: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Abstract

General Description The MAX9626/MAX9627/MAX9628 are low-noise, lowdistortion, and high-bandwidth differential amplifier/ADC drivers for use in applications from DC to 1.35 GHz . The exceptional low input-referred noise and low distortion make these parts an excellent solution to drive high-speed 12-bit to 16-bit pipeline ADCs. The output common mode is set through the VOCM input pin, thus eliminating the need for a coupling transformer or AC-coupling capacitors. The ICs feature shutdown mode for power savings and are offered in a 12-pin, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ TQFN package for operation over a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Applications
Communication
Medical Imaging
ATE
High-Performance Instrumentation
Features

- Low-Voltage Noise Density $3.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Harmonic Distortion

HD2/HD3 of $-102 /-105 \mathrm{~dB}$ at 10 MHz
HD2/HD3 of $-86 /-80 \mathrm{~dB}$ at 125 MHz

- Factory Set Gain Options: 1V/V, 2V/V, 4V/V
- 1.35GHz Small-Signal Bandwidth
- Adjustable Output Common-Mode Voltage
- Differential-to-Differential or Single-Ended-toDifferential Operation
- $25 \mu \mathrm{~A}$ Shutdown Current
- +2.85V to +5.25 V Single-Supply Voltage
- Small, 3mm x 3mm 12-Pin TQFN Package

	Ordering Information		
PART	GAIN (dB)	PIN-PACKAGE	TOP MARK
MAX9626ATC+	1	12 TQFN-EP*	+ ABS
MAX9627ATC+	2	12 TQFN-EP*	+ ABT
MAX9628ATC+	4	12 TQFN-EP*	+ ABU

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
${ }^{*} E P=$ Exposed pad.

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to V_{EE}).
-0.3 V to +5.5 V
IN+, IN- \qquad . $\mathrm{V}_{\mathrm{EE}}-2.5 \mathrm{~V}$) to $(\mathrm{VCC}+0.3 \mathrm{~V})$
RT+, RT- \qquad (VEE - 2.5V) to (VCC +0.3 V)
RT- to IN- and RT+ to IN+ \qquad $\pm 2 \mathrm{~V}$
 Output Short-Circuit Duration (OUT+ to OUT-) \qquad Continuous Input Current
(any pin except VEE, VCC, OUT+, OUT-).................... $\pm 20 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
12-Pin TQFN Multilayer Board (deration $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
$\theta J \mathrm{~A}$	$60 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ӨJC	$11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

ontinuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 2-Pin TQFN Multilayer Board (deration $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. 1333.3 mW
 Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature Storage Temperature Range........................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ Soldering Temperature (reflow) $260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $+125^{\circ} \mathrm{C}$. Typical values are at $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DC SPECIFICATIONS							
Supply Voltage Range	VCC	Guaranteed by PSRR		2.85		5.25	V
Supply Current	ICC	$\overline{\text { SHDN }}=\mathrm{VCC}$			59	80	mA
		$\overline{\text { SHDN }}=$ GND			25	50	$\mu \mathrm{A}$
Power-Supply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{VVCOM}=\mathrm{VCC} / 2, \\ & 2.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	MAX9626	66	89		dB
			MAX9627	66	92		
			MAX9628	64	92		
		$\begin{aligned} & \mathrm{VVCOM}=\mathrm{VCC} / 2, \\ & 2.85 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	MAX9626	60	89		
			MAX9627	63	92		
			MAX9628	64	92		
Differential Voltage Gain	Gdiff	VOUT+, VOUT- = - 1 V to +1 V	MAX9626		1		V/V
			MAX9627		2		
			MAX9628		4		
Gain Error		VOUT+, VOUT- = -1V to +1V	MAX9626	-2	± 0.2	+2	\%
			MAX9627	-2	± 0.2	+2	
			MAX9628	-2	± 0.2	+2	
Input Offset Voltage		Differential input,$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{I}} \mathrm{~N}+=\mathrm{VCC} / 2, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	MAX9626		2	± 11	mV
			MAX9627		2	± 8	
			MAX9628		2	± 8	
		Differential input,$\begin{aligned} & \mathrm{V} I \mathrm{~N}-=\mathrm{V} / \mathrm{N}+=\mathrm{VCC} / 2 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	MAX9626		2	± 13	
			MAX9627		2	± 10	
			MAX9628		2	± 10	
Common-Mode Input Voltage Range (Note 2)	VICM	Guaranteed by CMRR	MAX9626	-1.5		+1.5	V
			MAX9627	-0.75		+1.5	
			MAX9628	-0.4		+1.5	

