: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China
 \section*{\title{
Single/Dual/Quad, Micropower,
 \section*{\title{
Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators
}} Ultra-Low-Voltage, Rail-to-Rail I/O Comparators
}}

Abstract

The MAX965-MAX970 single/dual/quad micropower comparators feature rail-to-rail inputs and outputs, and fully specified single-supply operation down to +1.6 V . These devices draw less than $5 \mu \mathrm{~A}$ per comparator and have open-drain outputs that can be pulled beyond VCC to 6 V (max) above ground. In addition, their rail-to-rail have open-drain outputs that can be pulled beyond VCC to 6 V (max) above ground. In addition, their rail-to-rail input common-mode voltage range makes these comparators suitable for ultra-low-voltage operation. $\mathrm{A}+1.6 \mathrm{~V}$ to +5.5 V single-supply operating voltage range makes the MAX965 family of comparators ideal for 2-cell battery-powered applications. The MAX965/MAX967/ battery-powered applications. The MAX965/MAX967/ MAX968/MAX969 offer programmable hysteresis and an internal $1.235 \mathrm{~V} \pm 1.5 \%$ reference. All devices are an internal $1.235 \mathrm{~V} \pm 1.5 \%$ reference. All devices are QSOP packages.

\section*{General Description} parators suitable for ulta-low-volage operation.

| Applications |
| :--- | :--- |
| 2-Cell Battery-Powered/Portable Systems |
| Window Comparators |
| Threshold Detectors/Discriminators |
| Mobile Communications |
| Voltage-Level Translation |
| Ground/Supply-Sensing Applications |

Selector Guide

$\underset{\substack{\text { ■ } \\ \mathbf{\alpha}}}{ }$			
MAX965	Yes	1	Yes
MAX966	No	2	No
MAX967	Yes	2	Yes
MAX968	Yes	2	Yes
MAX969	Yes	4	Yes
MAX970	No	4	No

2-Cell Battery-Powered/Portable Systems
Window Comparators
Threshold Detectors/Discriminators
Mobile Communications

Ground/Supply-Sensing Applications

AVXXIV

Features

- Ultra-Low Single-Supply Operation down to +1.6V
- Rail-to-Rail Common-Mode Input Voltage Range
- 3uA Quiescent Supply Current per Comparator
- Open-Drain Outputs Swing Beyond Vcc
- $1.235 \mathrm{~V} \pm 1.5 \%$ Precision Internal Reference (MAX965/967/968/969)
- 10us Propagation Delay (50mV overdrive)
- Available in Space-Saving Packages:

8 -Pin μ MAX (MAX965-MAX968)
16-Pin QSOP (MAX969/MAX970)
Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX965ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\mathrm{S} 8-2$
MAX965EUA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}-8$	$\mathrm{U} 8-1$
MAX966ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\mathrm{SO} 8-2$
MAX966EUA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}-8$	$\mathrm{U} 8-1$
MAX967ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\mathrm{S} 8-2$
MAX967EUA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}-8$	$\mathrm{U} 8-1$

Ordering Information continued on last page.
Pin Configurations appear at end of data sheet.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Typical Operating Circuit

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC) \qquad +6V Voltages
IN_-, IN_+, REF, HYST \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$

OUT_
..-0.3V to +6.0 V
Current into Input Pins \qquad $\ldots . \pm 20 \mathrm{~mA}$
Duration of OUT_Short Circuit to GND or VCCContinuous Continuous Power Dissipation

8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad .471 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
POWER SUPPLIES								
Supply Voltage Range	VCC	All packages, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.6		5.5	V
		SO/QSOP packages, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.7		5.5	
		$\mu \mathrm{MAX}$ package, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.8		5.5	
Comparator Minimum Operating Voltage						1.0		V
Supply Current	Icc	MAX965				7.0	12	$\mu \mathrm{A}$
		MAX966				6.0	10	
		MAX967/MAX968				10	16	
		MAX969				14	22	
		MAX970				11	18	
Power-Up Time (VCC to output valid)		VCc stepped 0 V to 5V				20		$\mu \mathrm{s}$
COMPARATOR								
Power-Supply Rejection Ratio	PSRR	$1.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$				0.1	1.0	mV/V
Common-Mode Voltage Range	$\mathrm{V}_{\text {CMR }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-0.25		VCC	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			-0.25		VCC -0.25	V
Input Offset Voltage	Vos	$\begin{aligned} & \text { Common-mode } \\ & \text { range }=-0.25 \mathrm{~V} \\ & \text { to } 1.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}>1.8 \mathrm{~V} \end{aligned}$	SO packa				3.0	mV
			QSOP pac	kage			4.0	
			$\mu \mathrm{MAX}$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			4.0	
			package	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			6.0	
		Full commonmode range	SO package				7.0	
			QSOP package				10.0	
			$\mu \mathrm{MAX}$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			10.0	
			package	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			15.0	
Input Hysteresis	V HYST	HYST = REF				± 1		mV
Input Bias Current	IB	Common-mode range $=-0.25 \mathrm{~V}$ to ($\left.\mathrm{V}_{\mathrm{CC}}-0.25 \mathrm{~V}\right)$				0.001	± 5	nA
		Full common-mode range, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.001	± 50	
Input Offset Current	los					0.2		pA
Input Capacitance	CIN					7.0		pF

