

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MAX9647/MAX9648 General-Purpose, Low-Voltage, Tiny Pack Comparators

General Description

Features

The MAX9647/MAX9648 comparators are drop-in, pin-forpin compatible replacements for the LMX331/LMX331H. The MAX9648 has the added benefit of internal hysteresis to provide noise immunity, preventing output oscillations even with slow moving input signals.

Advantages of the ICs include low supply voltage, small package, and low cost. They also offer a wide supply voltage range, wide operating temperature range, competitive CMRR and PSRR, response time characteristics, input offset, low noise, output saturation voltage, input bias current, and RF immunity.

The ICs are available in both 5-pin SC70 and SOT23 packages.

Applications

Mobile Communications
Notebooks and PDAs
Battery-Powered Electronics
General-Purpose Portable Devices
General-Purpose Low-Voltage Applications

♦ Guaranteed +1.8V to +5.5V Performance

- ♦ -40°C to +125°C Automotive Temperature Range
- ♦ Low Supply Current (60μA/Channel at VDD = +5.0V)
- ♦ Input Common-Mode Voltage Range Includes Ground
- ♦ No Phase Reversal for Overdriven Inputs
- ♦ Low Output Saturation Voltage (120mV)
- ♦ Internal 2mV Hysteresis (MAX9648)
- ♦ 5-Pin SC70 Space-Saving Package (2.0mm x 2.1mm x 1.0mm)

Ordering Information appears at end of data sheet.

General-Purpose, Low-Voltage, Tiny Pack Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD} to V _{SS})0.3V to +6V	SOT23 (derate 3.9mW/°C above +70°C)312.6mW
All Other Pins Except OUT (V _{SS} - 0.3V) to (V _{DD} + 0.3V)	Operating Temperature Range40°C to +125°C
Differential Input Voltage (IN+ to IN-) ±3.6V	Junction Temperature+150°C
OUT(V _{SS} - 03V) to +6V	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation ($T_A = +70^{\circ}$ C)	Lead Temperature (soldering, 10s)+300°C
SC70 (derate 3.1mW/°C above +70°C)247mW	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

SC70	SOT23
Junction-to-Ambient Thermal Resistance (θ _{JA})324°C/W	Junction-to-Ambient Thermal Resistance (θ _{JA})255.9°C/W
Junction-to-Case Thermal Resistance (θ _{JC})115°C/W	Junction-to-Case Thermal Resistance (θ _{JC})81°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

DC ELECTRICAL CHARACTERISTICS—2.7V OPERATION

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25$ °C, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}			0.4	7	mV
Input Voltage Hysteresis	V _{HYST}	MAX9648 only		2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}			1.5		μV/°C
		$T_A = +25^{\circ}C$		±0.0003	±250	
Input Bias Current	IB	$T_A = -40$ °C to $+85$ °C			±400	nA
		$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			±400	
		$T_A = +25^{\circ}C$		±0.0003	±50	nA
Input Offset Current	Ios	$T_A = -40$ °C to +85°C			±150	
		$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			±150	
Innut Valtage Dange	V			-0.1		V
Input Voltage Range	V _{CM}			2.0] V
Voltage Gain	A _V	MAX9647 only		500		V/mV
Output Saturation Voltage	V _{SAT}	I _{SINK} ≤ 1mA		25		mV
Output Sink Current	Io	V _O ≤ 1.5V	5	16		mA
Supply Current	IS	(Note 3)		52	100	μΑ
		$T_A = +25^{\circ}C$		0.005		
Output Leakage Current		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			1	μΑ
		$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			2	1

General-Purpose, Low-Voltage, Tiny Pack Comparators

AC ELECTRICAL CHARACTERISTICS—2.7V OPERATION

 $(V_{DD}=2.7V, V_{SS}=0V, V_{CM}=0V, R_L=5.1k\Omega$ connected to V_{DD} , typical values are at $T_A=+25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Output	+	Input overdrive = 10mV		70		no
High to Low (Note 4)	t _{PHL}	Input overdrive = 100mV		50		ns
Propagation Delay Output		Input overdrive = 10mV		115		no
Low to High (Note 4)	^t PLH	Input overdrive = 100mV		100		ns