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+3.3 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IN}+}=0 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{V O C M}=\mathrm{V}_{\mathrm{C}} / 2, \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$ (between OUT + and OUT-$), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values are at $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Common-Mode Rejection Ratio	CMRR	MAX9626		46	62		dB
				50	69		
		MAX9628		54	79		
Output Voltage Swing	VOH	$\mathrm{VOCM}=\mathrm{VCC}$		$\text { VCC }-$ 1	$\begin{gathered} \hline \text { VCC - } \\ 0.8 \end{gathered}$		V
	VoL	$\mathrm{VVOCM}=0 \mathrm{~V}$			$\begin{gathered} \text { VEE }+ \\ 0.65 \end{gathered}$	$\begin{gathered} \text { VEE + } \\ 0.9 \end{gathered}$	
Output Current		Source: VCC - VOUT $=0.95 \mathrm{~V}$		100			mA
		Sink: VOUT - V $\mathrm{VEE}^{\text {a }}$ = 0.95V					
Common-Mode Input Resistance		MAX9626			200		Ω
		MAX9627			225		
		MAX9628			312		
Differential Input Resistance		MAX9626			267		Ω
		MAX9627			225		
		MAX9628			209		
Input Termination Resistance		RT- to IN- and RT+ to IN+			64		Ω
AC SPECIFICATIONS							
3dB Large-Signal Bandwidth	LSB3dB	VOUT+ - Vout- $=2.0 \mathrm{VP}_{\text {P-P }}$	MAX9626		1150		MHz
			MAX9627		1350		
			MAX9628		1000		
0.1dB Large-Signal Bandwidth	LSB0.1dB	VOUT+ - VOUT- $=2.0 \mathrm{VP-P}$	MAX9626		80		MHz
			MAX9627		80		
			MAX9628		90		
Slew Rate	SR	VOUT+ - VOUT- $=2.0 \mathrm{VP-P}$	MAX9626		6500		V/us
			MAX9627		6100		
			MAX9628		5500		
AC Power-Supply Rejection Ratio	AC PSRR	$\mathrm{VVOCM}=1.65 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$	MAX9626		64		dB
			MAX9627		65		
			MAX9628		62		
Input Voltage Noise	eN	$\mathrm{f}=10 \mathrm{MHz}$	MAX9626		5.7		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			MAX9627		4.3		
			MAX9628		3.6		
Noise Figure	NF	$R S=50 \Omega$	MAX9626		22.2		dB
			MAX9627		19.7		
			MAX9628		18.1		

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+3.3 V, V_{E E}=0 V, V_{I N}=V_{I N+}=0 V, \overline{S H D N}=V_{C C}, V_{V O C M}=V_{C C} / 2, R_{L}=500 \Omega\right.$ (between OUT+ and OUT-), $T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Typical values are at $+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Temperature limits are guaranteed by design.
Note 2: Input voltage range is a function of VOCM. See the Input Voltage Range section for details.
Note 3: Limits are guaranteed by design based on bench characterization. Testing is functional using different limits.

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics

$\left(V_{C C}=+3.3 V, V_{E E}=0 V, V_{I N}=V_{I N+}=0 V, \overline{S H D N}=V_{C C}, V_{I C M}=0 V, V_{V O C M}=V_{C C} / 2, R_{L}=500 \Omega\right.$, single ended. Plot applies to all versions, unless noted otherwise.)