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+1.6 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Common-Mode Rejection Ratio	CMRR				1.5	4.0	mV/V
HYST Input Voltage Range				$\begin{gathered} \text { VREF - } \\ 0.05 \end{gathered}$		VREF	V
HYST Input Leakage	IHYST					± 10	nA
Hysteresis Gain					1.0		V/V
Input Voltage Noise	e_{n}	$\mathrm{f}=100 \mathrm{~Hz}$ to 100 kHz , CREF	1000pF		10		$\mu \mathrm{V}_{\text {RMS }}$
OUT Output Voltage Low	VoL	IOUT $=100 \mu \mathrm{~A}, 1.6 \mathrm{~V}<\mathrm{V}_{\text {CC }}<2$	2.7 V			0.2	V
		lout $=500 \mu \mathrm{~A}, 2.7 \mathrm{~V}<\mathrm{V}_{\text {cc }}<5$	5.5 V			0.4	
OUT Output Leakage Current	ILEAK	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V}$		1		100	nA
		$\mathrm{V}_{\text {CC }}=1.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.6 \mathrm{~V}$					
Propagation Delay	tpD-	$\begin{aligned} & \text { RPULLUP }=1 \mathrm{M} \Omega, \\ & \text { CLOAD }=15 \mathrm{pF} \text {, high to low } \end{aligned}$	10 mV overdrive		20		$\mu \mathrm{s}$
			50 mV overdrive		10		

REFERENCE

Reference Voltage	VREF	SO package	1.125	1.235	1.255	V
		QSOP package	1.205	1.235	1.265	
		$\mu \mathrm{MAX}$ package, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.205	1.235	1.265	
		$\mu \mathrm{MAX}$ package, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.185	1.235	1.285	
Source Current	IREF+	HYST = REF	15	50		$\mu \mathrm{A}$
Sink Current	IREF-		200	400		nA
Output Voltage Noise		$\mathrm{f}=100 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{CREF}=0.1 \mu \mathrm{~F}$		10		$\mu \mathrm{V}_{\text {RMS }}$

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$, RPuLLUP $=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LY CURRENT vs. TEMPERATURE

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$, RPULLUP $=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PROPAGATION DELAY (tpd-)
vs. TEMPERATURE

MAX970 SUPPLY CURRENT vs. TEMPERATURE

COMPARATOR OUTPUT SHORT-CIRCUIT SINK CURRENT vs. TEMPERATURE

PROPAGATION DELAY (tpd-)
vs. CAPACITIVE LOAD

SUPPLY CURRENT PER COMPARATOR
vs. SUPPLY VOLTAGE (EXCLUDES REFERENCE CURRENT)

COMPARATOR OUTPUT
LOW VOLTAGE vs. SINK CURRENT

PROPAGATION DELAY (tpd-) vs. INPUT OVERDRIVE

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$, RPULLUP $=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

PROGRAMMED HYSTERESIS
vs. COMMON-MODE VOLTAGE

COMMON-MODE VOLTAGE (V)

INPUT OFFSET VOLTAGE
vs. TEMPERATURE

REFERENCE VOLTAGE vs. TEMPERATURE

TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

REFERENCE VOLTAGE
vs. SUPPLY VOLTAGE

PROPAGATION DELAY (tpd-)

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$, RPULLUP $=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Descriptions
MAX965-MAX968