DC ELECTRICAL CHARACTERISTICS-5.0V OPERATION

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25$ °C, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
		$T_A = +25^{\circ}C$			0.4	7	
Input Offset Voltage	Vos	$T_A = -40^{\circ}C \text{ to } +85^{\circ}$	5°C			9	mV
		$T_A = -40^{\circ}\text{C to } + 12^{\circ}$	25°C			9	1
Input Voltage Hysteresis		MAX9648 only			2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}				1.5		μV/°C
		$T_A = +25^{\circ}C$			±0.007	±250	
Input Bias Current	IB	$T_A = -40^{\circ}\text{C to } +85^{\circ}$	5°C			±400	nA
		$T_A = -40^{\circ}C \text{ to } +12^{\circ}$	25°C			±400	1
		$T_A = +25^{\circ}C$			±0.007	±50	
Input Offset Current	I _{OS}	$T_A = -40$ °C to $+85$ °C				±150	nA
		$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$				±150	1
Input Voltage Range	V				-0.1		V
input voltage hange	V _{CM}				4.2		V
Voltage Gain	A _V	MAX9647 only		20	500		V/mV
			$T_A = +25^{\circ}C$		120	400	
Output Saturation Voltage	V _{SAT}	I _{SINK} ≤ 4mA	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			700	mV
			$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			700	
Output Sink Current	I _O	V _O ≤ 1.5V		10	35		mA
		$T_A = +25^{\circ}C$			60	120	
Supply Current (Note 3)	Is	$T_A = -40$ °C to +85°C				150	μΑ
		$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$,	170	1
		$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			0.005		
Output Leakage Current					-	1	μΑ
		$T_A = -40^{\circ}\text{C to } + 12^{\circ}$				2	1

General-Purpose, Low-Voltage, Tiny Pack Comparators

AC ELECTRICAL CHARACTERISTICS-5.0V OPERATION

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25$ °C, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Propagation Delay Output	ŧ	Input overdrive = 10mV		70		20	
High to Low (Note 4)	^t PHL	Input overdrive = 100mV		50		ns	
Propagation Delay Output	+	Input overdrive = 10mV		110		20	
Low to High (Note 4)	₹PLH	Input overdrive = 100mV		100		ns	

DC ELECTRICAL CHARACTERISTICS—1.8V OPERATION

 $(V_{DD} = 1.8V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25$ °C, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

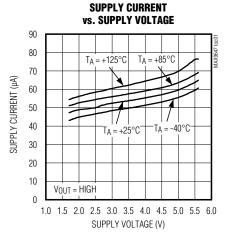
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos			0.4	5	mV
Input Voltage Hysteresis		MAX9648 only		2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}			1.5		μV/°C
Input Bias Current	I _B			0.0003		nA
Input Offset Current	Ios			0.0003		nA
Input Voltage Range	\/			-0.1		V
Input voltage hange	V _{CM}			1		\ \ \
Output Saturation Voltage	V _{SAT}	I _{SINK} ≤ 1mA		56		mV
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 1.8V \text{ to } 5.5V$	60	90		dB
Output Sink Current	Io	V _O ≤ 1.5V		6.4		mA
Supply Current	IS	(Note 3)		50	100	μΑ
Output Leakage Current				0.001		μΑ

AC ELECTRICAL CHARACTERISTICS—1.8V OPERATION

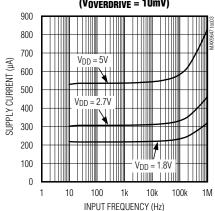
 $(V_{DD} = 1.8V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25$ °C, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

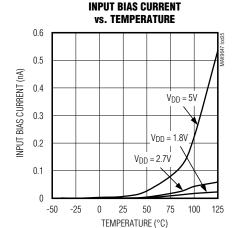
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Output	+	Input overdrive = 10mV		70		no
High to Low (Note 4)	^t PHL	Input overdrive = 100mV		60		ns
Propagation Delay Output	Delay Output	Input overdrive = 10mV		120		no
Low to High (Note 4)	^t PLH	Input overdrive = 100mV		110		ns

Note 2: All devices are production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

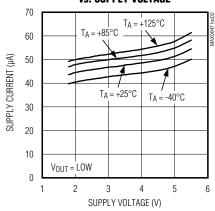

Note 3: Supply current when output is high.

Note 4: Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.

