imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

19-1288; Rev 2; 12/11

EVALUATION KIT AVAILABLE

Low-Power Audio CODEC with DirectDrive Headphone Amplifiers

General Description

The MAX9856 is a high-performance, low-power stereo audio CODEC designed for MP3, personal media players (PMPs), or other portable multimedia devices. Using on-board stereo DirectDrive[®] headphone amplifiers, the CODEC can output 30mW into stereo 32 Ω headphones while operating from a single 1.8V power supply. Very low 9mW playback power consumption makes it an ideal choice for battery-powered applications. The MAX9856 provides microphone input amplifiers, plus flexible input selection, signal mixing, and automatic gain control (AGC). Comprehensive load-impedance sensing allows the MAX9856 to autodetect most common audio and audio/video headset and jack plug types.

Outputs include stereo DirectDrive line outputs and DirectDrive headphone amplifiers. The stereo ADC can convert audio signals from either internal or external microphones that can be configured for single-ended or differential signal inputs. Line inputs can be configured as stereo, differential, or mono and fed through one channel of the microphone path. The analog inputs selected can be gain ranged or mixed with other input sources prior to conversion to digital. The ADC path also features programmable digital highpass filters to remove DC offset voltages and wind noise.

The MAX9856 supports all common sample rates from 8kHz to 48kHz in both master and slave mode. The serial digital audio interfaces support a variety of formats including I^2S , left-justified, and PCM modes.

The MAX9856 uses a thermally efficient, space-saving 40-pin, 6mm x 6mm x 0.8mm TQFN package.

Applications

MP3 Players Personal Media Players Handheld Gaming Consoles Cellular Phones

Pin Configuration appears at end of data sheet.

DirectDrive is a registered trademark of Maxim Integrated Products, Inc.

Features

- ♦ 1.71V to 3.6V Single-Supply Operation
- Stereo 30mW DirectDrive Headphone Amplifier
- Stereo 1V_{RMS} DirectDrive Line Outputs (V_{DD} = 1.8V) and Stereo Line Inputs
- Low-Noise Stereo and Mono Differential Microphone Inputs with Automatic Gain Control and Noise Quieting
- ◆ 9mW Playback Power Consumption (V_{DD} = 1.8V)
- ♦ 91dB 96kHz 18-Bit Stereo DAC
- ♦ 85dB 48kHz 18-Bit Stereo ADC
- Supports Any Master Clock Frequency from 10MHz to 60MHz
- ♦ ADCs and DACs Can Run at Independent Sample Rates
- Flexible Audio Mixing and Volume Control
- Clickless/Popless Operation
- Headset Detection Logic
- ♦ I²C Control Interface

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9856ETL+	-40°C to +85°C	40 TQFN-EP*
MAX9856GTL/V+	-40°C to +105°C	40 TQFN-EP*

+Denotes a lead-free/RoHS-compliant package.

*EP = Exposed pad.

N denotes an automotive qualified part.

Simplified Block Diagram

M/IXI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(Voltages with respect to AGND.)

renagee man reepeer to rienter)	
AVDD, DVDD, DVDDS2, CPVDD0.3V to +4	/
PVSS, SVSSCapacitor connection only	y
AGND, DGND, CPGND	/
HPL, HPR)
HGNDSNS, LGNDSNS, MICGND0.3V to +0.3V	Í
JACKSNS)
OUTL, LOUTR)
-2V to +2	Í
MICL, MICR, INLP, INLM, INRM2V to +2	/
C1N)
C1P(VCPGND - 0.3V) to (VCPVDD + 0.3V)
PREG, REF, MBIAS, MICBIAS0.3V to (VAVDD + 0.3V)
VREG(Vsvss - 0.3V) to +0.3V	/
MCLK0.3V to +4V	/
SDA, SCL, IRQ0.3V to +4	/
.RCLK_A, LRCLK_D, BCLK,	
SDIN, SDOUT0.3V to (V _{DVDDS2} + 0.3V)

Continuous Current Into/Out of HPR/HPL/	
LOUTL/LOUTR	150mA
CPVDD/CPGND/C1P/C1N/PVSS	300mA
Any Other Pin	20mA
Duration of HPR/HPL/LOUTL/LOUTR Short Circ	uit
to AVDD/AGND/CPVDD/CPGND	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
40-Pin TQFN (derate 26.3mW/°C above +70°	C,
single-layer board)	2105mW
40-Pin TQFN (derate 37mW/°C above +70°C,	
multilayer board)	2963mW
Operating Temperature Ranges:	
E Series	40°C to +85°C
G Series	-40°C to +105°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, CREF = C_{MBIAS} = C_{PREG} = C_{NREG} = 1 μ F, A_{VPRE} = +20dB, C_{MICBIAS} = 1 μ F, A_{VMIGPGA} = 0dB, f_{MCLK} = 11.2896MHz, DRATE = 00, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
		AVDD = CPVDD (inferred t PSRR)	from HP output	1.71	1.80	3.60	M
Supply Voltage Hange		DVDD, DVDDS2 (inferred f performance tests)	rom CODEC	1.71	1.80	3.60	V
		DAC playback mode	IAVDD + ICPVDD		2.9	5.1	
		$(f_S = 44.1 \text{kHz})$ analog	IDVDD + IDVDDS2		2.3		
		Line-only playback mode	IAVDD + ICPVDD		2.9	4.3	
		(DAC/ADC disabled)	IDVDD + IDVDDS2		0.14	0.20	
	Ivdd	DAC + line input playback mode (fs = 44.1kHz) Full operation, fs = 44.1kHz (DAC + ADC + LINEIN + MIC + AUXIN)	IAVDD + ICPVDD		3.9	5.4	
			IDVDD + IDVDDS2		2.3	3.5	
Total Supply Current (Note 2)			IAVDD + ICPVDD		11.0	15.5	mA
			IDVDD + IDVDDS2		3.7	4.5	
		DAC playback, f _S = 44.1kHz mono ADC	IAVDD + ICPVDD		6.6	9.1	
		record f _S = 8kHz	IDVDD + IDVDDS2		2.8	3.5	
		ADC record,	IAVDD + ICPVDD		7.8	10.5	
		$f_{S} = 44.1 \text{kHz}$	IDVDD + IDVDDS2		2.3	3.5	
Shutdown Supply Current		IAVDD + ICPVDD			2.2	10	
		IDVDD + IDVDDS2			0.6	10	μΑ
Shutdown to Full Operation					50		ms

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu F, C2 = 4.7\mu F, C_{REF} = C_{MBIAS} = C_{PREG} = C_{NREG} = 1\mu F, A_{VPRE} = +20dB, C_{MICBIAS} = 1\mu F, A_{VMIGPGA} = 0dB, f_{MCLK} = 11.2896MHz, DRATE = 00, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)$