PIN				NAME	FUNCTION
MAX965	MAX966	MAX967	MAX968		
-	1	1	1	OUTA	Comparator A Open-Drain Output
1	2	2	2	GND	Ground
2	-	-	-	N.C.	No Connection. Not internally connected.
3	-	-	-	IN+	Comparator Noninverting Input
-	3	3	3	INA+	Comparator A Noninverting Input
4	-	-	-	IN-	Comparator Inverting Input
-	4	-	-	INA-	Comparator A Inverting Input
-	5	-	4	INB-	Comparator B Inverting Input
-	6	4	-	INB+	Comparator B Noninverting Input
5	-	5	5	HYST	Hysteresis Input. Connect HYST to REF if not used. Input voltage range is from VREF to (VREF - 50mV).
6	-	6	6	REF	Internal Reference Output. Typically 1.235V with respect to GND.
7	7	7	7	VCC	Positive Supply Voltage, +1.6V to +5.5V
8	-	-	-	OUT	Comparator Open-Drain Output
-	8	8	8	OUTB	Comparator B Open-Drain Output

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Pin Descriptions (continued)
MAX969/MAX970

PIN			NAME	FUNCTION
MAX969	MAX970			
	SO	QSOP		
1	1	1	OUTB	Comparator B Open-Drain Output
2	2	2	OUTA	Comparator A Open-Drain Output
3	3	3	VCC	Positive Supply Voltage, +1.6 V to +5.5 V
4	4	4	INA-	Comparator A Inverting Input
5	5	5	INA+	Comparator A Noninverting Input
6	6	6	INB-	Comparator B Inverting Input
7	7	7	INB+	Comparator B Noninverting Input
-	-	8, 9	N.C.	No Connection. Not internally connected.
8	-	-	REF	Internal Reference Output. Typically 1.235 V with respect to GND.
9	-	-	HYST	Hysteresis Input. Connect to REF if not used. Input voltage range is from (VREF -50 mV) to $V_{\text {REF }}$.
10	8	10	INC-	Comparator C Inverting Input
11	9	11	INC+	Comparator C Noninverting Input
12	10	12	IND-	Comparator D Inverting Input
13	11	13	IND+	Comparator D Noninverting Input
14	12	14	GND	Ground
15	13	15	OUTD	Comparator D Open-Drain Output
16	14	16	OUTC	Comparator C Open-Drain Output

Detailed Description

The MAX965-MAX970 single/dual/quad, micropower, ultra-low-voltage comparators feature rail-to-rail inputs and outputs and an internal $1.235 \mathrm{~V} \pm 1.5 \%$ bandgap reference. These devices operate from a single +1.6 V to +5.5 V supply voltage range, and consume less than $5 \mu \mathrm{~A}$ supply current per comparator over the extended temperature range. Internal hysteresis is programmable up to $\pm 50 \mathrm{mV}$ using two external resistors and the device's internal reference. The rail-to-rail input com-mon-mode voltage range and the open-drain outputs allow easy voltage-level conversion for multivoltage systems. All inputs and outputs can tolerate a continuous short-circuit fault condition to either rail.
The MAX965 is a single comparator with adjustable hysteresis and a reference output pin. The MAX966 is a dual comparator without the reference and without adjustable hysteresis. The MAX967 is a dual compara-
tor configured as a dual voltage monitor with common hysteresis adjustment and a reference output. The dual MAX968 is similar to the MAX967, but is configured as a window comparator. The MAX969 is a quad comparator with a common hysteresis adjustment and a reference output pin. The MAX970 is a quad comparator without a reference and without hysteresis adjustment. (See Functional Diagrams and Selector Guide.)

Comparator Input

The MAX965-MAX970 have a -0.25V to Vcc input com-mon-mode range. Both comparator inputs may operate at any differential voltage within the common-mode voltage range, and the comparator displays the correct output logic state.

Low-Voltage Operation: Vcc Down to $1 V$ The minimum operating voltage is 1.6 V . As the supply voltage falls below 1.6 V , performance degrades and supply current falls. The reference does not

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Functional Diagrams

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

function below about 1.5 V , although the comparators typically continue to operate with a supply voltage as low as 1 V . At low supply voltages ($<1.6 \mathrm{~V}$), the input common-mode range remains rail-to-rail, but the comparator's output sink capability is reduced and propagation delay increases (see Typical Operating Characteristics).
Figure 1 shows a typical comparator application that monitors VCC at 1.6 V . Resistor divider R1/R2 sets the voltage trip point (VTRIP) at 1.6V. As VCC drops below 1.6 V and approaches 1 V , the reference voltage typically falls below the divider voltage ($\mathrm{V}+$). This causes the comparator output to change state. If OUT's state must be maintained under these conditions, a latching circuit is required.

Comparator Output

The MAX965-MAX970 contain a unique slew-ratecontrolled output stage capable of rail-to-rail operation with an external pull-up resistor. Typical comparators consume orders of magnitude more current during switching than during steady-state operation. With the MAX965 family of comparators, during an output transition from high to low, the output slew rate is limited to minimize switching current.