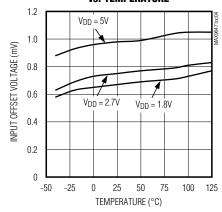

General-Purpose, Low-Voltage, Tiny Pack Comparators

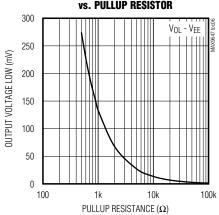

Typical Operating Characteristics

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega, C_L = 10pF, overdrive = 100mV, T_A = +25°C, unless otherwise noted.)$

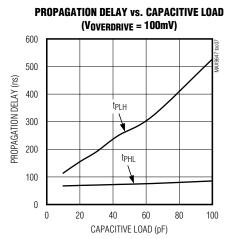


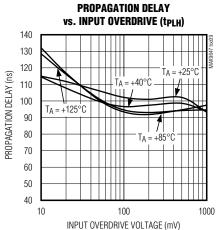
SUPPLY CURRENT vs. FREQUENCY (Voverdrive = 10mV)

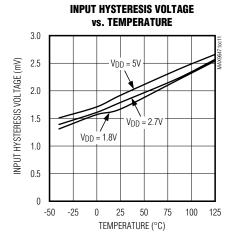


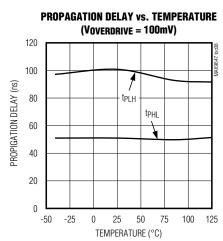

SUPPLY CURRENT vs. Supply Voltage

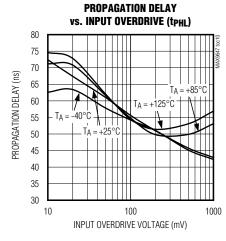
INPUT OFFSET VOLTAGE vs. TEMPERATURE

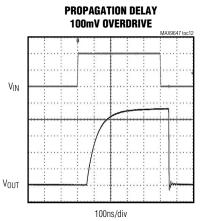

OUTPUT VOLTAGE LOW vs. PULLUP RESISTOR

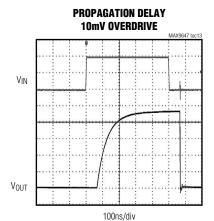


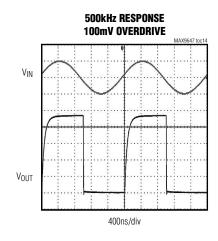

General-Purpose, Low-Voltage, Tiny Pack Comparators

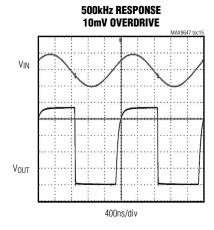

Typical Operating Characteristics (continued)

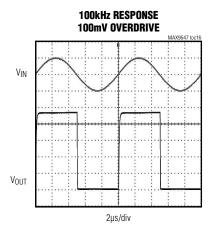

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1 k\Omega, C_L = 10 pF, overdrive = 100 mV, T_A = +25 °C, unless otherwise noted.)$

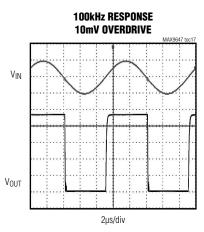


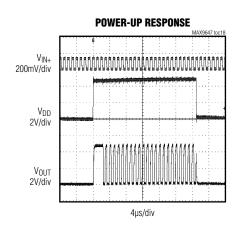


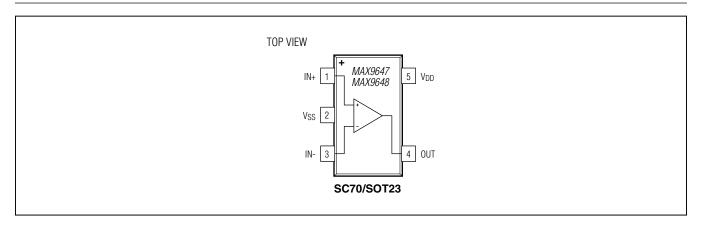



General-Purpose, Low-Voltage, Tiny Pack Comparators


Typical Operating Characteristics (continued)


 $(V_{DD}=5V,\,V_{SS}=0V,\,V_{CM}=0V,\,R_{L}=5.1k\Omega,\,C_{L}=10pF,\,overdrive=100mV,\,T_{A}=+25^{\circ}C,\,unless\,\,otherwise\,\,noted.)$





General-Purpose, Low-Voltage, Tiny Pack Comparators

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	IN+	Noninverting Input
2	V _{SS}	Negative Supply (Connect to GND)
3	IN-	Inverting Input
4	OUT	Comparator Output (Open Drain)
5	V _{DD}	Positive Supply

Detailed Description

The MAX9647/MAX9648 are low-cost, general-purpose comparators that have a single-supply +1.8V to +5V operating voltage range. The common-mode input range extends from -0.1V below the negative supply to within +0.7V of the positive supply. They require approximately $60\mu A$ per comparator with a 5V supply and $52\mu A$ with a 2.7V supply.