PARAMETER	SYMBOL	CONDIT	TIONS	MIN	ТҮР	MAX	UNITS	
STEREO DAC (Note 3)	•							
Gain Error					±1	±5	%	
Channel Gain Mismatch					±1		%	
DAC DYNAMIC SPECIFICATION	IS							
		f _S = 44.1kHz, A-weighte	ed, DRATE = 10	80	91			
Dynamic Range (Note 4)		f _S = 8kHz to 96kHz,	DRATE = 00		87		dB	
		A-weighted	DRATE =10		91]	
Total Harmonic Distortion	THD	f _{IN} = 1kHz, f _S = 8kHz to	96kHz, 0dBFS		82		dB	
Cignal ta Naisa Datia		fs = 8kHz to 96kHz,	DRATE = 00		87		dD	
Signal-to-Noise Ratio	SINK	A-weighted (Note 5)	DRATE = 10		91		uв	
Crosstalk		Driven channel at -1dBF f _S = 8kHz	=S, f _{IN} = 1kHz,		78		dB	
	2022	f = 217Hz, VRIPPLE = 10	00mV, A _{VPGA} = 0dB		93			
Power-Supply Rejection Ratio	PSRR	$f = 10kHz, V_{RIPPLE} = 10$	00mV, A _{VPGA} = 0dB		60		dB	
DAC DIGITAL FILTER (8x interp	olation, FIR ((f _S = 7.8kHz to 50kHz))					1	
Passband Cutoff	fP	-0.2dB from peak			0.44		fs	
Passband Ripple		f < 0.44 x fs			±0.1		dB	
Stopband Cutoff	fs				0.58		fs	
Stopband Attenuation		f > fs			58		dB	
Attenuation at fs/2					-6.02		dB	
DAC DIGITAL FILTER (4x interp	olation, FIR ((f _S = 50kHz to 100kHz))						
Passband Cutoff	fP	-0.2dB from peak			0.24		fs	
Passband Ripple		f < 0.23 x fs			±0.1		dB	
Stopband Cutoff	fs				0.5		fs	
Stopband Attenuation		f > fS			54		dB	
Attenuation at fs/2					-60		dB	
DAC HIGHPASS FILTER								
		DACHP = 000			Disabled			
		DACHP = 001; LRCLK/	1598		28			
		DACHP = 010; LRCLK/7	798		55			
-3dB Corner Frequency		DACHP = 011; LRCLK/3	398		111			
$(f_{S} = 44.1 \text{kHz})$	UFFILI	DACHP = 100; LRCLK/	197		224		ΠZ	
		DACHP = 101; LRCLK/S	97		455			
		DACHP = 110; LRCLK/47		938]		
		DACHP = 111; LRCLK/2	22		2004			
DC Attenuation	DCATTEN	DACHP ≠ 000			60		dB	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, CREF = C_{MBIAS} = CPREG = CNREG = 1 μ F, AVPRE = +20dB, C_{MICBIAS} = 1 μ F, AVMIGPGA = 0dB, f_{MCLK} = 11.2896MHz, DRATE = 00, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
STEREO ADC (Note 6)		•					
Gain Error				±1	±5	%	
Full-Scale Conversion	0dBFS	f _{IN} = 1kHz, line input PGA = 0dB		2		VP-P	
Channel Gain Mismatch				±1		%	
ADC DYNAMIC SPECIFICATION	S						
		$f_S = 8$ kHz to 32kHz, BW = 22Hz to $f_S/2$		80			
Dynamic Range (Note 4)		$f_S = 44.1$ kHz, BW = 22Hz to 20kHz, A-weighted	78	84		dB	
		$f_S = 48$ kHz, BW = 22Hz to 20kHz, A-weighted		85			
Total Llarmania Distantian		1kHz, 0dBFS, $f_S = 8kHz$		-63		dD	
	IND	1kHz, 0dBFS, $f_S = 48$ kHz		-68		uв	
Circul to Naise Datio		1kHz, 0dBFS, $f_S = 8kHz$, BW = 22Hz to 20kHz, A-weighted		77		aD	
Signal-to-Noise Ratio	SINK	1kHz, 0dBFS, f _S = 48kHz, BW = 22Hz to 20kHz, A-weighted		77		ав	
Channel Crosstalk		Driven channel at -1dBFS, $f_{IN} = 1kHz$, $f_S = 8kHz$		65		dB	
	PSRR	V _{AVDD} = 1.71V to 3.6V	60	100			
Power-Supply Rejection Ratio		$f = 1 kHz, V_{RIPPLE} = 100 mV$		80		dB	
		$f = 10 kHz, V_{RIPPLE} = 100 mV$		50			
ADC DIGITAL FILTER PATH							
Passband Cutoff	fP	-0.2dB from peak		0.44		fs	
Passband Ripple		f < fp		±0.1		dB	
Stopband Cutoff	fs			0.56		fs	
Stopband Attenuation		f > fs		60		dB	
Attenuation at f _S /2				-6.02		dB	
ADC HIGHPASS FILTER							
		ADCHP = 000		Disabled			
		ADCHP = 001; LRCLK/1598		28			
		ADCHP = 010; LRCLK/798		55			
-3dB Corner Frequency	LID==	ADCHP = 011; LRCLK/398		111			
$(f_{S} = 44.1 \text{kHz})$	HPFILT	ADCHP = 100; LRCLK/197		224		Hz	
		ADCHP = 101; LRCLK/97		455			
		ADCHP = 110; LRCLK/47		938			
		ADCHP = 111; LRCLK/22		2004			
DC Attenuation	DCATTEN	ADCHP anything other than 000		90		dB	
DC Output Offset		ADCHP = 000		-40		dBFS	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu F, C2 = 4.7\mu F, C_{REF} = C_{MBIAS} = C_{PREG} = C_{NREG} = 1\mu F, A_{VPRE} = +20dB, C_{MICBIAS} = 1\mu F, A_{VMIGPGA} = 0dB, f_{MCLK} = 11.2896MHz, DRATE = 00, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
ADC/DAC DATA RATE ACCURA	CY						
LRCLK_D and LRCLK_A Output Average Sample Rate Deviation (Master Mode, Any MCLK)		(Note 8)		-0.025		+0.025	%
LRCLK_D Output Sample Rate Deviation (Master Mode)		PCLK/LRCLK = 1536, 102 256, 192, or 128	24, 768, 512, 384,		0		%
LRCLK Input Sample Rate Range (Slave Mode)		LRCLK_A, LRCLK_D (DHF LRCLK_D (DHF = 1)	= = 0)	7.8 15.6		50 100	kHz
LRCLK_D and LRCLK_A PLL Lock Time	tlock	Any allowable LRCLK and	PCLK rates		12	25	ms
LRCLK_D and LRCLK_A Acceptable Jitter for Maintaining PLL Lock (All Slave Modes)		Allowable LRCLK period of nominal for slave PLL moor allowable LRCLK and PCL	change from de at any _K rates			±20	ns
HEADPHONE AMPLIFIERS							
Output Power	Pout	f = 1kHz, THD < 1%, T _A = +25°C	$R_{L} = 16\Omega$ $R_{L} = 32\Omega$	15	35 28		mW
0dBFS DAC Output Voltage		+0dB volume setting	1	3.40	3.51	3.80	Vp-p
Line In to HP Out Voltage Gain		+4.5dB volume setting, 0c	B PGA setting		1.77		V/V
Output Offset Voltage	VOS	$T_A = +25^{\circ}C$, -40dB volume	e setting		±0.6	±4	mV
Total Harmonic Distortion Plus		$R_L=32\Omega,P_{OUT}=25mW,$	f = 1kHz		0.03		%
Noise	morn	$R_{L} = 16\Omega, P_{OUT} = 25 \text{mW},$	f = 1kHz		0.05		70
Dynamic Range	DR	+5.5dB volume setting, D/ $f_S = 44.1$ kHz (Note 4)	AC input at	80	91		dB
		$V_{AVDD} = 1.71V \text{ to } 3.6V$		70	94		
Power-Supply Rejection Ratio	PSRR	$V_{RIPPLE} = 100 mV_{P-P}, f = 2$	217Hz		80		dB
		$V_{RIPPLE} = 100mV_{P-P}, f = 1$	0kHz		50		
Capacitive Drive	CL	No sustained oscillations			150		pF
Crosstalk		$P_{OUT} = 1.6mW, f = 1kHz,$ (HPR to HPL)	(HPL to HPR) or		69		dB
Channel Gain Matching	AVMATCH				±2		%
Click-and-Pop Level		Peak voltage, A-weighted, 32 samples	Into shutdown		-70		dBV
		per second	Out of shutdown		-70		
		1					
UdBFS DAC Output Voltage				1.0	1.0	- 4	VRMS
Line-in to Line-Out Voltage Gain	\/			1.3	1.34	1.4	V/V
Output Offset Voltage	VOS	$I_{A} = +25^{\circ}C$			±0.7	±10	mv