HARMONIC DISTORTION vs. FREQUENCY

HARMONIC DISTORTION vs. FREQUENCY
$\mathrm{RL}_{\mathrm{L}}=100 \Omega$, $\mathrm{Vcc}=\mathbf{5 V}$

HARMONIC DISTORTION vs. FREQUENCY
$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{VCC}=5 \mathrm{~V}$

HARMONIC DISTORTION vs. FREQUENCY

HARMONIC DISTORTION vs. FREQUENCY
$\mathrm{RL}_{\mathrm{L}}=\mathbf{5 0 0 \Omega}, \mathrm{V} \mathbf{C C}=\mathbf{5 V}$

HARMONIC DISTORTION vs. FREQUENCY
$\mathrm{R}_{\mathrm{L}}=\mathbf{1 k} \Omega, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$

HARMONIC DISTORTION vs. FREQUENCY

HARMONIC DISTORTION vs. FREQUENCY $\mathrm{R}_{\mathrm{L}}=\mathbf{1 k} \Omega$, $\mathbf{V} \mathbf{C c}=5 \mathrm{~V}$

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics (continued)

$\left(V_{C C}=+3.3 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}}+=0 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{ICM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VOCM}}=\mathrm{V}_{C C} / 2, R \mathrm{R}=500 \Omega\right.$, single ended. Plot applies to all versions, unless noted otherwise.)

HARMONIC DISTORTION vs. LOAD $\mathrm{f}=\mathbf{1 2 5 \mathrm { MHz } , \mathrm { Vcc } = 5 \mathrm { V }}$

HARMONIC DISTORTION vs. DIFFERENTIAL OUTPUT SWING $\mathrm{f}=\mathbf{1 0 M H z}, \mathrm{VCC}=5 \mathrm{~V}$

HARMONIC DISTORTION vs. LOAD $f=125 \mathrm{MHz}, \mathrm{VcC}=5 \mathrm{~V}$

HARMONIC DISTORTION vs. LOAD
$\mathrm{f}=\mathbf{1 0 \mathrm { MHz } , \mathrm { VCC } = 5 \mathrm { V }}$

HARMONIC DISTORTION
vs. DIFFERENTIAL OUTPUT SWING $\mathrm{f}=\mathbf{1 2 5 M H z}, \mathrm{VCC}=5 \mathrm{~V}$

HARMONIC DISTORTION vs. LOAD
$\mathrm{f}=\mathbf{1 0} \mathrm{MHz}, \mathrm{VcC}=\mathbf{5 V}$

HARMONIC DISTORTION vs. LOAD

HARMONIC DISTORTION vs. DIFFERENTIAL OUTPUT SWING $\mathrm{f}=\mathbf{1 0 M H z}, \mathrm{VCC}=\mathbf{5 V}$

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics (continued)
$\left(\overline{V_{C C}}=+3.3 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{I N+}=0 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{V}_{C C}, V_{I C M}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{VOCM}}=\mathrm{V}_{C C} / 2, R_{L}=500 \Omega\right.$, single ended. Plot applies to all versions, unless noted otherwise.)

SMALL-SIGNAL BANDWIDTH vs. FREQUENCY VCC $=5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega$, VSIG $=100 \mathrm{mV}$ P-P

SMALL-SIGNAL BANDWIDTH vs. FREQUENCY $V_{C C}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, $\mathrm{V}_{\text {SIG }}=100 \mathrm{mV}$ P-P

SMALL-SIGNAL BANDWIDTH vs. FREQUENCY

SMALL-SIGNAL BANDWIDTH vs. FREQUENCY Vcc $=5 \mathrm{~V}$, RL $=100 \Omega$, V SIG $=100 \mathrm{mVP}-\mathrm{P}$

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics (continued)

$\overline{\left(V_{C C}=+3.3 V, V_{E E}=O V, V_{I N}=V_{I N+}=0 V, \overline{S H D N}\right.}=V_{C C}, V_{I C M}=0 V, V_{V O C M}=V_{C C} / 2, R L=500 \Omega$, single ended. Plot applies to all versions, unless noted otherwise.)