Voltage Reference

With VCC greater than 1.6 V but less than 5.5 V , the internal 1.235 V bandgap reference is $\pm 1.5 \%$ accurate over the commercial temperature range and $\pm 2.5 \%$ accurate over the extended temperature range. The REF output is typically capable of sourcing $50 \mu \mathrm{~A}$. To reduce reference noise or to provide noise immunity, bypass REF with a capacitor (0.1 nF to $0.1 \mu \mathrm{~F}$).

Figure 1. Operation below 1.6 V

Noise Considerations

The comparator has an effective wideband peak-topeak noise of around $10 \mu \mathrm{~V}$. The voltage reference has peak-to-peak noise approaching 1.0 mV with a $0.1 \mu \mathrm{~F}$ bypass capacitor. Thus, when a comparator is used with the reference, the combined peak-to-peak noise is about 1.0 mV . This, of course, is much higher than the individual components' RMS noise. Avoid capacitive coupling from any output to the reference pin. Crosstalk can significantly increase the references' actual noise.

Applications Information

Hysteresis Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX965-MAX970 have internal hysteresis to counter parasitic effects and noise. In addition, with the use of external resistor, the MAX965/MAX967/ MAX968/MAX969's hysteresis can be programmed to as much as $\pm 50 \mathrm{mV}$ (see the section Adding Hysteresis to the MAX965/MAX967/MAX968/MAX969).
The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input voltage (Figure 2). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input voltage to move quickly past the other, thus taking the input out of the region where oscillation occurs.

Figure 2. Threshold Hysteresis Band

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Figure 2 illustrates the case in which $\mathbb{I N}$ - has a fixed voltage applied, and $\mathrm{IN}+$ is varied. If the inputs were reversed, the figure would be the same, except with an inverted output.

Adding Hysteresis to the MAX965/MAX967/MAX968/MAX969

To add hysteresis to the MAX965/MAX967/MAX968/ MAX969, connect resistor R1 between REF and HYST, and connect resistor R2 between HYST and GND (Figure 3). If additional hysteresis is not required, connect HYST to REF. When hysteresis is added, the upper and lower trip points change by the same amount in opposite directions. The hysteresis band (the difference between the upper and lower trip points, V_{HB}) is approximately twice the voltage between HYST and REF. The HYST input voltage range is from REF down to (REF - 50mV). This yields a hysteresis band from $\pm 1 \mathrm{mV}$ to a maximum of $\pm 50 \mathrm{mV}$. Calculate the values of R1 and R2 for the desired hysteresis band with the following formulas:

$$
\begin{aligned}
& \text { R1 }=\mathrm{V}_{\mathrm{HB}} / I_{\text {REF }} \\
& \text { R2 }=\left(\mathrm{V}_{\text {REF }}-\mathrm{V}_{\mathrm{HB}}\right) / \text { I }_{\text {REF }}
\end{aligned}
$$

where IREF (the current sourced by the reference) does not exceed the REF source capability ($12 \mu \mathrm{~A}$ typical), and is significantly larger than the HYST leakage current (5 nA typical). IREF values between $0.1 \mu \mathrm{~A}$ and $4 \mu \mathrm{~A}$ are good choices. If $2.4 \mathrm{M} \Omega$ is chosen for R2 (Iref $=$ $0.5 \mu \mathrm{~A}$), the equation for R 1 and V_{HB} can be approximated as:

$$
\mathrm{R} 1(\mathrm{k} \Omega)=2 \times \mathrm{V}_{\mathrm{HB}}(\mathrm{mV})
$$

In the MAX967/MAX968/MAX969, the HYST pin programs the same hysteresis for all comparators in the package.

Figure 3. Programming the HYST Pin

Due to the internal structure of the input developed for ultra-low-voltage operation, the hysteresis band varies with common-mode voltage. The graph Programmed Hysteresis vs. Common-Mode Voltage in the Typical Operating Characteristics shows this variation. Notice that the hysteresis band increases to almost twice the calculated value toward the ends of the common-mode range. This is apparent only when programming additional hysteresis using the HYST pin. The hysteresis band is constant when HYST is connected to REF.