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, CREF = C_{MBIAS} = CPREG = C_{NREG} = 1 μ F, A_{VPRE} = +20dB, C_{MICBIAS} = 1 μ F, A_{VMIGPGA} = 0dB, f_{MCLK} = 11.2896MHz, DRATE = 00, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	МАХ	UNITS	
Total Harmonic Distortion Plus Noise	THD+N	$V_{OUT} = 1V_{RMS}, f = 1$	kHz		0.024		%	
Signal-to-Noise Ratio	SNR				98		dB	
		V _{AVDD} = 1.71V to 3.6	6V	70	108			
Power-Supply Rejection Ratio	PSRR	$V_{RIPPLE} = 100 mV_{P-P}, f = 217 Hz$			93		dB	
		VRIPPLE = 100mVP-P	, f = 10kHz		60			
Capacitive Drive	CL	No sustained oscillat	tions		150		рF	
Crosstalk		$V_{OUT} = 2V_{P-P}$, f = 1k or (LOUTR to LOUTL	Hz, (LOUTL to LOUTR)		98		dB	
Channel Gain Matching	AVMATCH				±2		%	
VOLUME CONTROL				ı				
Headphone Volume Control Range				-74.0		+5.5	dB	
		5.5dB to 2dB			0.5			
Headphone Volume Control Step		+2.5dB to -2dB			1			
Size		-2dB to -46dB		2			aв	
		-46dB to -74dB			4			
Headphone Mute Attenuation		f = 1kHz			92		dB	
CHARGE PUMP								
Charge-Pump Oscillator Frequency	fosc	$T_A = +25^{\circ}C$		600	665	720	kHz	
MICROPHONE AMPLIFIERS								
			PALEN/PAREN = 01	-0.5	0	+0.5	dB	
Preamplifier Gain	AVPRE	MICL or MICR	PALEN/PAREN = 10	19	20	21		
			PALEN/PAREN = 11	28.5	30.0	31.5		
		PGAML/R = 0x20		-0.5	0	+0.5	dB	
	AVIVIICEGA	PGAML/R = 0x00		19.5	20.0	19.5	uв	
MIC PGA Gain Step Size					1		dB	
MIC Mute Attenuation		f = 1kHz			92		dB	
Common-Mode Rejection Ratio	CMRR	$INL\pm$, $V_{IN} = 100mV_P$ $A_{VPRE} = +20dB$	_{-P} at 217Hz,		73		dB	
		INL±, MICL or MICR	, A _{VPRE} = +30dB	4	8	10		
MIC Input Resistance	RIN_MIC	INL±, MICL or MICR	, $A_{VPRE} = +20dB$	12	18	28	kΩ	
		INL±, MICL or MICR	, A _{VPRE} = 0dB	60	100	160	C	
MIC Input Resistance Matching	RMATCH	INL+ to INL- or MICL	/MICR to AGND		1		%	
MIC Input Bias Voltage	VCML	Measured at INL±, N	IICR, MICL, and AGND	-0.05	0	+0.05	V	
Input Voltage Noise		$f = 1 kHz, A_{VPRE} = +$	30dB		15		nV/√Hz	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu F, C2 = 4.7\mu F, C_{REF} = C_{MBIAS} = C_{PREG} = C_{NREG} = 1\mu F, A_{VPRE} = +20dB, C_{MICBIAS} = 1\mu F, A_{VMIGPGA} = 0dB, f_{MCLK} = 11.2896MHz, DRATE = 00, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	MAX	UNITS
		$A_{VPRE} = 0dB, A_{VMICPGA} = 0dB,$ $V_{IN} = 500mV_{P-P}, f = 1kHz, A-weighted$		0.04		
Total Harmonic Distortion Plus Noise	THD+N	$A_{VPRE} = +20dB, A_{VMICPGA} = 0dB,$ $V_{IN} = 50mV_{P-P}, f = 1kHz, A-weighted$		0.08		%
		$A_{VPRE} = +30$ dB, $A_{VMICPGA} = 0$ dB, $V_{IN} = 18$ m V_{P-P} , f = 1kHz, A-weighted		0.08		
MIC Power Supply Rejection		$V_{AVDD} = 1.71V$ to 3.6V, $T_A = +25^{\circ}C$	79	80		
Ratio	PSRR	VRIPPLE = 100mV at 1kHz, input referred		80		dB
		VRIPPLE = 100mV at 10kHz, input referred		50		
MICROPHONE BIAS	0		n			
MICBIAS Output Voltage	VMICRIAS	V _{AVDD} = 1.8V (MBSEL = 0 register setting)	1.4	1.5	1.6	V
	VIVIC DIAS	V _{AVDD} = 3.0V (MBSEL = 1 register setting)	2.3	2.4	2.5	v
MICBIAS Load Regulation		$I_{MICBIAS} = 0$ to 2mA		0.8	10	Ω
MICBIAS Capacitive Load		Minimum capacitive load		1		μF
MICBIAS Short-Circuit Current		To GND		14		mA
MICBIAS Power-Supply Rejection Ratio		$V_{AVDD} = 1.71V$ to 3.6V, MBSEL = 0, T _A = +25°C	75	86		٩D
	PORR	VRIPPLE = 100mV at 1kHz		86		uв
		VRIPPLE = 100mV at 10kHz		76		
	VNOISEMIC	f = 10Hz to 20kHz		3		μV _{RMS}
MICBIAS Noise Voltage	BIAS	f = 1 kHz		20		nV/√Hz
AUTOMATIC GAIN CONTROL						
Threshold Level		Set by AGCSTH[3:0]	-3		-18	dB
Attack Time		Set by AGCATK[1:0]	3		200	ms
Release Time		Set by AGCRLS[2:0]	0.078		10.000	S
Hold Time		Set by AGCHLD[1:0]	50		400	ms
		$A_{VPRE} = +30 dB$		30 to 50		
Gain Adjustment Range		A _{VPRE} = +20dB		20 to 40		dB
		A _{VPRE} = 0dB		0 to 20		
ADC LOW-LEVEL QUIETING						
NG Attack and Release Time		Full 12dB quieting at 1dB of attenuation/(gain) for every 2dB decrease/(increase) of signal level (immediate release if PGA < 20dB gain when AGC is enabled)		0.5		S
NG Threshold Level		ANTH[3:0] setting range (AGC off) (AGC on adjusts these values by 20dB since low- level signals cause maximum AGC gain in the PGA)	-64		-28	dB
NG Attenuation		1dB of attenuation for every 2dB signal amplitude decrease from NG threshold	0		12	dB