SMALL-SIGNAL BANDWIDTH
vs. RESISTIVE LOAD

LARGE-SIGNAL BANDWIDTH vs. FREQUENCY VCC $=3.3 \mathrm{~V}$, RL $^{2}=100 \Omega$, VSIG $=2 \mathrm{VP}-\mathrm{P}$

LARGE-SIGNAL BANDWIDTH
vs. RESISTIVE LOAD

LARGE-SIGNAL BANDWIDTH vs. FREQUENCY

LARGE-SIGNAL BANDWIDTH vs. FREQUENCY VCC $=5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega$, VSIG $=2 \mathrm{VP}-\mathrm{P}$

SMALL-SIGNAL BANDWIDTH vs. Vvocm

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics (continued)

 versions, unless noted otherwise.)

INPUT REFERRED VOLTAGE NOISE
vs. FREQUENCY

INPUT REFERRED VOLTAGE NOISE
vs. FREQUENCY

COMMON-MODE REJECTION RATIO vs. FREQUENCY (MAX9627)

INPUT REFERRED VOLTAGE NOISE
vs. FREQUENCY

COMMON-MODE REJECTION RATIO
vs. FREQUENCY (MAX9628)

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics (continued)
$\overline{\left(V_{C C}=+3.3 V, V_{E E}=O V, V_{I N}=V_{I N+}=0 V, \overline{S H D N}\right.}=V_{C C}, V_{I C M}=0 V, V_{V O C M}=V_{C C} / 2, R_{L}=500 \Omega$, single ended. Plot applies to all versions, unless noted otherwise.)

OFFSET VOLTAGE HISTOGRAM (MAX9626)

OFFSET VOLTAGE HISTOGRAM
(MAX9627)

GAIN ERROR HISTOGRAM
(MAX9627)

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (MAX9628)

OFFSET VOLTAGE HISTOGRAM
(MAX9628)

GAIN ERROR HISTOGRAM (MAX9628)

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=+3.3 \mathrm{~V}, \mathrm{VEE}^{2}=0 \mathrm{~V}, \mathrm{VIN}-=\mathrm{VIN}+=0 \mathrm{~V}, \overline{\mathrm{SHDN}}=\mathrm{VCC}, \mathrm{VICM}=0 \mathrm{~V}, \mathrm{VVOCM}=\mathrm{VCC} / 2, R \mathrm{~L}=500 \Omega\right.$, single ended. Plot applies to all versions, unless noted otherwise.)

S PARAMETERS vs. FREQUENCY
(MAX9628)

INTERMODULATION DISTORTION
vs. FREQUENCY (MAX9627, VCC = 5V)

INTERMODULATION DISTORTION vs. FREQUENCY (MAX9626, VCC = 5V)

INTERMODULATION DISTORTION
vs. FREQUENCY (MAX9627, VcC = 3.3V)

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

$\overline{\left(V_{C C}=+3.3 V, V_{E E}=O V, V I N-=V_{I N}=0 V, \overline{S H D N}\right.}=V_{C C}, V_{I C M}=0 V, V_{V O C M}=V_{C C} / 2, R L=500 \Omega$, single ended. Plot applies to all versions, unless noted otherwise.)

VOCM TRANSIENT RESPONSE
(MAX9626, $\mathrm{V}_{\text {IN }}=1.15 \mathrm{~V}$ TO 2.15V STEP)

2ns/div

INTERMODULATION DISTORTION vs. FREQUENCY (MAX9628, VCC = 3.3V)

VCOM SMALL-SIGNAL GAIN
vs. FREQUENCY

VOCM TRANSIENT RESPONSE
(MAX9627, VIN = 1.6V TO 1.7V STEP)

VOCM TRANSIENT RESPONSE (MAX9626, $\mathrm{V}_{\mathbb{N}}=1.6 \mathrm{~V}$ TO 1.7V STEP)

