary amplifier that has an input offset of 5 mV (typ). As soon as the autotrimming is completed, the inputs and outputs switch from the auxiliary amplifier to the calibrated amplifier. The calibration settings hold until the supply voltage drops below an internal threshold of 1.4 V . This could be used to recalibrate the amplifier. The supply current of the part increases to about 2.5 mA during the power-up autotrim period. Use good supply decoupling with low ESR capacitors.

Active Filters

The MAX9622 is ideal for a wide variety of active filter circuits that make use of their wide output voltage swings and large bandwidth capabilities. The Typical Application Circuit shows a multiple feedback active filter circuit example with a 100 kHz corner frequency. At low frequencies, the amplifier behaves like a simple low-distortion inverting amplifier gain $=-1$, while its high bandwidth gives excellent stopband attenuation above its corner frequency. See the Typical Application Circuit.

Input Differential Voltage Protection
During normal op-amp operation, the inverting and noninverting inputs of the MAX9622 are at essentially the same voltage. However, either due to fast input voltage transients or due to loss of negative feedback, these pins can be forced to different voltages. Internal back-to-back diodes and series resistors protect input-stage transistors from large input differential voltages (see Figure 2). $\mathrm{IN}+$ and IN - can survive any voltage between the powersupply rails.
This op amp has been designed to exhibit no phase inversion to overdriven inputs.

Figure 1. Autotrim Timing Diagram

Figure 2. Input Protection Circuit

Precision, High-Bandwidth Op Amp

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC 70	$\times 5+1$	$\underline{21-0076}$	$\underline{90-0188}$

Precision, High-Bandwidth Op Amp

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $9 / 10$ | Initial release | - |