MAX9856

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, CREF = C_{MBIAS} = CPREG = C_{NREG} = 1 μ F, A_{VPRE} = +20dB, C_{MICBIAS} = 1 μ F, A_{VMIGPGA} = 0dB, f_{MCLK} = 11.2896MHz, DRATE = 00, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LINEIN1/LINEIN2 INPUTS						
Line Input Full-Scale Input Voltage	0dBFS			2		Vp-p
Input DC Bias Voltage				0		V
Line Input Resistance	R _{IN}	PGA = 0dB (Note 9)	12	21		kΩ
Crosstalk		LINEIN1 to LINEIN2 or LINEIN2 to LINEIN1, f = 1kHz		97		dB
Line Channel-to-Channel Gain Matching	AV _{MATCH}			±2		%
PGA Gain Range			-32		+30	dB
PGA Gain Step Size		-32dB to +30dB		2		dB
AUXIN INPUT		·				
AUXIN Full-Scale Input Voltage	0dBFS	AUXDC = 0		2		Vp-p
Input DC Voltage Range		AUXDC = 1	0		1	V
Input DC Bias Voltage		AUXDC = 0		0		V
	Duy	AUXDC = 0	12	21		kΩ
AOAIN Input Resistance	ΠN	AUXDC = 1		100		MΩ
Line Channel-to-Channel Gain Matching	AVMATCH			±2		%
PGA Gain Range			-32		+30	dB
PGA Gain Step Size		-32dB to +30dB		2		dB
JACK SENSE OPERATION (EN	[2:0] = 000)					
JACKSNS High Threshold (JKMIC)	V _{TH1}	$T_A = +25^{\circ}C$	0.92 x VMICBIAS	0.95 x VMICBIAS	0.98 x V _{MICBIAS}	V
JACKSNS Deglitch Period (JKMIC)	tglitch	Pulses shorter than t _{GLITCH} are eliminated		12		ms
JACKSNS Voltage (JKMIC)		JDETEN = 1		Vavdd		V
HEADSET IMPEDANCE DETEC	T MODE (EN	v[2:0] = 111)				
JACKSNS/HPL/HPR High Threshold (JSDET/ HSDETL/HSDETR)	V _{TH2}	HPL/HPR disabled	0.32	0.40	0.48	V
JACKSNS/HPL/HPR Low Threshold (JSDET/HSDETL/HSDETR)	V _{TH3}	HPL/HPR disabled	0.075	0.100	0.125	V
JACKSNS/HPL/HPR Sense Current (JSDET/HSDETL/HSDETR)	I _{SNS}	HPL/HPR disabled	1.7	2.0	2.3	mA

ELECTRICAL CHARACTERISTICS (continued)

 $(VAVDD = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, CREF = CMBIAS = CPREG = CNREG = 1 μ F, AVPRE = +20dB, CMICBIAS = 1 μ F, AVMICPGA = 0dB, MCLK = 11.2896MHz, DRATE = 00, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SLEEP MODE (JDETEN = 1, SH	DNB = 0)					
JACKSNS/HPL Resistance	R _{PU}	MICBIAS = GND	400	1000		kΩ
JACKSNS/HPL Sense Voltage	V _{PU}			Vavdd		V
JACKSNS/HPL Sleep Threshold (JKSNS/LSNS)	V _{TH4}		V _{AVDD} - 0.8V	V _{AVDD} - 0.4V	V _{AVDD} - 0.15V	V

DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS

(VDVDD = VDVDDS2 = 1.8V, TA = TMIN to TMAX, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
MCLK INPUT CHARACTERISTICS	S	·				-
Input Voltage High	VIH		0	.7 x V _{DVD}	D	V
Input Voltage Low	VIL				0.4	V
Input Leakage Current	I _{IH} , I _{IL}		-10		+10	μA
Input Capacitance				3		pF
MCLK Input Frequency			10		60	MHz
MCLK Duty Cycle			40	50	60	%
Maximum MCLK Input Jitter		For guaranteed performance limits		100		psrms
DIGITAL INPUTS (BCLK, LRCLK	_A, LRCLK_I	D, SDIN, SDA, SCL)				
Input Voltage High	VIH		0.7 x V _D	VDD		V
Input Voltage Low	VIL			0.3	x V _{DVDD}	V
Input Hysteresis				200		mV
Input Leakage Current	li⊣, li∟		-10		+10	μA
Input Capacitance				10		pF
CMOS DIGITAL OUTPUTS (BCLK	, LRCLK_A,	LRCLK_D, SDOUT)				
Output Low Voltage	VOL	I _{OL} = 3mA			0.4	V
Output High Voltage	VOH	I _{OH} = 3mA	V _{DVDD} -	0.4		V
OPEN-DRAIN DIGITAL OUTPUTS	(IRQ, SDA)					
Output High Current	IOH	V _{OUT} = V _{DVDD}			1	μA
Output Low Voltage	VOL	I _{OL} = 3mA			0.4	V
DIGITAL AUDIO INTERFACE TIM	ING CHARA	CTERISTICS				
RCLK Cycle Time	t BCLKS	Slave operation	75			ns
	t BCLKM	Master operation	100	325		ns
BCLK High Time	t BCLKH	Slave operation	30			ns
BCLK Low Time	t BCLKL	Master operation	30			ns
BCLK or LRCLK_A/D Rise and Fall Time	t _r , t _f	Master operation, $C_L = 15 pF$	7			ns

DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DVDD} = V_{DVDDS2} = 1.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS
SDIN or LRCLK_A/D to BCLK Rising Setup Time	ts∪	BCI = 0 (see the I^2C Register Address Map and Definitions section)	30		ns
SDIN or LRCLK_A/D to BCLK Rising Hold Time	thd	BCI = 0 (see the I^2C Register Address Map and Definitions section)	5		ns
SDOUT Delay Time	tDLY	BCI = 0 (see the I^2C Register Address Map and Definitions section), C _L = 30pF	0	50	ns
I ² C INTERFACE TIMING CHARAG	CTERISTICS	·			
Serial-Clock Frequency	fSCL		0	400	kHz
Bus Free Time Between STOP and START Conditions	tBUF		1.3		μs
Hold Time (Repeated) START Condition	^t hd,sta		0.6		μs
SCL Pulse Width Low	tlow		1.3		μs
SCL Pulse Width High	thigh		0.6		μs
Setup Time for a Repeated START Condition	tsu,sta		0.6		μs
Data Hold Time	thd,dat		0	900	ns
Data Setup Time	tsu,dat		100		ns
SDA and SCL Receiving Rise Time	tr	(Note 10)	20 + 0.1C _B	300	ns
SDA and SCL Receiving Fall Time	tf	(Note 10)	20 + 0.1C _B	300	ns
		V _{DVDD} = 1.8V (Note 10)	20 + 0.1C _B	250	
SDA Transmitting Fall Time	tf	V _{DVDD} = 3.6V (Note 10)	20 + 0.05C _B	250	ns
Setup Time for STOP Condition	tsu,sto		0.6		μs
Bus Capacitance	Cb			400	pF
Pulse Width of Suppressed Spike	tSP	$T_A = +25^{\circ}C$	0	50	ns

Note 1: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.

Note 2: Supply current measurements taken with no applied input signal to line and microphone inputs. A digital zero audio signal used for all digital serial audio inputs. Speaker and headphone outputs are loaded as stated in the global conditions.

Note 3: DAC performance measured at headphone outputs.

Note 4: Dynamic range measured using the EIAJ method. The input is applied at -60dBFS, f_{IN} = 1kHz. The is THD+N referred to 0dBFS.

Note 5: Signal-to-noise ratio measured using an all-zeros input signal, and is relative to 0dB full scale. The DAC is not muted for the SNR measurement.

Note 6: Performance measured from line inputs (unless otherwise noted).

Note 7: Microphone amplifiers connected to ADC, microphone inputs AC-grounded.

Note 8: In master-mode operation, the accuracy of the MCLK input proportionally determines the accuracy of the sample clock rate. ($V_{DVDD} = 1.8V$, unless otherwise noted).

Note 9: To enable the line input, make sure the desired input is selected by either the audio output mixer or the ADC input mixer. **Note 10:** CB is in pF.