The MAX9648 has 2mV of hysteresis for noise immunity. This significantly reduces the chance of output oscillations even with slow-moving input signals. See the *Typical Operating Characteristics*.

Applications Information

Hysteresis

Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9648 has internal hysteresis to counter parasitic effects and noise.

The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy, slow-moving input signals.

General-Purpose, Low-Voltage, Tiny Pack Comparators

Additional hysteresis can be generated with two resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values:

1) Find output voltage when output is high:

2) Find the trip points of the comparator using these formulas:

$$V_{TH} = V_{REF} + ((V_{OUT(HIGH)} - V_{REF})R2)/(R1 + R2)$$

 $V_{TI} = V_{REF} (1 - (R2/(R1 + R2)))$

where V_{TH} is the threshold voltage at which the comparator switches its output from high to low as V_{IN} rises above the trip point, and V_{TL} is the threshold voltage at which the comparator switches its output from low to high as V_{IN} drops below the trip point.

3) The hysteresis band is:

$$V_{HYST} = V_{TH} - V_{TI} = V_{DD}(R2/(R1 + R2))$$

In this example, let V_{DD} = 5V, V_{REF} = 2.5V, I_{LOAD} = 50nA, and R_L = 5.1k $\!\Omega_{\cdot}$

$$V_{OUT(HIGH)} = 5.0V - (50 \times 10^{-9} \times 5.1 \times 10^{3}\Omega) \approx 5.0V$$

 $V_{TH} = 2.5 + 2.5(R2/(R1 + R2))$
 $V_{TI} = 2.5(1 - (R2/(R1 + R2)))$

Select R2. In this example, choose $1k\Omega$. Select $V_{\mbox{HYST}}$. In this example, choose 50mV. Solve for R1.

$$V_{HYST} = V_{OUT(HIGH)}(R2/(R1 + R2))V$$

 $0.050V = 5(1000/(R1 + 1000))V$

where R1 \approx 100k Ω , V_{TH} = 2.525V, and V_{TL} = 2.475V

Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.

The source current required is V_{RFF}/(R1 + R2).

The sink current is (V_{OUT(HIGH)} - V_{REF}) x (R1 + R2).

Choose R_L to be large enough to avoid drawing excess current, yet small enough to supply the necessary current to drive the load. R_L should be between $1k\Omega$ and $10k\Omega$. Choose R1 to be much larger than R_L to avoid lowering V_{OUT(HIGH)} ir raising V_{OUT(LOW)}.

Board Layout and Bypassing

Use $0.1\mu\text{F}$ bypass capacitors from V_{DD} to V_{SS} . To maximize performance, minimize stray inductance by putting this capacitor close to the V_{DD} pin and reducing trace lengths. For slow moving input signals (rise time > 1ms), use a 1nF capacitor between IN+ and IN- to reduce high-frequency noise.

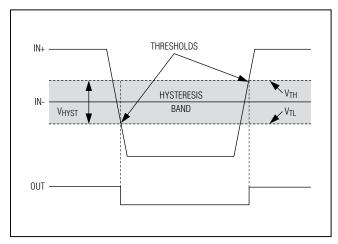


Figure 1. Threshold Hysteresis Band (Not to Scale)

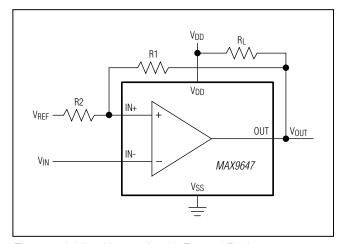


Figure 2. Adding Hysteresis with External Resistors

General-Purpose, Low-Voltage, Tiny Pack Comparators

Chip Information

Package Information

PROCESS: BiCMOS

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	X5+1	<u>21-0076</u>	<u>90-0188</u>
5 SOT23	U5+1	21-0057	90-0174

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9647AXK+T	-40°C to +125°C	5 SC70	+AUS
MAX9647AUK+T	-40°C to +125°C	5 SOT23	+AFLM
MAX9648AXK+T	-40°C to +125°C	5 SC70	+AUT
MAX9648AUK+T	-40°C to +125°C	5 SOT23	+AFLN

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

MAX9647/MAX9648 General-Purpose, Low-Voltage, Tiny Pack Comparators

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/11	Initial release	_
1	1/12	Revised the Typical Operating Characteristics.	6
2	1/13	Updated the Absolute Maximum Ratings, added the Package Thermal Characteristics, and revised the Electrical Characteristics.	2–4
3	4/15	No /V OPNs; deleted "Automotive Applications" from Applications section and automotive reference from Detailed Description section	1, 8

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.