VOCM TRANSIENT RESPONSE
(MAX9627, $\mathrm{V}_{\text {IN }}=1.15 \mathrm{~V}$ TO 2.15V STEP)

2ns/div

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Typical Operating Characteristics (continued)
$\left(\overline{V_{C C}}=+3.3 V, V_{E E}=0 V, V_{I N}=V_{I N+}=0 V, \overline{S H D N}=V_{C C}, V_{I C M}=0 V, V_{V O C M}=V_{C C} / 2, R L=500 \Omega\right.$, single ended. Plot applies to all versions, unless noted otherwise.)versions, unless noted otherwise.)

2ns/div

SMALL-SIGNAL TRANSIENT RESPONSE (MAX9627, VIN = 0 TO 50mV STEP,

2ns/div

2ns/div

SMALL-SIGNAL TRANSIENT RESPONSE (MAX9628, $\mathrm{V}_{\mathrm{IN}}=0$ TO 25mV STEP,

SMALL-SIGNAL TRANSIENT RESPONSE

LARGE-SIGNAL TRANSIENT RESPONSE (MAX9626, $\mathrm{V}_{\mathrm{IN}}=0$ TO 1V STEP,

2ns/div

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Pin Description

PIN	NAME	
1	IN +	FUNCTION
2	VOCM	Output Common-Mode Voltage Input
3	IN-	Inverting Differential Input
4	RT-	Termination Resistor Terminal for IN-
5,6	VCC	Positive Supply Voltage
7	OUT +	Noninverting Differential Output
8	$\overline{\text { SHDN }}$	Active-Low Shutdown Mode Input
9	OUT-	Inverting Differential Output
10,11	VEE	Negative Supply Voltage
12	RT+	Termination Resistor Terminal for IN+
-	EP	Exposed Pad. Connected to VEE.

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Detailed Description

The MAX9626/MAX9627/MAX9628 family employs voltage feedback to implement a differential-in to differential-out amplifier. On-chip feedback resistors set the gain of the amplifier. The use of on-chip resistors not only saves cost and space, but also maximizes the overall amplifier's performance.
There are two feedback loops within the amplifier circuit. The differential feedback loop employs the onchip resistors to set the differential gain. The signal is applied differentially at the inputs and the output signal is obtained differentially at the outputs. The common-mode feedback loop controls the common-mode voltage at the outputs. Both inverting and noninverting outputs exhibit a common-mode voltage equal to the voltage applied at VOCM input, without affecting the differential output signal. The outputs are perfectly balanced having signals of equal amplitude and 180° apart in-phase.
Amplifier input impedance is determined by internal gain resistors. Therefore, source impedance does affect the gain of the amplifier. Input termination resistors are required to achieve source impedance match. If preferred, the customer has the choice of using the on-chip termination resistors. If they are used, then the amplifier's input impedance is 50Ω for singleended input configuration. The amplifier's differential gain accuracy is directly affected by the source impedance value.
The ICs feature a proprietary circuit design. The use of predistortion and dynamic distortion cancellation greatly improves large-signal AC-performance at high frequency.

Fixed Gain Options for Best AC Performance

The ICs have internal gain resistors to achieve excellent bandwidth and distortion performance. Because the virtual ground nodes among the gain resistors and the inputs of the amplifier are internal to the device, the parasitic capacitors of such nodes are kept to the minimum. This enhances the AC performance of the device.

The ICs have three gain options with resistor values as per Table 1, while keeping the bandwidth constant.