Typical Operating Characteristics

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, C_{REF} = C_{MBIAS} = C_{PREG} = C_{NREG} = 1 μ F, V_{AVPRE} = +20dB, C_{MICBIAS} = 1 μ F, V_{AVMICPGA} = 0dB, f_{MCLK} = 12.288MHz, DRATE = 10, T_A = +25°C, unless otherwise noted.)

TOTAL HARMONIC DISTORTION PLUS NOISE vs. OUTPUT POWER (DAC TO HP) 100 HP GAIN = +5.5dB = 32Ω R 10 20kHz 1 THD+N (%) 1kHz 0.1 0.01 10kHz 0.001 5 10 15 20 25 30 35 40 0 OUTPUT POWER (mW)

TOTAL HARMONIC DISTORTION + NOISE vs. Frequency (dac to HP)

TOTAL HARMONIC DISTORTION PLUS NOISE vs. Frequency (Intmic to Adc)

TOTAL HARMONIC DISTORTION + NOISE vs. Frequency (dac to line out)

TOTAL HARMONIC DISTORTION PLUS NOISE vs. Frequency (Intmic to ADC)

TOTAL HARMONIC DISTORTION + NOISE vs. Frequency (dac to HP)

TOTAL HARMONIC DISTORTION PLUS NOISE vs. Frequency (line in to ADC)

POWER OUT vs. Headphone Load

MAX9856

POWER-SUPPLY REJECTION RATIO vs. FREQUENCY (DAC TO HP) 0 0 $= 100 m V_{P-F}$ VRIPPI F -20 -20 -40 -40 PSRR (dB) SRR (dB) -60 -60 -80 -80 -100 -100 -120 -120 10 100 1k 10k 100k

FFT, DAC TO LINE OUT, 48kHz Synchronous Slave Mode, -60dBFS

FREQUENCY (Hz)

FFT, DAC TO LINE OUT, 48kHz Asynchronous slave mode, odbfs

FFT, DAC TO LINE OUT, 48kHz Asynchronous Master Mode, 0dbfs

FFT, DAC TO LINE OUT, 48kHz Asynchronous Slave Mode, -60dBFS

FFT, DAC TO LINE OUT, 48kHz Synchronous Slave Mode, 0dbfs

FFT, DAC TO LINE OUT, 48kHz Asynchronous Master Mode, -60dBFS

FFT, LINE IN TO ADC (48kHz) Synchronous Master Mode (0dbfs)

Typical Operating Characteristics (continued)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, CREF = C_{MBIAS} = C_{PREG} = C_{NREG} = 1 μ F, V_{AVPRE} = +20dB, C_{MICBIAS} = 1 μ F, V_{AVMICPGA} = 0dB, f_{MCLK} = 12.288MHz, DRATE = 10, T_A = +25°C, unless otherwise noted.)

 $(V_{AVDD} = V_{CPVDD} = V_{DVDDS2} = V_{DVDD} = 1.8V, R_{HP} = 32\Omega, R_{LINE} = 10k\Omega, C1 = 4.7\mu$ F, C2 = 4.7 μ F, CREF = C_{MBIAS} = CPREG = C_{NREG} = 1 μ F, V_{AVPRE} = +20dB, C_{MICBIAS} = 1 μ F, V_{AVMICPGA} = 0dB, f_{MCLK} = 12.288MHz, DRATE = 10, T_A = +25°C, unless otherwise noted.)

10 11 12 13 14 15 16 17

FREQUENCY (MHz)

18 19 20

10

12

14

FREQUENCY (MHz)

16

20

MAX9856

-100 -80

-60

-40

MICROPHONE INPUT (dBV)

-20

0

Pin Description

PIN	NAME	FUNCTION
1	LINEIN1	Line 1 Input. AC-couple signal to LINEIN1 with a 1µF capacitor.
2	LINEIN2	Line 2 Input. AC-couple signal to LINEIN2 with a 1µF capacitor.
3	AUXIN	Auxiliary Input. Input for beep and sound effect signals or can be used for DC measurements.
4	PREG	Positive Internally Regulated Supply (+1.6V \pm 5%). Bypass to AGND with 1µF capacitor.
5	NREG	Negative Internally Regulated Supply (-1.15V \pm 5%). Bypass to AGND with 1µF capacitor.
6	MBIAS	Internal Microphone Bias Regulator Output (1.23V \pm 5%). Bypass to AGND with a 1µF capacitor.
7	REF	Converter Reference (1.23V \pm 5%). Bypass to AGND with a 1µF capacitor.
8	LGNDSNS Line Output Ground Sense. Feedback path to line-out amplifiers for noise reduction. Compin of the line output jack. Connect directly to AGND, if ground sense is not required.	
9	LOUTL	Left-Channel Line Output. Ground-referenced DirectDrive output.
10	LOUTR	Right-Channel Line Output. Ground-referenced DirectDrive output.
11	HGNDSNS	Headphone Ground Sense. Feedback path to headphone amplifiers for noise reduction. Connect to the ground pin of the headphone jack. Connect directly to AGND if ground sense is not required.
12	AVDD	Analog Power Supply. Bypass to AGND with 10μ F and 0.1μ F capacitors.
13	HPL	Left Headphone DirectDrive Output
14	HPR	Right Headphone DirectDrive Output
15	SVSS	Negative Power-Supply Input. Connect to PVSS and bypass to CPGND with a 4.7μ F capacitor.
16	PVSS	Internally Generated Negative Supply. Connect to SVSS.
17	C1N	Charge-Pump Flying Capacitor Negative Terminal. Connect a 4.7µF capacitor between C1N and C1P.
18	CPGND	Charge-Pump Ground
19	C1P	Charge-Pump Flying Capacitor Positive Terminal. Connect a 4.7µF capacitor between C1P and C1N.
20	CPVDD	Charge-Pump Positive Supply. Bypass to CPGND with a 4.7µF capacitor.
21	SCL	I ² C Serial-Clock Input. Connect a 10k Ω pullup resistor to DVDD.
22	SDA	I^2C Serial-Data Input/Output. Connect a 10k Ω pullup resistor to DVDD.
23	ĪRQ	Hardware Interrupt Output. \overline{IRQ} can be programmed to pull low when bits in the status register 0x00 change state. Read status register 0x00 to clear \overline{IRQ} once set. Repeat faults have no effect on \overline{IRQ} until it is cleared by reading the I ² C status register 0x00. Connect a 10k Ω pullup resistor to DVDD for full output swing.
24	LRCLK_D	Digital Audio Left-Right Clock Input/Output. LRCLK_D is the audio sample rate clock that determines whether the audio data on SDIN is routed to the left or right channel. LRCLK_D is an input when the MAX9856 is in slave mode and an output when in master mode. LRCLK_D is also used with SDOUT if LRCLK_A is configured as a GPIO.