Adding Hysteresis to the MAX966/MAX970

The MAX966/MAX970 do not have a HYST pin for programming hysteresis. Hysteresis can be generated with three resistors using positive feedback (Figure 4). This method generally draws more current than the method using the HYST pin on the MAX965/MAX967/MAX968/ MAX969. Also, the positive feedback method slows hysteresis response time. Use the following procedure to calculate the resistor values:

1) Select R3. The leakage current of $I N+$ is under $5 n A$, so the current through R3 should be at least 500nA to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF - VOUT) / R3. Taking into consideration the two possible output states and solving for R3 yields two formulas:

$$
R 3=V_{R E F} / 500 n A
$$

and

$$
R 3=\left(V_{R E F}-V_{C C}\right) / 500 n A
$$

Use the smaller of the two resulting resistor values. For example, if $\mathrm{V}_{\text {REF }}=1.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, then the two resistor values are $2.4 \mathrm{M} \Omega$ and $7.6 \mathrm{~m} \Omega$. For R3, choose the $2.2 \mathrm{M} \Omega$ standard value.
2) Choose the hysteresis band required (VHB). For this example, choose 50 mV .

Figure 4. External Hysteresis

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

3) Calculate R1: R1 $=(R 3+R 4) \times\left(V_{H B} / V C C\right)$. Putting in the values for this example, $\mathrm{R} 1=(2.2 \mathrm{M} \Omega+10 \mathrm{k} \Omega)$ $x(50 \mathrm{mV} / 5.0 \mathrm{~V})=22.1 \mathrm{k} \Omega$.
4) Choose the trip point for VIN rising. This is the threshold voltage where the comparator output transitions from low to high as VIN rises above the trip point. For this example, choose 3.0 V .
5) Calculate R2 as follows:
$R 2=\frac{1}{\left(\frac{V_{T H R}}{V_{\text {REF }} \times R 1}\right)-\frac{1}{R 1}-\frac{1}{R 3+R 4}}$
$\mathrm{R} 2=\frac{1}{\left(\frac{3.0 \mathrm{~V}}{1.2 \times 22 \mathrm{k} \Omega}\right)-\frac{1}{22 \mathrm{k} \Omega}-\frac{1}{2.2 \mathrm{M} \Omega+10 \mathrm{k} \Omega}}=14.76 \mathrm{k} \Omega$
where $\mathrm{V}_{\mathrm{THR}}$ is the rising-voltage trip threshold. Choose a standard value of $15 \mathrm{k} \Omega$.
6) Verify trip voltages and hysteresis as follows:

VIN rising:
$V_{T H R}=V_{R E F} \times R 1 \times\left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3+R 4}\right)$
$V_{I N}$ falling:
$\mathrm{V}_{\mathrm{THF}}=\mathrm{V}_{\mathrm{THR}}-\left(\frac{\mathrm{R} 1 \times \mathrm{V}_{\mathrm{CC}}}{\mathrm{R} 3+\mathrm{R} 4}\right)$
Hysteresis $=\mathrm{V}_{\mathrm{THR}}-\mathrm{V}_{\mathrm{THF}}$
where $\mathrm{V}_{\mathrm{THR}}$ is the rising-voltage trip point, and $\mathrm{V}_{\mathrm{THF}}$ is the falling-voltage trip point.

Circuit Layout and Bypassing

Power-supply bypass capacitors are not needed if supply impedance is low, but 100nF bypass capacitors should be used when supply impedance is high or when supply leads are long. Minimize signal lead lengths to reduce stray capacitance between the input and output that might cause instability.

IR Receiver

Figure 5 shows an application using the MAX965 as an infrared receiver. The infrared photodiode creates a current relative to the amount of infrared light present. This current creates a voltage across R1. When this voltage level crosses the reference voltage applied to the inverting input, the output transitions. Optional R3 provides additional hysteresis for noise immunity.

2-Cell to TTL Logic-Level Shifter
Figure 6 shows an application using the MAX965 to convert a 2 -cell voltage-level signal into a TTLcompatible signal. The supply voltage for the comparator comes from the 2 -cell supply. The output is pulled up to a 5 V supply.

Figure 5. IR Receiver

Figure 6. 2-Cell to TTL Logic-Level Translator

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Ordering Information (continued) \qquad Chip Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX968ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	$\mathrm{S} 8-2$
MAX968EUA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}-8$	$\mathrm{U}-1$
MAX969ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO	$\mathrm{S} 16-1$
MAX969EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\mathrm{E} 16-1$
MAX970ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	S $14-4$
MAX970EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\mathrm{E} 16-1$

TRANSISTOR COUNTS:
MAX965 = 216
MAX966 = 190
MAX967/MAX968 = 299
MAX969 = 465
MAX970 = 380

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO-187C-AA.

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

Revision History

Pages changed at Rev 3: 1-7, 9, 11, 12, 14