Table 1. Amplifier's Gain Setting and Internal Resistor Values

GAIN (V/V)	$\mathbf{R G G}_{\mathbf{G}}(\boldsymbol{\Omega})$	$\mathbf{R F}_{\mathbf{F}}(\boldsymbol{\Omega})$	3dB BANDWIDTH $\mathbf{(G H z)}$
1	200	200	1
2	150	300	1.35
4	125	500	1.15

The differential gain is given by the equation: $G=R F / R G$
Internal Terminations
Use the internal RT resistors in applications where the source impedance RS is 50Ω and the input impedance of the amplifier has to match with it. For a perfectly balanced circuit driven by a differential source impedance, the input impedance of the amplifier is given by the simple equation RIN $=2 \times$ RG. For single-ended input applications, where the source impedance of 50Ω connects to either input, such as in the Typical Operating Circuit, the input impedance of the amplifier is given by the equation:

$$
R_{\mathbb{I N}}=\frac{R_{G}}{\left(1-\frac{R_{F}}{2 \times\left(R_{G}+R_{F}\right)}\right)}
$$

To match the input impedance Rs, the following condition must be met: RINIIRT = RS
Therefore:

From this equation it can be inferred that RT is about 64Ω for all the cases of Table 1.

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Table 2. Typical Gain Values When Using the Internal Termination Resistors (RT and $\mathrm{RS}=50$)

$\mathbf{R T}_{\mathbf{T}} \boldsymbol{\Omega} \mathbf{)}$	$\mathbf{R G}_{\mathbf{G}} \boldsymbol{\Omega} \mathbf{)}$	$\mathbf{R F}_{\mathbf{F}} \boldsymbol{\Omega} \mathbf{)}$	GAIN (V/V)
64	200	200	0.48
64	150	300	0.95
64	125	500	1.85

The gain options with the internal termination resistors R_{T} are given by the following equation and typical numbers are summarized in Table 2. Gain values are dependent on actual source impedance and on-chip Rt, RG, and RF values. The latter are subject to process variation.

$$
\text { GAIN }=\frac{R_{F} \times R_{T}}{R_{T} \times\left(R_{S}+R_{G}\right)+R_{S} \times R_{G}}
$$

For single-ended to differential applications where the source impedance is 50Ω, such as the case of the Typical Application Circuit, connect an external 50Ω resistor at the other input to maintain symmetry and minimize the gain error.

Applications Information

Input Voltage Range

One of the typical applications is the translation of a single-ended input signal that is referenced to ground to a differential output signal that feeds a high-speed pipeline analog-to-digital converter (ADC) such as the one in the Typical Application Circuit. Because the input signal has OV common mode, the majority of the amplifiers would require a negative supply. The ICs allow the input signal to be below ground even with single-supply operation (VEE connected to GND). How far below ground depends on the gain option. See the Electrical Characteristics table and Figures 1, 2, and 3 for details. Use the following equation to determine the input com-mon-mode range:

$$
\mathrm{V}_{\text {IN_CM }}=\frac{\left(\mathrm{V}_{\text {AMP }}-\mathrm{V}_{\text {OUT_CM }}\right)}{(\mathrm{G}+1)} \times \frac{(\mathrm{G}+1)}{\mathrm{G}}
$$

where VIN_CM is the input common-mode voltage. VAMP is the voltage at the input node of the internal amplifier. VOUT_CM is the output common-mode voltage. G is the gain of the device.

Figure 1. MAX9626 Input Common-Mode Voltage vs. Output Common-Mode Voltage of the Amplifier

Figure 2. MAX9627 Input Common-Mode Voltage vs. Output Common-Mode Voltage of the Amplifier

Vout_CM (V)
Figure 3. MAX9628 Input Common-Mode Voltage vs. Output Common-Mode Voltage of the Amplifier

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Input Voltage Noise

The input referred voltage noise specification reported in the Electrical Characteristics table includes both the noise contribution of the amplifier and the contribution of all the internal resistive elements. Because such resistive elements change depending on the gain selection as per Table 1, the input voltage noise specification differs according to the gain options.