_____Pin Description (continued)

PIN	NAME	FUNCTION
25	BCLK	Digital Audio Bit Clock Input/Output. BCLK is an input when the MAX9856 is in slave mode and an output when in master mode.
26	SDOUT	Digital Audio Serial Data ADC Output
27	SDIN	Digital Audio Serial Data DAC Input
28	DVDDS2	Digital Audio Interface I/O Power Supply. Bypass to DGND with 1µF capacitor.
29	LRCLK_A	Digital Audio Left-Right Clock Input/Output. LRCLK_A is the audio sample rate clock that determines whether the audio data on SDOUT is routed to the left or right channel. When only one LRCLK is needed (ADC and DAC are at the same sample rate), LRCLK_A can be reprogrammed as a general-purpose input/output, GPIO.
30	MCLK	Master Clock Input (CMOS Input). Acceptable Input frequency range: 10MHz to 60MHz.
31	DVDD	Digital Power Supply. Supply for the digital core and I ² C interface. Bypass to DGND with a 1.0μ F capacitor.
32	DGND	Digital Ground
33	INLN	Inverting Left Differential Input. AC-couple to the low side of microphone, or connect to the negative line signal. AC-couple to ground when using with a single-ended line or microphone input.
34	INLP	Noninverting Left Differential Input. AC-couple to the high side of microphone, or connect to the positive line signal. AC-couple to the signal when using with a single-ended line or microphone input.
35	MICL	Left-Channel Single-Ended Microphone Input. AC-couple to the microphone with a 1µF capacitor.
36	MICGND	Microphone Ground. Allows the common return signal of a stereo microphone pair to be connected to the inverting input differential amps in a pseudo differential configuration. Alternatively MICGND can be grounded for single-ended microphone applications.
37	MICR	Right-Channel Single-Ended Microphone Input. AC-couple to the microphone with a 1μ F capacitor.
38	MICBIAS	Low-Noise Bias Voltage. Outputs a 1.5V or 2.4V microphone bias. An external resistor in the 2.2k Ω to 470 Ω range should be used to set the microphone current.
39	AGND	Analog Ground (and Chip Substrate)
40	JACKSNS	Jack Sense. Detects the presence or absence of a jack, and can be configured to detect the impedance range of the external load. See the <i>Headset Detection</i> section.
	EP	Exposed Pad. The exposed pad lowers the package's thermal impedance by providing a direct heat conduction path from the die to the PCB. The exposed pad is internally connected to the substrate. Connect the exposed thermal pad to AGND.

Functional Diagram

MAX9856

Detailed Description

The MAX9856 is a high-performance, low-power stereo audio CODEC designed to provide a complete audio solution. Operating from a 1.8V supply, the MAX9856 achieves high performance and reasonable output power while consuming only 9mW in DAC playback mode.

The internal 18-bit sigma-delta DAC accepts stereo digital audio signals, and converts them to stereo audio outputs that can be mixed with line inputs and/or microphone inputs. The DAC is capable of operating at sample rates ranging from 8kHz to 96kHz with any master clock frequency between 10MHz and 60MHz. The DAC is capable of operating at a different sample rate than the ADC. Both master and slave modes are available when operating the interface in left-justified, I²S or PCM data format. The incoming data can be level shifted and highpass filtered in the digital domain. The highpass filtering allows only reproducible frequencies to be converted, saving power and improving sound quality.

The MAX9856 features stereo DirectDrive headphone amplifiers and line outputs, which eliminate the need for large output-coupling capacitors. The audio output path includes high-quality mixing amplifiers to allow flexibility in choosing from the DAC output and the stereo analog line inputs. Volume control amplifiers provide adjustable gains between +5.5dB and -74dB for the headphones. The line outputs are capable of generating a 1V_{RMS} output signal from a full-scale digital input.

The digital audio signals of the internal 18-bit sigmadelta ADC outputs are converted from the analog microphone and line input paths. The ADC is capable of operating at a sample rate ranging from 8kHz to 48kHz with any master clock frequency between 10MHz and 60MHz. The ADC is capable of operating at a different sample rate than the DAC. Both master and slave modes are available when operating the interface in leftjustified, I²S, or PCM data formats. The outgoing data can be level shifted and highpass filtered in the digital domain. The highpass filtering allows reduction of wind noise from microphone inputs.

Three microphone inputs are available. One fully differential input can be used with internal microphones while a pair of single-ended inputs can be used with an external mono or stereo headset microphone. Selectable gain of 0dB, 20dB, and 30dB can be applied to the input signals in addition to a 0 to 20dB input PGA. The MAX9856 features AGC on the microphone input path to automatically compensate for varying input signal levels and the limited dynamic range of most microphones. The integrated noise gate provides low-level audio noise quieting to lower the audible noise floor.

An auxiliary input is available for sending externally generated beeps and sound effects directly to the headphones. The auxiliary input can also be used to make DC measurements with the ADC by providing a direct path to the ADC.

HPL, HPR, and JACKSNS provide a headset detection feature which can both detect the insertion of a jack and measure the load impedance. Jack detection can be done in both shutdown and powered-on mode. The headphone and line outputs feature ground sensing to reduce ground noise. Reduced output offset voltage and extensive click-and-pop suppression circuitry on headphone amplifiers eliminate audible clicks and pops at startup and shutdown

I²C Register Address Map and Definitions

The MAX9856 has 28 internal registers used for configuration and status reporting. Table 1 lists all the registers, their addresses, and power-on-reset (POR) states. Registers 0x00 and 0x01 are read only, while all the other registers are read/write. Write zeros to all unused bits in the register table when updating the register, unless otherwise noted.

Table 1. Register Map

REGISTER	B7	В6	B5	B4	B3	B2	B1	В0	REGISTER ADDRESS	POWER-ON RESET STATE
Status	CLD	SLD	ULK	JKMIC	HPOCL	HPOCR	JDET	GPI	0x00	—
Status	LSNS	JKSNS	HS	DETL	HSD	ETR	JSI	DET	0x01	—
Interrupt Enable	ICLD	ISLD	IULK	0	IHPOCL	IHPOCR	IJDET	IGPI	0x02	0x00
CLOCK CONTRO	<u>SL</u>	1			1	1			1	1
Clock Rates	0		PSCLK		MAS		BSEL		0x03	0x00
DAC INTERFAC	E	1			1			r		
System	DWCI	DBCI	DF	RATE	DDLY	PCM	DHF	WS	0x04	
Interface	DPLLEN			[DACNI[14:8]			0x05	0x00
Interface				DACI	NI[7:0]				0x06	0x00
ADC INTERFAC	E	_	-		_			-		
System	AWCI	ABCI	A	PIN	ADLY	0	0	0	0x07	0x00
Interface	APLLEN			ŀ	ADCNI[14:8]			0x08	0x00
Interface				ADCI	NI[7:0]				0x09	0x00
Level		AG	AIN			AN	TH		0x0A	0x00
DIGITAL FILTER	S									
Highpass Filters	0		ADCHP		0		DACHP		0x0B	0x00
AUTOMATIC GA	IN CONTR	ROL								
AGC Control	0		AGCRLS		AGC	ATK	AGC	CHLD	0x0C	0x00
AGC Threshold	0	0	0	AGCSRC		AGC	STH		0x0D	0x00
ANALOG MIXER	S								•	•
ADC Mixer	0	0	0			MXINL			0x0E	0x00
ADC Mixer	0	0	0			MXINR			0x0F	0x00
Output Mixer		MXC	UTL			MXO	UTR		0x10	0x00
AUDIO INPUTS									•	•
Digital Input Gain				PG	ADS				0x11	0x00
AUXIN Gain	0	0	0			PGAAUX			0x12	0x00
LINEIN1 Gain	0	0	0			PGAL1			0x13	0x00
LINEIN2 Gain	0	0	0			PGAL2			0x14	0x00
MICL Gain	0	PAE	NL			PGAML			0x15	0x00
MICR Gain	0	PAE	NR			PGAMR			0x16	0x00
MIC Mode	0	0	0	0	MMIC	MBSEL	0	LMICDIF	0x17	0x00
AUDIO OUTPUT	S	-		-	_	_		_	-	
HPL Volume	0	HPMUTE			HPV	'OLL			0x18	0x00
HPR Volume	0	0			HPV	OLR			0x19	0x00
Output Mode	0	VSEN	AUXDC	AUXMIX	0	0	HPM	10DE	0x1A	0x00
HEADSET DETE	СТ				-	-				
System	0	0	0	0	JDETEN		EN		0x1B	0x00
POWER MANAG	EMENT									
System	SHDN	0	DIGEN	LOUTEN	DALEN	DAREN	ADLEN	ADREN	0x1C	0x00

MAX9856

Status Registers

Status registers 0x00 and 0x01 are read-only registers that report the status of various device functions. The status register bits are cleared upon a read operation of the status register and are set the next time the event occurs. Table 2 lists the status registers bit location and description.

Table 2. Status Registers Bit Location

REG	B7	B6	B5	B4	B3	B2	B1	B0
0x00	CLD	SLD	ULK	JKMIC	HPOCL	HPOCR	JDET	GPI
0x01	LSNS	JKSNS	HSDETL		HSD	ETR	JSE)ET

Status Register Bit Description

BIT	FUNC	FUNCTION					
CLD	Clip Detect Flag. Indicates that a signal has become clipped in the ADC.						
SLD	Slew-Level Detect Flag. When volume or gain changes are made, the slewing circuitry smoothly steps through all intermediate settings. When SLD is set high, all slewing has completed and the volume or gain is at its final value.						
ULK	Digital PLL Unlock Flag. Indicates that the digital audio PL signal data is not reliable.	Digital PLL Unlock Flag. Indicates that the digital audio PLL for the DAC or ADC has become unlocked and digital signal data is not reliable.					
JKMIC	Jack Microphone Flag. Indicates JACKSNS has been pulled up to the MICBIAS voltage. The microphone bias must be enabled for this bit to function properly.						
HPOCL/ HPOCR	Headphone Output Left/Right Current Overload Flags. Indicate that the headphone output amplifiers have exceeded the rated current.						
JDET	Headset Configuration Change Flag. Indicates a change in	n JKMIC, LSNS, or JKSNS.					
GPI	GPI State. Indicates the state of LRCLK_A when configure	d as a general-purpose input.					
LSNS	Headphone Sense. LSNS is set when the internal pullup of This indicates headphone jack insertion or removal has oc 1 for this bit to function.	urrent forces the voltage at HPL to exceed AVDD - 0.4V. courred. HPMODE must be set to 00 and JDETEN set to					
JKSNS	Jack Sense. JKSNS is set when the internal pullup current fo This indicates jack insertion or removal has occurred. JDETE	rces the voltage on JACKSNS to exceed AVDD - 0.4V. N must be set for this bit to function.					
	Load Impedance Sense. Indicates the approximate load c updated once each time the appropriate EN bits are set hi	onnected to HPR, HPL, or JACKSNS. These bits are igh and cause an undefeatable hardware interrupt.					
HSDETL,	BITS	HEADPHONE OR JACKSNS LOAD					
HSDETR,	00	$200\Omega < load < open$					
JSDET	01	$50\Omega < \text{load} < 200\Omega$					
	10	$0 < \text{load} < 50\Omega$					
	11	Idle state					

bit locations and description.

Interrupt Enables

Hardware interrupts are reported on the open-drain IRQ pin. When an interrupt occurs, IRQ remains low until the interrupt is serviced by reading status register 0x00. If a flag is set, it is reported as a hardware interrupt only if

Table 3. Interrupt Enable Bit Locations

REG	B7	B6	B5	B4	B3	B2	B1	B0
0x02	ICLD	ISLD	IULK	0	IHPOCL	IHPOCR	IJDET	IGPI

Clock Control

The MAX9856 can work with a master clock supplied from any system clock (MCLK) within the range of 10MHz to 60MHz range. A clock prescaler divides by 1, 2, or 4 to create an internal clock (PCLK) in the 10MHz to 20MHz range.

There are two clock-generation circuits that operate independently for the ADC and DAC path, allowing the ADC and DAC to be operated at different sample rates. BCLK services the LRCLK signals for both the ADC and DAC. When the ADC and DAC operate at different LRCLK rates, BCLK should be set appropriately for the higher sample rate. The number of clock cycles per frame must be greater than or equal to the configured bit depth.

the corresponding interrupt enable is set. Each bit

enables interrupts for the status flag in the respective bit

location in register 0x00. Table 3 lists the interrupt enable

The MAX9856 digital audio interface can operate in either master or slave mode. In master mode, the MAX9856 generates the BCLK and LRCLK signals, which control the data flow on the digital audio interface. In slave mode, the external master device generates the BCLK and LRCLK signals. See Table 4.

Table 4. Clock Control Register

REG	B7	B6	B5	B4	B3	B2	B1	B0
0x03	0	PSCLK			MAS		BSEL	

Clock Control Register Bit Description

BITS	FUNCTION
PSCLK	$\label{eq:mclk} \begin{array}{l} \mbox{MCLK Prescaler. Set PSCLK to appropriately divide down MCLK to a usable frequency:} \\ \mbox{000}\hfill D00 Disable clock input \\ \mbox{001}\hfill D01 D01 D0HZ \leq MCLK \leq 16 MHz (PCLK = MCLK/1) \\ \mbox{010}\hfill D10 D16 MHZ \leq MCLK \leq 20 MHz (PCLK = MCLK/1) \\ \mbox{011}\hfill D10 D12 MHZ \leq MCLK \leq 32 MHz (PCLK = MCLK/2) \\ \mbox{100}\hfill D00 D32 MHZ \leq MCLK \leq 40 MHz (PCLK = MCLK/2) \\ \mbox{101}\hfill D01 D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \mbox{110}\hfill Reserved \\ \hfill D11 D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHz (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK = MCLK/4) \\ \hfill D00 D0HZ \leq MCLK \leq 60 MHZ (PCLK =$
MAS	Master Mode. Selects between master and slave operation: 0 = Slave mode (BCLK, LRCLK_D, and LRCLK_A are inputs) 1 = Master mode (BCLK, LRCLK_D, and LRCLK_A are outputs)
BSEL	BCLK Select. Configures BCLK when operating in master mode. Set BSEL to be a sufficiently high frequency to fully clock in all data bits for both the DAC and ADC, if operating at different sample rates: 000—Off 001—Off 010—BCLK = 48 x LRCLK_D (recommended if the DAC and ADC operate at the same rate) 011—BCLK = 48 x LRCLK_A 100—BCLK = PCLK/2 (recommended if the DAC and ADC are not operating at the same rate) 101—BCLK = PCLK/4 110—BCLK = PCLK/8 111—BCLK = PCLK/16

DAC Interface

The MAX9856 DAC is capable of supporting any sample rate from 8kHz to 96kHz in either master or slave mode, including all common sample rates (8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz and 96kHz).

A 15-bit clock divider coefficient must be programmed into the device to set the DAC sample rate relative to the prescaled MCLK input (PCLK). This allows high flexibility in both the MCLK and LRCLK_D frequencies. In slave mode, the interface accepts any LRCLK_D signal between 7.8kHz to 100kHz. There are two speed settings for the DAC set by the DRATE control bits. The highest rate runs the modulator at an internal clock rate between 5MHz and 10MHz, and provides the highest audio performance. The low rate runs the modulator between 2.5MHz and 5MHz for reduced power consumption.

The digital audio interface offers full functionality for several digital audio formats including left-justified, I²S, and PCM modes (Figure 1). Figure 2 shows the digital timing for various modes. Table 5 shows the DAC interface registers and descriptions. Table 6 lists the common DACNI and ADCNI values.