Setting the Output Common-Mode Voltage

The ICs feature an input, VOCM, that sets the differential output common-mode voltage. Its wide range from 1.1V to VCC -1.1V makes the amplifier family compatible with most of the high-speed pipeline differential input ADCs. While many of these ADCs accept an input commonmode around half of their supply voltage, some of them have input common-mode range shifted toward either ground or the positive supply.
The ICs can comfortably drive both 3.3 V and 5 V ADCs that have common-mode range around half supply. When powered with VCC of 5 V or higher, the ICs can also drive some of the popular ADCs with common-mode range higher than 3 V .
The high bandwidth of VOCM makes the amplifier's output recover quickly from load transient conditions. Such conditions may occur when switching the ADC input capacitor during the track-and-hold phases. The input capacitor switching may cause a voltage glitch at the input of the ADC, which incurs a load transient condition for the driving amplifier.

Power-Supply Decoupling and Layout Techniques

The ICs are high-speed devices, sensitive to the PCB environment in which they operate. Realizing their superior performance requires attention to the details of highspeed PCB design.
The first requirement is a solid continuous ground plane on the second PCB layer, preferably with no signal or power traces. PCB layers 3 and 4 can be power-supply routing or signal routing, but preferably they should not be routed together.

For power-supply decoupling with single-supply operation, place a large capacitor by the VCC supply node and then place a smaller capacitor as close as possible to the VCC pin. For 1 GHz decoupling, 22pF to 100pF are good values to use. When used with split supplies, place relevant capacitors on the VEE supply as well.
Ground vias are critical to provide a ground return path for high frequency signals and should be placed near the decoupling capacitors. Place ground vias on the exposed pad as well, along the edges and near the pins to shorten the return path and maximize isolation. Vias should also be placed next to the input and output signal traces to maximize isolation. Finally, make sure that the layer 2 ground plane is not severely broken up by signal vias or power supply vias.
Signal routing should be short and direct to avoid parasitic effects. For very high-frequency designs, avoid using right angle connectors since they may introduce a capacitive discontinuity and ultimately limit the frequency response.

Recommended Pipeline ADCs
The MAX9626/MAX9627/MAX9628 family offers excellent bandwidth and distortion performance that is in line with the majority of high-speed and 16-bit resolution pipeline ADCs in the market. In particular, it is recommended in combination with the MAX19586/MAX19588 family of 16 -bit and 100 Msps pipeline ADCs.
For lower resolution applications, the MAX9626/ MAX9627/MAX9628 family can also drive 10- to 14-bit ADCs such as the MAX12553/MAX12554/MAX12555, MAX12527/MAX12528/MAX12529 and MAX19505/ MAX19506/MAX19507 families.

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
12 TQFN	$\mathrm{T} 1233+1$	$\underline{21-0136}$	$\underline{90-0066}$

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PKG	8L 3x3			12L 3x3			16L 3x3		
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30
D	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
E	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
e	0.65 BSC.			0.50 BSC .			0.50 BSC .		
L	0.35	0.55	0.75	0.45	0.55	0.65	0.30	0.40	0.50
N	8			12			16		
ND	2			3			4		
NE	2			3			4		
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05
A2	0.20 REF			0.20 REF			0.20 REF		
k	0.25	-	-	0.25	-	-	0.25	-	-

EXPOSED PAD VARIATIONS								
PKG. CODES	D2			E2			PIN ID	JEDEC
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
TQ833-1	0.25	0.70	1.25	0.25	0.70	1.25	$0.35 \times 45^{\circ}$	WEEC
T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633-5	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL\# IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS,
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.
10. MARKING SHOWN IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
11. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
12. WARPAGE NOT TO EXCEED 0.10 mm
13. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND Pb FREE (+) PARTS.

11 1 - 1			
TITLE: PACKAGE OUTLINE $8,12,16$ L THIN QFN, $3 \times 3 \times 0.75 \mathrm{~mm}$			
APPROVAL	DOCUMENT CONTROL NO. $21-0136$	${ }^{\text {ReV. }}$	2/2

Low-Noise, Low-Distortion, 1.35GHz Fully Differential Amplifiers

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $9 / 10$ | Initial release | - |
| 1 | $2 / 11$ | Updated shutdown current value, updated Electrical Characteristics table, updated.
 Internal Terminations section, and added new typical operating characteristics | $1-7,14$ |