Table	5.	DAC	Interface	Registers
-------	----	-----	-----------	-----------

REG	B7	B6	B5	B4	B3	B2	B1	В0		
0x04	DWCI	DBCI	DRATE		DDLY	PCM	DHF	WS		
0x05	DPLLEN		DACNI[14:8]							
0x06			DACNI[7:0]							

REGISTER	FUNCTION					
	DAC Word Clock (LRCLK_D) Invert					
DWCI	When PCM = 0: 0—Left-channel data is transmitted while LRCLK_D is low. 1—Right-channel data is transmitted while LRCLK_D is low.					
	When PCM = 1: 0—Start of a new frame is signified by the falling edge of the LRCLK_D pulse. 1—Start of a new frame is signified by the rising edge of the LRCLK_D pulse.					
	DAC BCLK Invert:					
DBCI	 SDIN is accepted on the rising edge of BCLK. SDIN is accepted on the falling edge of BCLK. 					
	In master mode: 0—LRCLK_D transitions occur on the falling edge of BCLK. 1—LRCLK_D transitions occur on the rising edge of BCLK.					
	DAC Modulator Rate:					
	00—Low-power mode					
DIAL	01—Heserved 10—High-performance mode 11—DAC clock disabled					
	DAC Data Delay:					
	0—The most significant bit of an audio word is latched at the first BCLK edge after the LRCLK_D transition.					
	1—The most significant bit of an audio word is latched at the second BCLK edge after the LRCLK_D transition.					
	(DDLY = 1 for I ² S-compatible mode)					

DAC Interface Register Bit Descriptions

DAC Interface Register Bit Descriptions (continued)

REGISTER	FUNCTION				
	PCM Mode Select. PCM determines the format of the LRCLK_D and LRCLK_A signal:				
PCM	0—The LRCLK_D and LRCLK_A signals have a 50% duty cycle. Left-channel audio is transmitted during one state of and right-channel audio during the other state.				
	1—LRCLK_D and LRCLK_A are pulses that indicate the start of a frame of audio data consisting of two channels. Following the frame sync pulse, 16 bits of left-channel data is immediately followed by 16 bits of right-channel data. The DDLY and WS bits are ignored when PCM = 1.				
	DAC High-Sample Rate Mode:				
DHF	0—LRCLK_D is less than 50kHz. 8x FIR interpolation filter used. 1—LRCLK_D is greater than 50kHz. 4x FIR interpolation filter used.				
WS	Word Size. This bit controls both the DAC and ADC:				
	0—16 bits. 1—18 bits.				
	The DAC interface can accept higher than 18-bit words but the additional least significant bits are ignored.				
	DAC PLL Enable:				
DPLLEN	0 (valid for slave and master mode)—The frequency of LRCLK_D is set by the DACNI divider bits. In master mode, the MAX9856 generates LRCLK_D using the specified divide ratio. In slave mode, the MAX9856 expects an LRCLK_D as specified by the divide ratio.				
	1 (valid for slave mode only)—A digital PLL locks on to any externally supplied LRCLK_D signal regardless of the MCLK frequency. DHF must set high for sample rates above 50kHz.				
DACNI	DAC LRCLK Divider. When DPLLEN is set low, the frequency of LRCLK_D is determined by DACNI. See Table 6 for common DACNI values:				
	$\begin{split} DACNI &= (65536 \times 96 \times f_{LRCLK_D}) / f_{PCLK} \text{ for } (DHF = 0). \\ DACNI &= (65536 \times 48 \times f_{LRCLK_D}) / f_{PCLK} \text{ for } (DHF = 1). \end{split}$				
	f _{LRCLK_D} = LRCLK_D frequency. f _{PCLK} = Prescaled MCLK internal clock frequency (PCLK).				

Table 6. Common DACNI and ADCNI Values

LRCLK								
MCLK (MHz)	PSCLK	8kHz	16kHz	32kHz	44.1kHz	48kHz	88.2kHz (DAC ONLY)	96kHz (DAC ONLY)
11.2896	001	116A	22D4	45A9	6000	687D	6000	687D
12	001	1062	20C5	4189	5A51	624E	5A51	624E
12.288	001	1000	2000	4000	5833	6000	5833	6000
13	001	F20	1E3F	3C7F	535F	5ABE	535F	5ABE
16.9344	010	B9C	1738	2E71	4000	45A9	4000	45A9
18.432	010	AAB	1555	2AAB	3ACD	4000	3ACD	4000
19.2	010	960	4B0	258	1B3	190	1B3	190
24	011	1062	20C5	4189	5A51	624E	5A51	624E
26	011	F20	1E3F	3C7F	535F	5ABE	535F	5ABE
27	011	E90	1D21	3A41	5048	5762	5048	5762

Note: Values in bold are exact integers that provide maximum full-scale performance.

MAX9856

DIGITAL AUDIO INTERFACE SLAVE MODES: (LRCLK SHOULD TRANSITION ON THE UNU	SED BCLK EDGE)
	RIGHT
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0	D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1D0
DWCI/AWCI = 1, DBCI/ABCI = 1, DDLY/ADLY = 0, WS = 0, PCM = 0 LEFT	RIGHT
 D15_D14_D13_D12_D11_D10_D9_D8_D7_D6_D5_D4_D3_D2_D1_D0	D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
DWCI/AWCI = 0, DBCI/ABCI = 0, DDLY/ADLY = 1, WS = 1, PCM = 0	RIGHT
DWCI/AWCI = 0, DBCI/ABCI = 0, DDLY/ADLY = 0, WS = 0, PCM = 1	
DIGITAL AUDIO INTERFACE MASTER MODE:	
DWCI/AWCI = 0, DBCI/ABCI = 0, DDLY/ADLY = 0, WS = 0, PCM = 0 LEFT	RIGHT
DWCI/AWCI = 0, DBCI/ABCI = 0, DDLY/ADLY = 1, WS = 0, PCM = 0	
LEFT	RIGHT
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13	3D12D11D10D9D8D7D6D5D4D3D2D1D0

MAX9856

Figure 2. Digital Audio Interface Timing Diagrams

ADC Interface

The stereo ADC is capable of outputting data at any sample rate from 8kHz to 48kHz. Data can be output in common formats including left justified, I²S, and PCM (Figure 1). Figure 2 shows the digital timing in both slave and master modes.

Table 7. ADC Interface Registers

If the DAC and ADC operate at the same sample rate
only the LRCLK_D is needed, allowing the LRCLK_A
pin to be reassigned as a GPIO. When configured as a
general-purpose output, LRCLK_A can be set high or
low by the APIN bits. When configured as a general-
purpose input, the status is reported in register 0x00.
Table 7 lists and describes the ADC interface registers.

REG	B7	B6	B5	B4	B3	B2	B1	B0
0x07	AWCI	ABCI	AF	PIN	ADLY	0	0	0
0x08	APLLEN		ADCNI[14:8]					
0x09	ADCNI[7:0]							
0x0A	AGAIN				ANTH			

ADC Interface Register Bit Description

REGISTER	FUNCTION				
AWCI	ADC Word Clock (LRCLK_A) Invert				
	When PCM = 0: 0—Left-channel data is transmitted while LRCLK_A is low. 1—Right-channel data is transmitted while LRCLK_A is low.				
	When PCM = 1: 0—Start of a new frame is signified by the falling edge of the LRCLK_A pulse. 1—Start of a new frame is signified by the rising edge of the LRCLK_A pulse.				
ABCI	ADC BCLK Invert:				
	0—SDOUT is valid on the rising edge of BCLK. 1—SDOUT is valid on the falling edge of BCLK.				
	If operating in master mode, the ABCI bit has no effect. The DBCI bit controls BCLK to LRCLK_A timing.				